中心极限定理介绍_王筑娟
- 格式:pdf
- 大小:223.65 KB
- 文档页数:4
概率论与数理统计主讲:四川大学四川大学第47讲中心极限定理1§5.2 中心极限定理四川大学第47讲中心极限定理3第47讲中心极限定理四川大学四川大学第47讲中心极限定理4中心极限定理的概念Central Limit Theorems四川大学第47讲中心极限定理5在客观实际中有许多随机变量,它们是由大量相互独立的随机因素的综合影响所形成,而其中每一个别因素在总的影响中所起的作用是微小的。
这种随机变量往往近似地服从正态分布。
这种现象就是中心极限定理的客观背景。
本节将用中心极限定理来说明这种现象。
四川大学中心极限定理是说:在一定条件下,充分多的相互独立的随机变量的算术平均值将服从正态分布,不管这些随机变量本身服从什么分布。
四川大学四川大学第47讲中心极限定理6本节介绍了三个中心极限定理1. 列维-林德伯格定理(独立同分布的中心极限定理)2. 李雅普诺夫定理(独立不同分布的中心极限定理)自学3. 棣莫弗-拉普拉斯定理(二项分布的极限分布)四川大学四川大学四川大学第47讲中心极限定理7列维-林德伯格定理独立同分布的中心极限定理四川大学第47讲中心极限定理8四川大学第47讲中心极限定理17Jarl Waldemar Lindeberg 1876–1932芬兰数学家Paul Pierre Lévy1886-1971法国数学家Lévy法国数学家。
现代概率论开拓者之一,他在巴黎出生。
第一次世界大战期间,莱维是法国炮兵进行数学分析工作。
1920年,他被任命为在Ecole理工学院,在那里他的学生包括蒙德布罗特分析。
他留在莱维主要研究概率论和泛函分析。
他引入分布律的莱维距离、散布函数和集结函数、鞅、局部时等概念,对极限理论和随机过程理论作出了重要贡献。
概率论中的莱维过程(Lévy processes),莱维测度(Lévy measure),莱维分布(Lévy distribution) 等都是以其命名。
中心极限定理的内容及意义1. 中心极限定理呀,这可是个超神奇的东西呢!简单说就是不管原来的总体分布长啥样,只要样本量足够大,样本均值的分布就近似于正态分布。
就好比咱们学校组织抽奖,奖品有好多不同类型,一开始奖品的分布是乱七八糟的。
可是当抽奖的次数足够多,也就是样本量够大的时候,每次抽奖得到的平均奖品价值的分布就变得很有规律了,就像正态分布那样规规矩矩的。
这多奇妙啊!2. 中心极限定理的意义可不得了。
它就像一把万能钥匙,能打开很多统计学上的难题之门。
比如说,有个卖水果的小贩,他进的水果大小不一,最开始水果大小的分布特别复杂。
但是如果他每次称一大袋水果当作一个样本,称的次数多了,这些样本的平均水果大小就会遵循正态分布。
这让他能更好地预估自己水果的平均大小,然后定价啊,控制成本啥的,是不是超级有用?3. 嘿,中心极限定理!你知道吗?它让我们能在很复杂的情况下做出靠谱的估计。
想象一下,一个工厂生产各种形状和大小的零件,那些零件最初的尺寸分布乱得像一团麻。
但是呢,当我们从生产线每次取足够多的零件当作样本,样本的平均尺寸就会像听话的孩子一样,接近正态分布。
这就像给工程师们吃了颗定心丸,他们能根据这个来判断生产是否正常,多棒啊!4. 中心极限定理是统计学里的一颗璀璨明星啊。
它的内容就是告诉我们,即使总体是千奇百怪的分布,只要样本量上去了,样本均值的分布就向正态分布看齐。
就像一群性格各异的人,一开始乱哄哄的。
可是当把他们分成足够多的小组,每个小组的平均性格就会有一定的规律,就好像被正态分布的魔力给约束住了一样。
这对我们做调查研究可太有帮助了,能让我们从混乱中找到规律呢。
5. 哇塞,中心极限定理真的很牛!它的内容可以这么理解,无论总体的分布是像高山一样起伏不定,还是像迷宫一样错综复杂,只要样本数量足够大,样本均值的分布就会变得像正态分布那样平滑和有规律。
比如说,在一个大型的购物商场里,顾客的消费金额分布一开始各种各样。
中心极限定理第一篇:中心极限定理中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。
而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。
中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布。
