粉体的性能表征及测定
- 格式:pptx
- 大小:1.67 MB
- 文档页数:62
球形粉体材料的表征方法与分析引言:球形粉体材料广泛应用于许多行业,如电子、化工、医疗和能源等。
了解和掌握球形粉体材料的特性对于优化工艺和改进产品品质至关重要。
本文将介绍球形粉体材料的表征方法与分析,包括粒径分布、形状分析、表面特性和结构分析等方面。
一、粒径分布分析粒径是球形粉体材料的重要特性之一,它会直接影响材料的流动性、堆积密度和孔隙率等性能。
常用的粒径分布分析方法包括激光粒度仪、电子显微镜和动态光散射等技术。
其中,激光粒度仪可以快速、准确地测量材料的粒径分布,并提供粒径的平均值、标准差和累积百分比等信息。
电子显微镜可以观察并测量粒径的形状和分布情况。
动态光散射则可以研究粒子在溶液中的运动行为,进而得出粒径信息。
二、形状分析除了粒径,球形粉体材料的形状也是需要关注的重要指标。
形状特征会直接影响材料的流动性、储存性和加工性能。
常用的形状分析方法有显微照片分析、电子显微镜和成像软件等。
显微照片分析可以直观地观察和比较不同样品的形状特征。
电子显微镜可以提供更高分辨率的形状图像,并通过成像软件对形状进行进一步分析,如圆度、椭圆度、角度和面积等参数。
三、表面特性分析球形粉体材料的表面特性对于与其他物质的相互作用具有重要影响。
主要的表面特性包括比表面积、孔隙率、吸附性能和表面形貌等。
比表面积可以通过比表面积分析仪进行测量,它能够提供样品的比表面积和孔隙体积等参数。
吸附性能可以通过比色法、质谱分析和化学吸附等方法进行评估,以确定材料与其他物质的亲和性。
表面形貌可以通过扫描电子显微镜进行观察和分析,以了解样品表面的纹理和形貌特征。
四、结构分析球形粉体材料的结构信息对于了解其物理、化学性质以及相变行为具有重要意义。
常用的结构分析方法包括X射线衍射、核磁共振和透射电子显微镜等技术。
X 射线衍射可以提供材料晶体结构的信息,以确定晶体的型号和晶格常数。
核磁共振可以研究材料分子之间的相互作用,了解其结构和动力学性质。
透射电子显微镜可以提供更高分辨率的结构图像,帮助研究者观察和分析材料的微观结构。
《粉体科学与工程基础》粉末的性能与表征一、研究背景粉末的性能对粉体的各种现象、材料的性能、以及相关的应用都有着很大的影响。
而粉末的性能包括:几何性能(粒度、比表面、孔径和形状等);化学性能(化学成分、纯度、氧含量等);粉体的力学特性(松装密度、流动性、成形性、压缩性、堆积角和剪切角等);粉末的物理性能和表面特性(真密度、光泽、吸波性、表面活性;电位和磁性等)。
其中气力输送也是对粉末性能的重要应用之一。
气力输送过程中物料性能是确定输送特性的重要因素,因此,粉料气力输送技术的实现要以对粉料的性能研究为基础。
对影响气力输送的粉体基本性能及其相关参数做了较全面分析,其中粒子尺寸、粒径分布、形状是影响粉料是否可适用于气力输送的关键参数,其它特性都与这三种特性相关联。
因此通过对粉体基本性能的研究及其在气力输送中所表现出来的流动特性,建立粉体性能与气力输送特性参数的关系,对气力输送技术的进一步发展,更好地发挥该技术的优越性,具有十分重要的意义。
二、研究现状粒体性能包括粒子的尺寸、粒度分布、密度、形状、硬度、孔隙率、透气性等,其中粒子尺寸、粒径分布、形状是影响粉料是否可适用于浓相气力输送的关键参数。
2.1 粒子尺寸粒径又称为粒度,是用来表示粉体颗粒尺寸大小的几何参数,它是粉体诸性质中最重要和最基本的。
粒径的定义和表示方法由于颗粒的形状、大小和组成的不同而不同,同时又与颗粒的形成过程、测试方法和工业用途有密切联系[3]。
通常将粒径分为单个颗粒的单一粒径和颗粒群体的平均粒径。
如果粒子是球形的可直接使用其直径作粒径,但实际颗粒的形状都是不规则的,所以要引入当量直径,即把颗粒看成一个相当的球,将该球体的直径作为颗粒的粒径,由于相当的物理量不同,就有不同的粒径,一般可分为:等体积球当量径d v、等表面积球当量径d s、等比表面积球当量径d sv、等投影周长圆当量径d L、等投影面积球当量径d a、等沉降速度球当量径,又称为斯托克斯径d St。
