人脸识别系统方案
- 格式:doc
- 大小:35.09 KB
- 文档页数:27
人脸识别系统解决方案随着科技的不断进步和人工智能的广泛应用,人脸识别技术已经成为一种重要的生物识别技术。
人脸识别系统解决方案,不仅可以应用于安防领域,还可以用于身份识别、金融支付、智能门禁等多个领域。
本文将从技术原理、应用场景、优点及挑战等方面来讨论人脸识别系统的解决方案。
一、技术原理人脸识别系统是通过对输入的人脸图像进行特征提取和匹配来进行身份识别的。
技术原理主要包括以下几个方面:1. 图像采集:通过摄像头对人脸进行图像采集,获取到待识别的人脸图像。
2. 人脸检测与对齐:对采集到的图像进行人脸检测,找到图像中的人脸区域,并进行对齐,确保人脸在图像中的位置和角度适合后续的特征提取和匹配。
3. 特征提取:通过特定的算法从人脸图像中提取出表示人脸特征的向量。
这些特征向量通常包括人脸的形状、纹理和位置等信息。
4. 特征匹配:将提取到的特征向量与事先存储在数据库中的人脸特征进行匹配,找到与之最相似的人脸特征。
5. 结果输出:根据匹配结果输出最终的识别结果,判断该人脸是否属于已知的身份。
二、应用场景人脸识别系统的解决方案可广泛应用于以下场景:1. 安防领域:用于视频监控中,实时对比和识别监控区域内的人脸,将异常人员和黑名单人员及时报警。
2. 身份识别:用于售票、通关、考勤等场景,实现快速准确的人员身份识别,提高办事效率。
3. 金融支付:通过人脸识别技术,实现无感支付,用户可以通过刷脸完成消费,提高用户支付的便捷性和安全性。
4. 智能门禁:替代传统的门禁卡和密码,通过人脸识别技术,实现更为安全和方便的门禁管理。
5. 公安犯罪侦查:通过人脸识别系统,辅助公安机关进行犯罪嫌疑人的追踪和查找,提高破案率。
三、优点人脸识别系统解决方案有以下几个优点:1. 高准确性:人脸识别技术在准确率方面已经达到了较高水平,可以快速准确地进行身份鉴别。
2. 非接触性:与传统的身份识别方式相比,人脸识别系统无需接触传感器,可以在更远的距离上进行识别,提高了用户的使用体验。
2024年人脸识别闸机系统解决方案一、引言随着科技的不断进步,人脸识别技术在各个领域得到了广泛应用,尤其是在安全领域中起到了重要的作用。
人脸识别闸机系统作为一种智能化的出入管理方式,已广泛应用于机场、地铁、学校、公司等场所。
本文将就2024年人脸识别闸机系统的解决方案进行探讨。
二、系统概述2024年人脸识别闸机系统是一种基于人脸识别技术的智能安全管理系统。
其主要功能是通过摄像头对进出人员的面部进行拍摄并进行识别,从而实现出入管理的自动化和智能化。
该系统可以应用于各个场所,如机场、地铁、学校、公司等。
三、系统组成2024年人脸识别闸机系统主要由以下部分组成:1. 摄像头:系统使用高清晰度的摄像头对进出人员进行面部拍摄,确保图像质量和识别准确率。
2. 人脸识别算法:系统使用先进的人脸识别算法对面部图像进行特征提取和比对,以实现准确的人脸识别功能。
3. 数据库:系统建立一个人脸数据库,存储注册用户的面部特征信息,用于与摄像头拍摄到的面部图像进行比对。
4. 闸机:系统配备智能闸机设备,通过与人脸识别系统的联动,实现进出人员的自动识别和控制。
5. 软件平台:系统提供一套完整的软件平台,包括人脸注册管理、数据查询分析、系统监控等功能,方便系统的配置和管理。
四、系统工作流程2024年人脸识别闸机系统的工作流程如下:1. 面部拍摄:进出人员通过摄像头进行面部拍摄,系统自动抓取面部图像。
2. 特征提取:系统对面部图像进行特征提取,提取出与个人特征相关的信息,如眼睛位置、嘴巴形状等。