因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。
(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。
即:该定理是辛钦中心极限定理的特例。
在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。
(三)李亚普洛夫中心极限定理设差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方。
记,如果能选择这一个正数δ>0,使当n→∞时,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。
中心极限定理理解一、啥是中心极限定理呢?咱就把它想象成一个很神奇的魔法。
比如说啊,有一堆乱七八糟的数据,它们单个看起来可能毫无规律,但是呢,当这些数据的数量变得超级多的时候,它们就会像被施了魔法一样,变得有规律起来。
这个规律就是会趋近于一种特定的分布,一般就是正态分布啦。
就好像一群调皮的小孩子,一开始各自乱跑乱跳,但是当人足够多的时候,就会慢慢形成一种像是排队一样的整齐状态。
这就是中心极限定理大概在做的事情,它让那些看起来杂乱无章的数据在大量的情况下有了一种秩序感。
二、中心极限定理的例子你看啊,假如我们去统计一个学校里每个学生每天的零花钱。
每个学生的零花钱肯定是各种各样的,有的多有的少,完全没个准儿。
但是如果我们把全校学生的零花钱都统计起来,而且这个学校的学生数量还特别大的话,那这个零花钱的总数或者平均数就会符合中心极限定理。
它就会趋近于正态分布。
这就好比每个学生的零花钱是一颗小珠子,一开始这些珠子散落在各处,但是当珠子的数量超级多的时候,它们就会堆成一个类似正态分布的形状。
再比如说掷骰子,掷一次骰子,结果是1到6中的任意一个数,完全随机。
但是如果我们掷很多很多次骰子,然后统计每次掷骰子结果的总和或者平均值,这个结果也会遵循中心极限定理,慢慢地靠近正态分布。
三、中心极限定理为啥重要呢?这可太重要啦!在实际生活中,它的应用超级广泛。
比如说在做市场调查的时候,我们要调查人们对某个产品的满意度。
每个被调查者的满意度是不同的,但是当调查的人数足够多的时候,我们就可以根据中心极限定理来对整体的满意度进行一个比较准确的估计。
还有在质量检测方面,如果一个工厂生产很多产品,每个产品的某个指标可能会有波动,但是当产品数量很大的时候,就可以用中心极限定理来判断这个生产过程是不是稳定。
要是没有这个定理,我们就很难从那些杂乱的数据中找到规律,就像在黑暗中摸瞎一样,不知道该怎么去处理那些大量的数据。
所以说啊,中心极限定理就像是我们在数据海洋里的一盏明灯,给我们指引方向,让我们能够对那些看似无序的数据进行有效的分析和处理呢。
‘、第五章 大数定律与中心极限定理第一节 大数定律在第一章中我们已经指出,人们经过长期实践认识到,虽然个别随机事件在某次试验中可能发生也可能不发生,但是在大量重复试验中却呈现明显的规律性,即随着试验次数的增大,一个随机事件发生的频率在某一固定值附近摆动.这就是所谓的频率具有稳定性.同时,人们通过实践发现大量测量值的算术平均值也具有稳定性.而这些稳定性如何从理论上给以证明就是本节介绍的大数定律所要回答的问题.在引入大数定律之前,我们先证一个重要的不等式——契比雪夫(Chebyshev )不等式. 设随机变量X 存在有限方差D (X ),则有对任意ε>0,P {|X -E (X )|≥ε}≤2)(εX D .(5.1)证 如果X 是连续型随机变量,设X 的概率密度为f (x ),则有P {|X -E (X )|≥ε}=⎰⎰≥-≥--≤εεε)(22)()()()(X E x X E x x x f X E x x x f d d ≤[].)()()(1222⎰+∞∞-=-εεX D x x f X E x d 请读者自己证明X 是离散型随机变量的情况.契比雪夫不等式也可表示成P {|X -E (X )|<ε}≥1-2)(εX D . 5.2)这个不等式给出了在随机变量X 的分布未知的情况下事件{|X -E (X )|<ε}的概率的下限估计,例如,在契比雪夫不等式中,令ε=3)(X D ,4)(X D 分别可得到P {|X -E (X )|<3)(X D }≥0.8889,P {|X -E (X )|<4)(X D }≥0.9375.