实验1 粉体综合流动性实验一、目的意义粉体是由不连续的微粒构成,是固体的特殊形态。
它具有一些特殊的物理性质,如巨大的比表面积和很小的松密度,以及凝聚性和流动性等。
在分体的许多单元操作过程中涉及粉体的流动性能,例如粉体的生产工艺、传输、贮存、装填以及工业中的粉末冶金、医药中不同组分的混合等。
粉体的流动性能随产地、生产工艺、粒度、水分含量、颗粒形状、压实力大小和压实时间长短等因素的不同而有明显的变化,所以测定粉体的流动性和对粉体工程具有重要的意义。
而Carr指数法是工业上评价粉体流动性最常用的方法,由于这种方法快速、准确、适用范围广、易操作等一系列优点而被广泛应用于粉体特性的综合评判和粉体系统的设计开发中。
本实验的目的:(1)了解粉体流动性测定的意义;(2)掌握粉体流动性的测定方法;(3)了解粒度和水分对粉体流动性的影响。
二、基本原理Carr指数法是卡尔教授通过大量实验,在综合研究了影响粉体流动性和喷流性的几个单项粉体物性值得基础上,将其每个特征指数化并累加以指数方式来表征流动性的方法。
Carr指数分为流动性指数和喷流性指数。
流动性指数是由测量结果参照Carr流动性指数表得到与其相对应得单项Carr指数值(安息角、压缩率、平板角和粘附度/均齐度),将其数值累加,计算出流动性指数合计,用取得的总分值来综合评价粉体的流动性质;喷流性指数是单项检测项目(流动性指数、崩溃角、差角、分散度)指数化后的累积和。
卡尔流动性指数表见表1-1。
安息角:粉体堆积层的自由表面在平衡状态下,与水平面形成的最大角度叫做安息角。
它是通过特定方式使粉体自然下落到特定平台上形成的。
安息角对粉体的流动性影响最大,安息角越小,粉体流动性越好。
安息角也称休止角、自然坡度角等。
安息角的理想状态与实际状态示意图如图示。
崩溃角:给测量安息角的堆积粉体上以一定的冲击,使其表面崩溃后圆锥体的底角成为崩溃角。
平板角:将埋在分体中的平板向上垂直提起,粉体在平板上的自由表面(斜面)和平板之间的夹角与收到振动之后的夹角的平均值称为平板角。
粉体工程一、粉末的性能与表征1.粒径:粉末体中,颗粒的大小用其在空间范围所占据的线性尺寸表示,称为粒径。
2.粒径的表示方法:①几何学粒径②投影粒径③筛分粒径④球当粒径。
3.粉体粒径的分布常表示成频率分布和累积分布:①粒径分布的表格、直方图、曲线可直观地反映粉体粒径的分布特征。
②数字函数表达式有:正态分布;对数正态分布;Rosin—Rammler分布;RRB方程能较好地反映工业上粉磨产品的粒径分布特征。
4.平均粒径:若将粒径不等的颗粒群想象成自由径为D的均一球形颗粒组成,那么其物理特性可表示为f(d)=f(D),D即表示平均粒径。
5.粉末的测量方法:显微镜法;激光衍射法;重力沉降光透法;筛分法。
平均粒径测量方法:比表面法。
6.粉末的性质:堆积性质;摩擦性质;压缩性质与成形性(压制性)。
安息角:又称休止角、堆积角,它是指粉体自然堆积时的自由表面在静止平衡状态下与水平面所成的最大的角度。
(用来衡量与评价粉体的流动性)。
在0.2mm以下,粒径越小而休止角越大,这是由于微细粒子间粘附性增大导致流动性降低的缘故。
粉体颗粒形状愈不规则安息角愈大,颗粒球形愈大粉体流动性愈好其安息角就愈小。
二、粉体表面与界面化学1.粉末颗粒的分散:①在气相中,主要受范德华力、静电力、液桥力,分散方法,机械分散、干燥分散、颗粒表面改性分散、静电分散、复合分散;②在液相中,主要受范德华作用力、双电层静电作用力、空间位阻作用力、熔剂化作用力、疏液作用力,分散调控有,介质调控、分散剂调控、机械调控和超声调控。
2.颗粒表面改性:粉末颗粒表面改性:用物理,化学,机械方法对颗粒表面进行处理,根据应用的需要有目的的改变颗粒表面的物理化学性质,如表面晶体结构和官能团,表面能、界面润湿性,电性,表面吸附性和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。