3. 特征比对:系统将提取到的面部特征与人脸数据库中的特征进行比对,以确定是否为注册用户。
4. 识别结果:系统根据比对结果给出识别结果,判断是否允许通过。
5. 闸机控制:系统根据识别结果控制闸机的开闭,允许通过的人员可以自由通过,不允许通过的人员则被阻止。
6. 数据管理:系统将每一次的识别记录和相关数据保存在数据库中,方便后期查询和分析。
人脸识别门禁系统施工方案1. 项目概述本项目旨在为xxx场所搭建一个人脸识别门禁系统,以提高场所的安全管理水平,实现人员便捷通行,同时降低管理成本。
系统主要包括人脸识别终端、门禁控制器、通讯网络、数据库等部分。
2. 施工准备2.1 硬件设备- 人脸识别终端:具备高清摄像头、触摸显示屏、指纹识别等功能。
- 门禁控制器:负责接收人脸识别终端发送的请求,并控制门禁的开关。
- 网络设备:包括交换机、路由器等,用于搭建通讯网络。
- 数据库服务器:存储人员信息、设备信息等数据。
2.2 软件系统- 人脸识别算法:用于实时捕捉人脸图像,并与数据库中的人脸信息进行比对。
- 门禁管理系统:用于管理人员信息、设备信息、通行记录等。
2.3 现场准备- 确保现场电源、网络等基础设施完善。
- 测量并标记出门禁系统的安装位置。
- 与场所管理方沟通,获取人员信息资料。
3. 施工流程3.1 设备安装1. 安装人脸识别终端:将终端固定在合适的位置,连接电源、网络等。
2. 安装门禁控制器:将控制器安装在门禁设备旁边,连接电源、网络等。
3. 连接网络设备:根据现场实际情况,布设网络线缆,连接交换机、路由器等。
4. 安装数据库服务器:将服务器安装在合适的位置,连接电源、网络等。
3.2 系统调试1. 配置人脸识别终端:设置识别算法、识别距离等参数。
2. 配置门禁控制器:设置开门权限、通行时间等。
3. 连接数据库:确保门禁管理系统可以正常访问数据库。
4. 系统测试:测试人脸识别、门禁开关等功能是否正常。
3.3 系统集成1. 将门禁管理系统与场所其他系统(如安防、考勤等)进行集成。
2. 设置数据接口,实现人员信息、通行记录等数据的共享。
3.4 培训与验收1. 对场所管理人员进行系统操作培训。
2. 进行验收测试,确保系统稳定、可靠运行。
3. 收集反馈意见,进行系统优化。
4. 施工周期与成本4.1 施工周期- 设备安装:3个工作日- 系统调试:2个工作日- 系统集成:5个工作日- 培训与验收:1个工作日总施工周期:11个工作日4.2 成本预算- 硬件设备费用:xxxx元- 软件系统费用:xxxx元- 施工人工费用:xxxx元- 培训与验收费用:xxxx元总成本预算:xxxx元5. 售后服务1. 提供一年的免费质保服务。
人脸识别门禁系统方案第1篇人脸识别门禁系统方案一、背景随着科技的发展,人工智能技术逐渐深入到社会的各个领域。
人脸识别作为生物识别技术的一种,凭借其便捷性、准确性和安全性,被广泛应用于各类场所。
本方案旨在制定一套合法合规的人脸识别门禁系统方案,以保障人员和财产的安全,提高管理效率。
二、目标1. 实现对人员和车辆的快速、准确识别。
2. 提高人员和财产的安全性。
3. 降低管理成本,提高管理效率。
4. 遵守国家法律法规,保护个人隐私。
三、系统设计1. 系统架构本方案采用分布式架构,分为前端设备、传输网络和后端管理平台三部分。
2. 前端设备前端设备主要包括人脸识别摄像机、门禁控制器、电子锁等。
人脸识别摄像机采用先进的深度学习算法,实现对人脸的快速、准确识别。
3. 传输网络传输网络采用有线和无线相结合的方式,确保数据传输的稳定性和安全性。