例5.1 设X 是掷一颗骰子所出现的点数,若给定ε=1,2,实际计算P {|X -E (X )|≥ε},并验证契比雪夫不等式成立.解 因为X 的概率函数是P {X =k }=1/6(k =1,2,…,6),所以E (X )=7/2, D (X )=35/12,P {|X -7/2|≥1=P {X =1}+P {X =2}+P {X =5}+P {X =6}=2/3;P {|X -7/2|}≥2}=P {X =1}+P {X =6}=1/3.ε=1:2)(εX D =35/12>2/3, ε=2:2)(εX D =1/4×35/12=35/48>1/3.可见契比雪夫不等式成立.例5.2 设电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是0.7,而假定开、关时间彼此独立,估计夜晚同时开着的灯数在6800与7200之间的概率.解 设X 表示在夜晚同时开着的灯的数目,它服从参数为n =10000,p =0.7的二项分布.若要准确计算,应该用贝努里公式:P {6800<X <7200}=∑=-⨯⨯7199680110000100003.07.0k k k k C .如果用契比雪夫不等式估计: E (X )=np =10000×0.7=7000,D (X )=npq =10000×0.7×0.3=2100,P {6800<X <7200}=P {|X -7000|<200}≥1-22002100≈0.95. 可见,虽然有10000盏灯,但是只要有供应7200盏灯的电力就能够以相当大的概率保证够用.事实上,契比雪夫不等式的估计只说明概率大于0.95,后面将具体求出这个概率约为0.99999.契比雪夫不等式在理论上具有重大意义,但估计的精确度不高.契比雪夫不等式作为一个理论工具,在大数定律证明中,可使证明非常简洁.定义5.1 设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数,若对于任意正数ε有{}1lim =<-∞→εa YP n n ,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a ,记为Y n P a .定理5.1(契比雪夫(Chebyshev )大数定律) 设X 1,X 2,…是相互独立的随机变量序列,各有数学期望E (X1),E (X2),…及方差D (X 1),D (X 2),…,并且对于所有i =1,2,…都有D (X i )<l ,其中l 是与i 无关的常数,则对任给ε>0,有1)(1111lim =⎭⎬⎫⎩⎨⎧<-∑∑==∞→εn i ni i i n X E n X n P . (5.3) 证因X 1,X 2,…相互独立,所以n l nl n X D n X n D n i i n i i =⋅<=⎪⎭⎫ ⎝⎛∑∑==21211)(11. 又因,)(1111∑∑===⎪⎭⎫ ⎝⎛ni i n i i X E n X n E 由(5.2)式,对于任意ε>0,有2111)(11εεn l X E n X n P n i i n i i -≥⎭⎬⎫⎩⎨⎧<-∑∑==, 但是任何事件的概率都不超过1,即1)(111112≤⎭⎬⎫⎩⎨⎧<-≤-∑∑==εεni i n i i X E n X n P n l,因此1)(1111lim =⎭⎬⎫⎩⎨⎧<-∑∑==∞→εn i ni i i n X E n X n P . 契比雪夫大数定律说明:在定理的条件下,当n 充分大时,n 个独立随机变量的平均数这个随机变量的离散程度是很小的.这意味,经过算术平均以后得到的随机变量n Xn i i∑=1将比较密的聚集在它的数学期望n X E ni i ∑=1)(的附近,它与数学期望之差依概率收敛到0.定理5.2(契比雪夫大数定律的特殊情况) 设随机变量X 1,X 2,…,X n ,…相互独立,且具有相同的数学期望和方差:E (X k )=μ,D (X k )=σ2(k =1,2,…).作前n 个随机变量的算术平均∑==nk k n X n Y 11则对于任意正数ε有 {}1lim =<-∞→εμn n Y P . (5.4)定理5.3(贝努里(Bernoulli )大数定律) 设n A 是n 次独立重复试验中事件A 发生的次数.p 是事件A 在每次试验中发生的概率,则对于任意正数ε>0,有1lim =⎭⎬⎫⎩⎨⎧<-∞→εp n n P A n , (5.5) 或 0lim =⎭⎬⎫⎩⎨⎧≥-∞→εp n n P A n . 