3.改性方法:①表面化学改性:偶联剂表面改性、表面活性剂改性、高分子分散剂改性、接枝改性;②微胶囊包覆——化学法、物理法、物理化学法;③机械化学改性;④原位聚合改性——无皂乳液聚合包覆法、预处理乳液聚合法、微乳液聚合法。
BiFeO3粉体的水热法制备与表征BiFeO3是一种重要的多铁材料,具有良好的铁电和磁电性能,被广泛应用于传感器、储能器件、非挥发性存储器等领域。
本文将介绍BiFeO3粉体的水热法制备方法及相关的表征结果。
BiFeO3的水热法制备主要分为两个步骤:前驱体的制备和水热合成。
首先是前驱体的制备。
以Bi(NO3)3·5H2O和Fe(NO3)3·9H2O为原料,在适量的去离子水中溶解,控制溶液的pH值在2-3之间。
然后,将溶液在磁力搅拌下慢慢滴加到氨水中,生成混合溶液,通过保持搅拌和加热使沉淀得到充分反应。
用去离子水洗涤、离心分离和干燥得到前驱体粉末。
然后是水热合成。
将得到的前驱体粉末与一定比例的碱溶液或钠硼酸溶液进行混合,得到混合溶液。
将混合溶液转移到高压、高温的水热釜中,在恒定的温度下反应一定的时间。
反应完成后,将釜子冷却至室温,取出反应产物。
用去离子水洗涤、离心分离和干燥得到BiFeO3粉体。
对制备得到的BiFeO3粉体进行表征,常用的方法包括X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
XRD分析结果显示,制备得到的BiFeO3粉体具有纯相结构,无明显的杂质。
SEM观察结果显示,BiFeO3粉体呈现出均匀的颗粒形貌,颗粒大小分布均匀。
TEM观察结果进一步证实了BiFeO3颗粒的形貌和尺寸。
还可以通过磁性测量、介电测量等方法对BiFeO3粉体进行性能表征。
磁性测量结果表明,BiFeO3粉体具有良好的铁磁性能。
介电测量结果显示,BiFeO3粉体具有良好的铁电性能。
本文介绍了BiFeO3粉体的水热法制备过程及相关的表征结果。
该方法简单易行,制备得到的BiFeO3粉体具有良好的结晶性和性能。
这些研究结果对于BiFeO3材料的应用和进一步研究具有指导意义。
粉体粒径测试标准主要包括以下几个方面:
1. 粉体粒径的定义:粉体粒径是用来表示粉体颗粒尺寸大小的几何参数,它是粉体的基本性质,对粉体性能有很大影响。
由于实际粉体颗粒形状的不均匀程度较高,大多数颗粒不是球形,而是条形、多边形、片状或各种形状兼而有之的不规则体,因此表示颗粒群平均大小的方法多种多样。
2. 粉体粒径的测量方法:常用的粉体粒径测量方法包括筛分法、显微镜法、库尔特记数法和沉降法等。
筛分法是将物料通过网孔尺寸大小不同的一套分样筛进行的,测定各筛上的筛余量,计算出各种粒径的百分含量。
显微镜法是将粒子放在显微镜下,根据投影像测得粒径的方法。
库尔特记数法是在测定管中装入电解质溶液,将粒子群混悬在电解质溶液中,测定管壁上有一细孔,孔电极间有一定电压,当粒子通过细孔时,由于电阻发生改变使电流变化并记录于记录器上,最后可将电信号换算成粒径。
沉降法是根据Stocks方程求出粒子的粒径,适用于100m以下的粒径的测定。
3. 粉体粒径分布:粉体粒径分布用于表征多分散颗粒体系中粒径大小不等的颗粒组成情况,分为频率分布和累积分布。
频率分布表示与各个粒径相应的粒子占全部颗粒的百分含量;累积分布表示小于或大于某一粒径的粒子占全部颗粒的百分含量,累积分布是频率分布的积分形式。
百分含量一般以颗粒质量、体积、个数为基准。
颗粒分布常见的表达式有粒度分布曲线、平均粒径、标准偏差和分布宽度等。
4. 粉体粒径测试标准的应用:粉体粒径测试标准在许多行业中有广泛应用,如医药、化妆品、食品、涂料、陶瓷、水泥、矿业等。
不同行业和应用领域可能对粉体粒径测试方法和标准有不同的要求,因此需要根据实际情况选择合适的测试方法和标准。