4. 后端管理平台后端管理平台负责对前端设备进行统一管理,包括人员信息管理、权限控制、数据统计等。
四、功能模块1. 人脸识别模块采用先进的人脸识别算法,实现对人脸的检测、跟踪和识别。
2. 权限管理模块对不同人员进行权限分级,实现精细化管理。
3. 数据统计模块统计人员出入记录、设备运行状态等数据,为管理者提供决策依据。
4. 实时监控模块实时监控前端设备运行状态,确保系统稳定运行。
5. 报警模块当发生异常情况时,如非法闯入、设备故障等,系统将及时报警。
五、合法合规性保障1. 法律法规遵守严格遵守国家关于人脸识别、个人信息保护等方面的法律法规。
2. 个人信息保护对采集到的人脸信息进行加密存储,防止泄露。
3. 透明告知在系统使用前,向用户明确告知采集目的、范围和方式,确保用户知情同意。
4. 数据安全建立完善的数据安全防护措施,防止数据被非法获取、篡改和删除。
六、实施与验收1. 设备安装按照设计方案,对前端设备进行安装、调试。
2. 系统部署在服务器上部署后端管理平台,配置相关参数。
3. 人员培训对管理人员进行系统操作、维护保养等方面的培训。
人脸识别系统技术设计方案1.1 智能人像比对平台该智能人脸识别系统建立了标准统一的共享人像库,并在此基础上部署了完整的人像比对判定平台。
该系统由人像标准化采集系统、人像数据库子系统、基础比对服务平台和人脸识别应用平台四大部分组成。
它支持前端人像采集、静态人脸查询和移动警务通人脸识别一体化服务。
该平台支持统一人像数据交换接口,兼容大多数人像数据交换标准。
它还有统一的安全标准接口,兼容PKI密钥和网络加密狗等常见的安全标准接口。
该系统采用B/S架构,以浏览器方式进行人像预处理、人像比对、结果查询、用户管理和系统运行状态查询等管理操作。
这样可以减少系统后台管理、人口治安及其他警种成百上千终端安装和维护难度,方便未来多警种共享应用。
此外,系统可提供标准的WebService接口,将业务系统获取的人像照片与相关人像库进行比对。
1.2 设计原则该系统本着统一标准、分级管理、资源共享、无缝对接的设计原则,以人像比对算法为核心,整合多区域现有资源,实现准确识别、快速反映,覆盖全面的智能人像识别应用平台。
该平台算法由XXX研究员、国际知名人脸识别专家、XXX院士XXX教授领衔研发,是基于中国自主知识产权,针对公安各警种业务特点专门研发的综合智能人像识别应用系统平台。
人像采集与比对平台具有统一的服务接口,兼容公安部拟指定的统一人像数据交换标准草案。
统一的安全验证,兼容PKI密钥,身份认证等常见的安全验证机制。
整个平台系统接口分为系统级别之间的接口与单个系统开放出来的服务接口组成。
系统可“随需而变,以不变应万变”提供多种可靠服务功能。
系统级接口是指连接不同地区部署的人像辅助识别平台之间的接口。
有两种访问方式:第一种是通过页面查询,使用Guest权限进行页面访问,适用于快速调阅查询不同平台之间的信息;第二种是通过请求服务和直接调阅的形式进行数据库查询,系统预留标准数据库查询接口,以市县二层结构进行数据库间的查询调用。
服务接口适用于该系统与其他业务应用系统做二次开发或者集成用接口。
人脸识别门禁实施方案一、背景介绍。
随着科技的不断发展,人脸识别技术已经逐渐走进我们的生活,成为了一种便捷、高效的身份识别方式。
在现代社会,门禁系统作为一个重要的安全保障设施,也需要不断更新和升级,以适应社会的发展和需求。
因此,人脸识别门禁系统应运而生,成为了一种新型的门禁实施方案。
二、人脸识别门禁系统的优势。
1. 安全性高,人脸识别技术具有高度的安全性,能够有效防止冒用、伪造等安全隐患。