证 引入随机变量X k =⎩⎨⎧=,,2,1,1,0 k ,A k ,A k 发生次试验中若在第不发生次试验中若在第, 显然 n A =∑=n k k X1.因为X k 只依赖于第k 次试验,而各次试验是独立的.于是X 1,X 2,…,是相互独立的;又因为X k 服从(0-1)分布,故有E (X k )=p , D (X k )=p (1-p ), k =1,2,….由定理5.2有111lim n i n k P X p n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑, 即 1lim =⎭⎬⎫⎩⎨⎧<-∞→εp n n P A n .贝努里大数定律告诉我们,事件A 发生的频率nn A 依概率收敛于事件A 发生的概率p ,因此,本定律从理论上证明了大量重复独立试验中,事件A 发生的频率具有稳定性,正因为这种稳定性,概率的概念才有实际意义.贝努里大数定律还提供了通过试验来确定事件的概率的方法,即既然频率nn A 与概率p 有较大偏差的可能性很小,于是我们就可以通过做试验确定某事件发生的频率,并把它作为相应概率的估计.因此,在实际应用中,如果试验的次数很大时,就可以用事件发生的频率代替事件发生的概率.定理5.2中要求随机变量X k (k =1,2,…,n )的方差存在.但在随机变量服从同一分布的场合,并不需要这一要求,我们有以下定理.定理5.4(辛钦(Khinchin )大数定律)设随机变量X 1,X 2,…,X n ,…相互独立,服从同一分布,且具有数学期望E (X k )=μ (k =1,2,…),则对于任意正数ε,有111lim n i n k P X n με→∞=⎧⎫-<=⎨⎬⎩⎭∑. (5.6) 显然,贝努里大数定律是辛钦大数定律的特殊情况,辛钦大数定律在实际中应用很广泛. 这一定律使算术平均值的法则有了理论根据.如要测定某一物理量a ,在不变的条件下重复测量n 次,得观测值X 1,X 2,…,X n ,求得实测值的算术平均值∑=ni i X n 11,根据此定理,当n 足够大时,取∑=ni i X n 11作为a 的近似值,可以认为所发生的误差是很小的,所以实用上往往用某物体的某一指标值的一系列实测值的算术平均值来作为该指标值的近似值.第二节 中心极限定理在客观实际中有许多随机变量,它们是由大量相互独立的偶然因素的综合影响所形成的,而每一个因素在总的影响中所起的作用是很小的,但总起来,却对总和有显著影响,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景.概率论中有关论证独立随机变量的和的极限分布是正态分布的一系列定理称为中心极限定理(Central limit theorem),现介绍几个常用的中心极限定理.定理5.5(独立同分布的中心极限定理) 设随机变量X 1,X 2,…,X n ,…相互独立,服从同一分布,且具有数学期望和方差E (X k )=μ,D (X k )=σ2≠0(k =1,2,…).则随机变量σμn n X X D X E X Y n k k n k k n k k n k k n -=⎪⎭⎫ ⎝⎛-=∑∑∑∑====1111)( 的分布函数F n (x )对于任意x 满足⎰∑∞--=∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n k k n n n t x n n X P x F .21lim )(lim 212d e πσμ (5.7) 从定理5.5的结论可知,当n 充分大时,近似地有Y n =21σμn n X nk k -∑=~N (0,1).或者说,当n 充分大时,近似地有 ().,~21σμn n N Xn k k ∑=(5.8) 如果用X 1,X 2,…,X n 表示相互独立的各随机因素.假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度).则(5.8)式说明,作为总和∑=n k k X1这个随机变量,当n 充分大时,便近似地服从正态分布.例5.3 一个螺丝钉重量是一个随机变量,期望值是1两,标准差是0.1两.