2. 便捷性强,无需携带任何门禁卡或钥匙,只需通过面部识别即可实现出入。
3. 实时监控,系统可以实时监控人员的出入情况,提高了安全管理的效率。
4. 数据分析,系统可以对人员出入的数据进行分析和统计,为安全管理提供更多的参考依据。
三、人脸识别门禁系统的实施方案。
1. 系统设备选择,选择具有高性能、高稳定性的人脸识别设备,以确保系统的正常运行和准确识别。
2. 设备布局规划,根据实际情况,合理规划设备的布局位置,确保可以有效覆盖需要管理的区域。
3. 系统联网设置,将人脸识别门禁系统与网络进行联网设置,实现远程监控和管理。
4. 数据管理和存储,建立完善的数据管理和存储系统,保障人员出入数据的安全和完整性。
5. 技术支持和维护,建立健全的技术支持和维护体系,确保系统的长期稳定运行。
四、人脸识别门禁系统的应用场景。
1. 企业办公楼,可以替代传统的门禁卡系统,提高员工出入的便捷性和安全性。
2. 学校教学楼,可以实现学生和教职工的出入管理,确保校园的安全和秩序。
3. 社区小区,可以对小区居民的出入进行管控,提高小区的安全防范能力。
4. 商场超市,可以对员工和顾客的出入进行管理,提高商场的安全管理水平。
五、人脸识别门禁系统的发展趋势。
随着人工智能技术的不断发展,人脸识别门禁系统将会更加智能化和个性化,能够实现更多的功能和应用场景。
同时,系统的安全性和稳定性也将会得到进一步的提升,为社会的安全管理提供更多的技术支持。
六、总结。
人脸识别门禁系统作为一种新型的门禁实施方案,具有诸多优势和应用前景。
人脸识别系统解决方案人脸识别系统是一种通过摄像头捕捉人脸图像,并通过算法和模型对图像进行处理和匹配的技术。
它可以识别人脸的身份、性别、年龄、情绪等信息,具有广泛的应用前景,如人脸解锁、考勤打卡、门禁系统等。
本文将介绍人脸识别系统的解决方案,包括硬件设备、算法模型以及应用场景。
一、硬件设备:1.摄像头:人脸识别系统需要使用高质量的摄像头来捕获人脸图像。
应选择具有较高分辨率和感光度的摄像头,并确保其能够在不同环境下正常工作,如光线较暗或光线较亮的情况。
2.服务器:人脸识别系统需要一台服务器来存储和处理大量的人脸数据和算法模型。
服务器应具备较高的计算能力和存储空间,并能够支持多用户同时访问。
3.数据库:人脸识别系统需要一个可靠的数据库来存储人脸数据和相关信息。
数据库应具备高速读写能力和稳定性,并能够支持大规模的数据存储和查询。
4.网络设备:人脸识别系统需要使用网络设备来实现跨设备的数据传输和通信。
网络设备应具备高速稳定的数据传输能力,并能够保障系统的安全性和可靠性。
二、算法模型:1. 人脸检测与定位:人脸识别系统首先需要对图像进行人脸检测与定位,即确定人脸在图像中的位置和大小。
常用的人脸检测算法有Haar 特征、HOG特征和深度学习算法等。
2. 人脸特征提取:人脸识别系统需要从人脸图像中提取出具有区分性的特征向量。
常用的特征提取算法有PCA(主成分分析)、LDA(线性判别分析)和DeepFace等。
3.人脸匹配与识别:人脸识别系统需要将提取出的人脸特征与数据库中的人脸特征进行匹配和识别。
常用的匹配算法有欧氏距离、余弦相似度和SVM(支持向量机)等。
4.模型优化与升级:为了提高人脸识别系统的准确性和稳定性,可以对算法模型进行优化和升级。
如使用深度学习算法,通过增加训练样本、调整网络结构和参数等方式来提高系统的性能。
三、应用场景:1.人脸解锁:人脸识别系统可以替代传统的密码或指纹解锁方式,提供更便捷和安全的解锁方式。
智能人脸识别系统技术设计方案一、方案概述:智能人脸识别系统是一种基于计算机视觉技术的人脸识别系统,通过对人脸图像进行特征提取和比对,实现对人的身份的识别。
本方案旨在设计一个高效、准确、安全可靠的智能人脸识别系统,能够广泛应用于人脸识别门禁系统、人脸支付、人脸考勤等领域。
二、系统组成:1.人脸采集模块:通过摄像头获取用户输入的人脸图像;2.人脸检测模块:对输入的图像进行检测,提取其中的人脸;3.人脸特征提取模块:使用深度学习算法提取人脸的特征信息;4.人脸识别模块:将提取的特征与已有的人脸库进行比对;5.结果输出模块:输出人脸识别结果;6.数据库模块:存储用户的人脸特征信息和相关用户信息;7.用户界面模块:提供用户交互接口,方便用户进行注册、信息查询和配置等操作。
三、技术实现:1.人脸检测:采用基于深度学习的卷积神经网络(CNN)算法,通过训练数据集进行模型训练,实现对人脸的准确检测和定位。
2. 人脸特征提取:使用深度学习算法中的Siamese网络结构进行训练,将输入的人脸图像映射到一个低维度的特征空间,得到鲁棒性较高的人脸特征信息。
3.人脸识别:采用余弦相似度算法对提取的人脸特征与数据库中存储的人脸特征进行比对,并匹配出最相似的人脸特征,从而实现人脸识别。
4.数据库管理:采用关系数据库管理系统(RDBMS)来存储用户的人脸特征信息和相关用户信息,使用索引技术加速数据的检索和更新操作,提高系统的查询效率和数据一致性。
5.用户界面设计:采用图形用户界面(GUI)设计,实现用户注册、信息查询和管理员配置等功能,提供友好的操作界面,方便用户使用。
四、性能评估:1.准确性评估:采用标准数据集和测试数据进行模型训练和测试,计算系统的准确率、召回率和F1得分等指标,评估系统的人脸识别准确性。
2.效率评估:基于实际使用场景,进行多用户并发测试,评估系统的处理速度、响应时间和吞吐量等性能指标,保证系统能够在高负载下正常工作。
人脸识别系统技术设计方案人脸识别系统是一种基于人脸生物特征进行身份验证和识别的技术。
它通过采集并分析人脸图像中的特征点、纹理、色彩等信息,来实现对个体身份的确定。
人脸识别系统在社会安防、人力资源管理、身份认证等领域有广泛的应用。
下面将从系统架构、人脸检测与识别、关键技术、应用场景等方面进行设计方案的介绍。
一、系统架构1.图像采集设备:可以是摄像头、监控摄像机等用于采集人脸图像的设备,保证图像质量对于后续的人脸检测和识别非常重要。
2.人脸检测与识别算法:采用经典的人脸检测算法、特征提取算法、人脸匹配算法等实现对人脸图像的处理和分析,提取出人脸的特征信息,进行比对和识别。
3.数据库:保存人脸图像的信息和对应的身份信息,系统将通过数据库进行存储、查询、匹配等操作。
4.用户界面:提供用户注册、登录、查询等功能界面,用户可以通过界面进行人脸信息的录入、查询和身份验证等操作。
二、人脸检测与识别人脸检测与识别是人脸识别系统的核心功能,其中包括以下步骤:1.人脸检测:通过图像采集设备获取的图像数据,使用人脸检测算法对图像进行处理,找到人脸区域,并进行归一化和预处理操作。
2.人脸特征提取:使用特征提取算法对归一化的人脸图像进行处理,提取出关键的特征点、纹理和色彩等信息。
3.特征匹配和识别:将提取出的人脸特征与数据库中的人脸特征进行比对,计算相似度或距离指标,确定是否匹配,并返回对应的身份信息。
三、关键技术1.归一化处理:人脸图像在采集过程中可能会受到光照、角度、尺度等因素的影响,需要对图像进行预处理和归一化,保证后续处理的准确性。
2.特征提取算法:特征提取算法是人脸识别中的关键,常见的方法有主成分分析(PCA)、线性鉴别分析(LDA)、局部二值模式(LBP)等。