求一盒(100个)同型号螺丝钉的重量超过10.2斤的概率.解 设一盒重量为X ,盒中第i 个螺丝钉的重量为X i (i =1,2,…,100).X 1,X 2,…,X 100相互独立,E (X i )=1,)(i X D =0.1,则有X =∑=1001i i X,且E (X )=100·E (X i )=100(两),)(i X D =1(两).根据定理5.5,有P {X >102}=}2100{111001021100≤--=⎭⎬⎫⎩⎨⎧->-X P X P ≈1-Φ(2)=1-0.977250=0.022750.例5.4 对敌人的防御地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,其期望值是2,方差是1.69.求在100次轰炸中有180颗到220颗炸弹命中目标的概率. 解令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i i X,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13.所以P {180≤X ≤220}=P {|X -200|≤20}=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.87644.定理5.6(李雅普诺夫(Liapunov )定理) 设随机变量X 1,X 2,…相互独立,它们具有数学期望和方差:E (X k )=μk , D (X k )=σk 2≠0 (k =1,2,…). 记∑==n k k n B 122σ,若存在正数δ,使得当n →∞时,{}∑=++→-n k k k n X E B 12201δδμ,则随机变量 Z n =n nk k nk k n k k n k n k k k B X X D X E X∑∑∑∑∑=====-=-11111)()(μ的分布函数F n (x )对于任意x ,满足⎰∑∑∞--==∞←∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n n k k n k k n n n t x B X P x F d e π211221lim )(lim μ. (5.9) 这个定理说明,随机变量Z n =n n k kn k kB X ∑∑==-11μ当n 很大时,近似地服从正态分布N (0,1).因此,当n 很大时,∑∑==+=nk k n n n k k Z B X11μ 近似地服从正态分布⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这表明无论随机变量X k (k =1,2,…)具有怎样的分布,只要满足定理条件,则它们的和∑=n k k X1当n 很大时,就近似地服从正态分布.而在许多实际问题中,所考虑的随机变量往往可以表示为多个独立的随机变量之和,因而它们常常近似服从正态分布.这就是为什么正态随机变量在概率论与数理统计中占有重要地位的主要原因.在数理统计中我们将看到,中心极限定理是大样本统计推断的理论基础.下面介绍另一个中心极限定理.定理5.7 设随机变量X 服从参数为n ,p (0<p <1)的二项分布,则(1) (拉普拉斯(Laplace)定理) 局部极限定理:当n →∞时P {X =k }≈⎪⎪⎭⎫ ⎝⎛-=--npq np k npq npq npq np k ϕ1212)(2e π, (5.10)其中p +q =1,k =0,1,2,…,n ,2221)(x x -=e πϕ. (2) (德莫佛-拉普拉斯(De MoivreLaplace)定理) 积分极限定理:对于任意的x ,恒有 ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n t x p np np X P d e π2221)1(lim . (5.11) 这个定理表明,二项分布以正态分布为极限.当n 充分大时,我们可以利用上两式来计算二项分布的概率.例5.5 10部机器独立工作,每部停机的概率为0.2,求3部机器同时停机的概率. 解 10部机器中同时停机的数目X 服从二项分布,n =10,p =0.2,np =2,npq ≈1.265.