3.数据库管理:对于大规模的人脸数据库,需要建立高效的索引和查询机制,保证实时的人脸检测和识别。
4.鲁棒性处理:人脸识别系统需要考虑到在不同光照、角度、表情等条件下的识别准确性,通过算法的改进和改善图像质量等方式提高系统的鲁棒性。
人脸识别解决方案浙江大华技术股份有限公司解决方案部大华人脸识别解决方案目录1 人脸识别技术 (3)2 人脸识别解决方案 (4)3 第二章. 方案概述 (5)3.1 项目概况 (5)—1人脸识别技术随着平安城市基础建设的不断完善和加强前端摄像机采集到的数据呈现一种爆炸式的增长。
对于公安行业来说数据总量不断充实的情况下如何从非结构化数据中挖掘结构化信息是平安城市建设的二期目标。
另一方面公安行业对车辆的结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式。
人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化的转变。
人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点。
但相较其他识别技术具有本质的区别1.非强制性用户不需要专门配合人脸采集设备几乎可以在无意识的状态下就可获取人脸图像这样的取样方式没有“强制性”2. 非接触性用户不需要和设备直接接触就能获取人脸图像3. 并发性在实际应用场景下可以进行多个人脸的分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。
人脸图像采集及检测基于人的脸部特征对输入的人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。
人脸图像预处理对于人脸的图像预处理是基于人脸采集及检测结果通过人脸智能算法对选择出来的人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取的过程。
其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。
人脸特征提取的方法归纳起来分为两大类一种是基于知识的表征方法另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据其特征分量通常包括特征点间的欧氏距离、曲率和角度等。
人脸由眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系的几何描述可作为识别人脸的重要特征这些特征被称为几何特征。
基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
1.1人脸识别解决方案人脸特征比对识别通过采集到的人脸图片形成人脸特征数据与后端人脸库中的人脸特征数据模板进行搜索匹配通过设定一个阙值相似度超过这一阈值则把匹配得到的结果输出。
这一过程又分为两类一类是确认是一对一进行图像比较的过程另一类是辨认是一对多进行图像匹配对比的过程。
2方案概述2.1项目概况随着经济的发展城镇建设速度加快以及互联网的突飞猛进导致城市中人口密集流动人口增加引发了城市建设中的交通、社会治安、重点区域防范、网络犯罪日益突出等城市管理问题今后现代化城市的建设、网络信息必然将安全作为重中之重与城市的经济建设处于同等重要的地位。
近年来社会犯罪率呈逐年升高的趋势特别是网络犯罪更加的严重网络逃犯频频发生罪犯的犯罪手法也更加隐蔽和先进给广大公安人员侦破案件增加了难度。
同时恶性事件时有发生使人们对公共生活场所的安全感普遍降低。
同时公安人员在对通缉犯进行人工排查时如大海捞针成功率极低效果也不明显。
主要有如下实际问题首先由于罪犯群体不断扩大要在数以百万计的人员照片库中找出犯罪嫌疑人不仅费时费力还有可能造成遗漏等情况破案的效率大打折扣其次目前公安机关侦察案件大多数仍然依靠事后追查和通缉对已经发生的案件造成的损失很难有效弥补最后如果在案发的同时即能防患于未然就能第一时间将损失控制在最小范围内。
2.2需求分析采用高效使用的人脸监控和比对系统第一可帮助公安侦查人员快速识别辨别特定人员真实身份把过去难以想象的千万级的海量照片库比对需求变成现实从而有效的为公安视频侦查、治安管理、刑侦立案等工作提供实战上的有效帮助和解决方法。
第二可帮助公安侦查人员办案时候追查和通缉真正从打变为防能够极大的减少警力资源浪费和事故发生概率。
目前人脸抓拍比对系统主要应用在以下几个方面公安治安人员黑名单比对实时报警针对一些人员密集区域如车站、地铁站、机场、社区等的关键出入口、通道等卡口位置布置人员卡口后端对重点关注人员、打防控人员进行黑名单布控通过实时视频流比对布控黑名单现人脸比对识别。
不明身份人员身份确认治安人员在日常巡逻、人员身份验证过程中避免肢体接触和冲突使用前端摄像机或手机进行抓拍后端通过数据库进行人员信息比对分析达到人员身份确认的应用。
治安或刑侦人员对流动性人口中的无合法有效身份证件、无固定住所、无正当职业或合法经济来源的人员进行非接触性身份确认。
重要点位重点人员身份排查针对一些重要管控的区域如大型保障活动政府、公安出入口等布置前端摄像机对现场进行人脸抓拍每日安排公安人员人工进行重点人员筛选排查。
2.3建设目标本章文字内容可以根据项目具体情况修改2.3.1重点人员布控重点人员包括高危人员、特殊人员等。
高危人员包括有全国在逃人员、全国违法犯罪人员特殊人员包括水客、涉恐涉案人员、涉毒人员、重大犯罪前科人员、肇事肇祸精神病人。
本方案可通过手动或自动批量导入手段将高危人员信息导入至人脸注册库中通过摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安。
公安重点人员根据地区和目的不同划分不同类型包括惯偷惯犯、涉恐、涉案、涉毒、水客等人员。
本方案可通过手动或自动批量导入手段将重点人员信息导入至人脸注册库中通过在超市、大楼、火车站、港口等出入口摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安。
2.3.2高危人员布控特殊人员包括有水客、涉恐人员、涉毒人员、有重大犯罪前科人员、肇事肇祸精神病人、重点上访人员等。
人脸识别系统将利用实时视频和身份证信息相结合的手段对出入境人士进行审查识别。
高危人员包括全国在逃人员、全国违法犯罪人员、重大犯罪前科人员、肇事肇祸精神病人等。
人脸识别系统将利用实时视频和身份证信息等手段可在火车站、汽车站、港口口岸出入口建设人脸卡口对出入境人士进行审查识别。
2.3.3敏感人群布控敏感人群包括来自特殊地区、特殊身份、特殊职业等人员如来自新疆地区人群、个别少数民族人群、长期无工作人群、非法上访人群等。
通过在出入境、关键人脸采集卡口对这些人群进行身份信息和人脸信息采集通过人脸识别系统对敏感人群的身份信息、行为轨迹、出没时间等进行管控从而做到敏感人群防控的目的。
2.3.4身份信息检索在日常巡逻、火车站身份证检查、其他民事应用中可通过单兵、手机、相机对驾驶员进行脸部拍照通过上传照片至后端进行人脸识别确认人员身份信息。
这种方式适用于未携带身份证、驾驶证的驾驶人员身份快速确认。
2.3.5身份信息查重对全国人口基本信息资源库中人员身份证进行检索比对排查一人多证的问题。