(1) 直接计算:P {X =3}=310C ×0.23×0.87≈0.2013;(2) 若用局部极限定理近似计算:P {X =3}=)79.0(265.11265.123265.111ϕϕϕ=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-npq np k npq =0.2308. (2)的计算结果与(1)相差较大,这是因为n 不够大.例5.6 应用定理5.7计算§5.1中例5.2的概率.解np =7000,npq ≈45.83.P {6800<X <7200}=P {|X -7000|<200} =1)36.4(236.483.457000-=⎭⎬⎫⎩⎨⎧<-ΦX P =0.99999.例5.7 产品为废品的概率为p =0.005,求10000件产品中废品数不大于70的概率. 解 10000件产品中的废品数X 服从二项分布,n =10000,p =0.005,np =50,npq ≈7.053.P {X ≤70}=)84.2(053.75070ΦΦ=⎪⎭⎫ ⎝⎛- =0.9977. 正态分布和泊松分布虽然都是二项分布的极限分布,但后者以n →∞,同时p →0,np →λ为条件,而前者则只要求n →∞这一条件.一般说来,对于n 很大,p (或q )很小的二项分布(n p ≤5)用正态分布来近似计算不如用泊松分布计算精确.例5.8 每颗炮弹命中飞机的概率为0.01,求500发炮弹中命中5发的概率.解 500发炮弹中命中飞机的炮弹数目X 服从二项分布,n =500,p =0.01,np =5,npq ≈2.2.下面用三种方法计算并加以比较:(1) 用二项分布公式计算:P {X =5}=5500C ×0.015×0.99495=0.17635.(2) 用泊松公式计算,直接查表可得:np =λ=5,k =5,P 5(5)≈0.175467.(3) 用拉普拉斯局部极限定理计算:P {X =5}=⎪⎪⎭⎫ ⎝⎛-npq np npq 51ϕ≈0.1793. 可见后者不如前者精确.小 结本章介绍了契比雪夫不等式、四个大数定律和三个中心极限定理.契比雪夫不等式给出了随机变量X 的分布未知,只知道E (X )和D (X )的情况下,对事件{|X -E (X )|≤ε}概率的下限估计.人们在长期实践中认识到频率具有稳定性,即当试验次数增大时,频率稳定在一个数的附近.这一事实显示了可以用一个数来表征事件发生的可能性的大小.这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,因而频率的稳定性是概率定义的客观基础.贝努里大数定律则以严密的数学形式论证了频率的稳定性.中心极限定理表明,在相当一般的条件下,当独立随机变量的个数增加时,其和的分布趋于正态分布.这一事实阐明了正态分布的重要性.中心极限定理也揭示了为什么在实际应用中会经常遇到正态分布,也就是揭示了产生正态分布变量的源泉.另一方面,它提供了独立同分布随机变量之和∑=n k k X1(其中X k 的方差存在)的近似分布,只要和式中加项的个数充分大,就可以不必考虑和式中的随机变量服从什么分布,都可以用正态分布来近似,这在应用上是有效和重要的.中心极限定理的内容包含极限,因而称它为极限定理是很自然的.又因为它在统计中的重要性,称它为中心极限定理,这是Polya 在1920年取的名字.本章要求读者理解大数定律和中心极限定理的概率意义,并要求会使用中心极限定理估算有关事件的概率.重要术语及主题契比雪夫不等式 依概率收敛契比雪夫大数定律及特殊情况 贝努里大数定律辛钦大数定律 独立同分布中心极限定律李雅普诺夫中心极限定理 德莫佛拉普拉斯中心极限定理.习 题 五1. 一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率.9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977. (2001研考)。
(完整版)8-第五章⼤数定律和中⼼极限定理解析第五章⼤数定律和中⼼极限定理⼤数定律和中⼼极限定理是概率论中两类极限定理的统称,前者是从理论上证明随机现象的“频率稳定性”,并进⼀步推⼴到“算术平均值法则”;⽽后者证明了独⽴随机变量标准化和的极限分布是正态分布或近似正态分布问题,这两类极限定理揭⽰了随机现象的重要统计规律,在理论和应⽤上都有很重要的意义。