2.4 建设内容*根据具体情况编写3总体设计大华人脸识别系统采用具有完全自主知识产权的人脸检测算法、人脸跟踪算法、人脸抓拍算法、人脸质量评分算法及人脸识别算法、并结合配套的前端摄像机机设备和后端智能分析服务器实现了实时人脸抓拍建模、实时黑名单比对报警、事后静态人脸图片检索等功能。
本方案针对人脸注册库/人脸抓拍库小于300万、黑名单库小于30万的系统。
前端可采用普通高清摄像机也可以采用专用的人脸抓拍相机。
通过人脸检测服务器对实时视频中出现的人脸进行抓拍。
人脸识别服务器可对抓拍的照片进行数据库比对。
根据人流量和抓拍照片数量在针对多路前端相机环境时可部署人脸识别服务器并上传照片。
在方案中采集图片和结构化特征数据保存在人脸识别服务器中。
若存在大容量的采集图片和结构化特征数据保存要求时间长可扩容IPSAN存储设备保证存储容量。
3.1逻辑架构系统业务逻辑包含三块内容3.1.1人脸采集系统人脸采集系统包括专业人脸抓拍机和普通高清网络摄像机+人脸检测服务器是将前端采集到的视频图片等非结构化数据进行分析处理定位检测获取人脸图片并结合人员身份信息采集系统获取人员身份信息进行关联管理。
3.1.2人脸比对系统人脸比对系统是对人脸采集系统传输的数据进行智能分析处理进行人脸图片建模、通过人脸眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系的几何描述进行人脸特征数据提取入库并根据平台业务需求进行实时比对识别和事后人脸检索应用。
3.1.3人脸库人脸库包括人脸抓拍库、人脸注册库、黑名单库其中抓拍库包括场景图片场景下抠取的人脸小图、人脸特征数据是人脸采集系统采集的人脸图片存储库用于人脸比对系统进行人脸图片比对检索注册库包括标准人脸图片、人员身份信息、人脸特征数据是系统设定前公安批量导入的重点人员库用于人脸比对系统进行人脸图片比对检索黑名单库是注册库中将部分重点人员进行布控组成用于实时比对人脸采集系统传输的人脸图片。
3.1.4业务应用通过平台进行实时布控、查询检索、配置管理等功能应用。
3.1.5整体逻辑架构如下图3.2人脸三大业务库系统数据库应包含三种业务库人脸抓拍库、人脸注册库和黑名单库。
人脸抓拍库-包含抓拍现场图片、人脸小图和结构化的人脸特征数据、抓拍地点、抓拍时间等信息此类库的主要业务应用场景是图片检索比对查询目标人员的人像出没地点、时间等信息人脸注册库-主要是导入一些大规模的人像图片、结构化的人脸特征数据和身份信息如一个地级市当地的社保人像信息库等导入后主要的应用场景是图片检索比对和身份信息查询确定人员身份黑名单库-包含高危人员、特殊人员的人脸图片、结构化的人脸特征数据和人员身份信息主要的应用场景是在各个人脸卡口进行实时人流的人脸比对预警。
一般来说人脸抓拍库和人脸注册库做为静态库适用于事后查询检索目标、黑名单库作为动态库用于实时比对报警。
一个或多个黑名单也可以进行勾选布控形成具有针对性的人脸布控库与前端实时视频进行人脸比对报警。
其中抓拍库因人流量和随着时间将越来越大需根据项目情况合算存储设备大小。
黑名单库数据由公安或专业人员导入存储大小一般有微调但是不会有数量级上的变化。
3.3系统拓扑系统由前端摄像机、人脸检测服务器、人脸识别服务器、存储设备、人脸数据库、人脸识别系统平台六类设备3.3.1前端摄像机前端摄像机包括普通高清网络摄像机和专业人脸抓拍机。
普通高清网络摄像机主要实现图像采集、编码等功能。
专业人脸抓拍机不仅实现普通高清网络摄像机的所有功能其内置大华自主研发的智能分析算法还能实现对视频中人脸进行自动捕获、跟踪、抓拍等功能。