§5.1 ⼤数定律设ΛΛ,,,,21n X X X 是互相独⽴的⼀列随机变量,每个随机变量取值于⼆元集合{0,1},并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=易计算它们的数学期望和⽅差为 (),()j j E X p D X pq ==如果取这些j X 的部分和 n n X X X S +++=Λ21并考虑它们的平均值∑==n j j n n Xn S 1/)(/,易知它的数学期望和⽅差为;nnS S pq E p D n n n == ? ?利⽤定理4.2.13给出的切⽐雪夫不等式可知:对任何⼀个正数t 有2n S pq P p t n t n-≥≤ ? 令∞→n ,有2lim lim 0n n n S pq P p t n t n→∞→∞??-≥≤= 即lim 0n n S P p t n →∞??-≥=(5.1.1) 可见当n 很⼤时,部分和的平均值/n S n 与p 相距超过任何⼀个数0>t 的概率都很⼩,⽽当∞→n 时, 这个概率趋于0。
(5.1.1)式的结果称为弱⼤数定律,也称伯努利⼤数定律, 因为这个定律是伯努利在1713年⾸先证明的,是从理论上证明随机现象的频率具有稳定性的第⼀个定律。
注意式(5.1.1)等价于lim 1n n S P p t n →∞??-≤=(5.1.2) 把它完整地叙述如以下定理:定理5.1.1(伯努利⼤数定律)设ΛΛ,,,,21n X X X 是互相独⽴的取值于⼆元集合{0,1}的⼀列随机变量,并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=⼜设 n n X X X S +++=Λ21则 lim 0n n S P p t n →∞??-≥=或等价地lim 1n n S P p t n →∞??-≤=。
第47讲中⼼极限定理§5.2 中⼼极限定理中⼼极限定理的概念Central Limit Theorems在客观实际中有许多随机变量,它们是由⼤量相互独⽴的随机因素的综合影响所形成,⽽其中每⼀个别因素在总的影响中所起的作⽤是微⼩的。
这种随机变量往往近似地服从正态分布。
这种现象就是中⼼极限定理的客观背景。
本节将⽤中⼼极限定理来说明这种现象。
四川⼤学徐⼩湛中⼼极限定理是说:在⼀定条件下,充分多的相互独⽴的随机变量的算术平均值将服从正态分布,不管这些随机变量本⾝服从什么分布。
本节介绍了三个中⼼极限定理1.列维-林德伯格定理(独⽴同分布的中⼼极限定理)2.李雅普诺夫定理(独⽴不同分布的中⼼极限定理)3.棣莫弗-拉普拉斯定理(⼆项分布的极限分布)列维-林德伯格定理独⽴同分布的中⼼极限定理定理 1 列维-林德伯格 (Levy -Lindberg) 定理(独⽴同分布的中⼼极限定理)设随机变量 X 1, X 2, …, X n , … 相互独⽴,服从同⼀分布,且 E (X k )=µ , D (X k )=σ 2 >0 (k =1,2, …),的分布函数 F n (x ) =P {Y n ≤x }满⾜当 n 很⼤时, Y n 近似地服从标准正态分布 N (0, 1) 则随机变量n n →∞ n →∞ lim F (x ) = lim P {Y ≤ x }= Φ(x ) = n定理 1 (独⽴同分布的中⼼极限定理)设随机变量 X 1, X 2, …, X n , … 相互独⽴,服从同⼀分布,且 E (X k )=µ , D (X k )=σ2 >0 (k =1,2, …),则随机变量n n 的分布函数 F (x ) =P {Y ≤x }满⾜n n n →∞ n →∞ n →∞lim F (x ) = lim P {Y ≤ x }= lim以上定理表⽰:若随机变量 X 1, X 2, …, X n , … 相互独⽴同分布,且 E (X k )=µ , D (X k )=σ 2 >0 (k =1,2, …),则当n 很⼤时,近似地有n n k X 的标准化变量 1n Y 是 X = ∑ k =1 n k 1 n = D ( ∑ k =1 2 1 n k D (X ) n X ) = ∑ k =1 = D (X ) 独⽴性 k k =1 nk 1 n k =1 X ) = ∑ E (X ) = n E (X ) = E (1∑ nnnk 1nk=1Y 是X = ∑以上定理表明,在定理的条件下,⽆论{Xk} 服从什么分布,当n很⼤时,其前n项的算术均值X的准化服从正态分布N(0,1)。