中心极限定理介绍_王筑娟
- 格式:pdf
- 大小:223.65 KB
- 文档页数:4
概率论与数理统计主讲:四川大学四川大学第47讲中心极限定理1§5.2 中心极限定理四川大学第47讲中心极限定理3第47讲中心极限定理四川大学四川大学第47讲中心极限定理4中心极限定理的概念Central Limit Theorems四川大学第47讲中心极限定理5在客观实际中有许多随机变量,它们是由大量相互独立的随机因素的综合影响所形成,而其中每一个别因素在总的影响中所起的作用是微小的。
这种随机变量往往近似地服从正态分布。
这种现象就是中心极限定理的客观背景。
本节将用中心极限定理来说明这种现象。
四川大学中心极限定理是说:在一定条件下,充分多的相互独立的随机变量的算术平均值将服从正态分布,不管这些随机变量本身服从什么分布。
四川大学四川大学第47讲中心极限定理6本节介绍了三个中心极限定理1. 列维-林德伯格定理(独立同分布的中心极限定理)2. 李雅普诺夫定理(独立不同分布的中心极限定理)自学3. 棣莫弗-拉普拉斯定理(二项分布的极限分布)四川大学四川大学四川大学第47讲中心极限定理7列维-林德伯格定理独立同分布的中心极限定理四川大学第47讲中心极限定理8四川大学第47讲中心极限定理17Jarl Waldemar Lindeberg 1876–1932芬兰数学家Paul Pierre Lévy1886-1971法国数学家Lévy法国数学家。
现代概率论开拓者之一,他在巴黎出生。
第一次世界大战期间,莱维是法国炮兵进行数学分析工作。
1920年,他被任命为在Ecole理工学院,在那里他的学生包括蒙德布罗特分析。
他留在莱维主要研究概率论和泛函分析。
他引入分布律的莱维距离、散布函数和集结函数、鞅、局部时等概念,对极限理论和随机过程理论作出了重要贡献。
概率论中的莱维过程(Lévy processes),莱维测度(Lévy measure),莱维分布(Lévy distribution) 等都是以其命名。
中心极限定理的内容及意义1. 中心极限定理呀,这可是个超神奇的东西呢!简单说就是不管原来的总体分布长啥样,只要样本量足够大,样本均值的分布就近似于正态分布。
就好比咱们学校组织抽奖,奖品有好多不同类型,一开始奖品的分布是乱七八糟的。
可是当抽奖的次数足够多,也就是样本量够大的时候,每次抽奖得到的平均奖品价值的分布就变得很有规律了,就像正态分布那样规规矩矩的。
这多奇妙啊!2. 中心极限定理的意义可不得了。
它就像一把万能钥匙,能打开很多统计学上的难题之门。
比如说,有个卖水果的小贩,他进的水果大小不一,最开始水果大小的分布特别复杂。
但是如果他每次称一大袋水果当作一个样本,称的次数多了,这些样本的平均水果大小就会遵循正态分布。
这让他能更好地预估自己水果的平均大小,然后定价啊,控制成本啥的,是不是超级有用?3. 嘿,中心极限定理!你知道吗?它让我们能在很复杂的情况下做出靠谱的估计。
想象一下,一个工厂生产各种形状和大小的零件,那些零件最初的尺寸分布乱得像一团麻。
但是呢,当我们从生产线每次取足够多的零件当作样本,样本的平均尺寸就会像听话的孩子一样,接近正态分布。
这就像给工程师们吃了颗定心丸,他们能根据这个来判断生产是否正常,多棒啊!4. 中心极限定理是统计学里的一颗璀璨明星啊。
它的内容就是告诉我们,即使总体是千奇百怪的分布,只要样本量上去了,样本均值的分布就向正态分布看齐。
就像一群性格各异的人,一开始乱哄哄的。
可是当把他们分成足够多的小组,每个小组的平均性格就会有一定的规律,就好像被正态分布的魔力给约束住了一样。
这对我们做调查研究可太有帮助了,能让我们从混乱中找到规律呢。
5. 哇塞,中心极限定理真的很牛!它的内容可以这么理解,无论总体的分布是像高山一样起伏不定,还是像迷宫一样错综复杂,只要样本数量足够大,样本均值的分布就会变得像正态分布那样平滑和有规律。
比如说,在一个大型的购物商场里,顾客的消费金额分布一开始各种各样。
中心极限定理第一篇:中心极限定理中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。
而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。
中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布。
因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。
(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。
即:该定理是辛钦中心极限定理的特例。
在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。
(三)李亚普洛夫中心极限定理设差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方。
记,如果能选择这一个正数δ>0,使当n→∞时,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。
中心极限定理理解一、啥是中心极限定理呢?咱就把它想象成一个很神奇的魔法。
比如说啊,有一堆乱七八糟的数据,它们单个看起来可能毫无规律,但是呢,当这些数据的数量变得超级多的时候,它们就会像被施了魔法一样,变得有规律起来。
这个规律就是会趋近于一种特定的分布,一般就是正态分布啦。
就好像一群调皮的小孩子,一开始各自乱跑乱跳,但是当人足够多的时候,就会慢慢形成一种像是排队一样的整齐状态。
这就是中心极限定理大概在做的事情,它让那些看起来杂乱无章的数据在大量的情况下有了一种秩序感。
二、中心极限定理的例子你看啊,假如我们去统计一个学校里每个学生每天的零花钱。
每个学生的零花钱肯定是各种各样的,有的多有的少,完全没个准儿。
但是如果我们把全校学生的零花钱都统计起来,而且这个学校的学生数量还特别大的话,那这个零花钱的总数或者平均数就会符合中心极限定理。
它就会趋近于正态分布。
这就好比每个学生的零花钱是一颗小珠子,一开始这些珠子散落在各处,但是当珠子的数量超级多的时候,它们就会堆成一个类似正态分布的形状。
再比如说掷骰子,掷一次骰子,结果是1到6中的任意一个数,完全随机。
但是如果我们掷很多很多次骰子,然后统计每次掷骰子结果的总和或者平均值,这个结果也会遵循中心极限定理,慢慢地靠近正态分布。
三、中心极限定理为啥重要呢?这可太重要啦!在实际生活中,它的应用超级广泛。
比如说在做市场调查的时候,我们要调查人们对某个产品的满意度。
每个被调查者的满意度是不同的,但是当调查的人数足够多的时候,我们就可以根据中心极限定理来对整体的满意度进行一个比较准确的估计。
还有在质量检测方面,如果一个工厂生产很多产品,每个产品的某个指标可能会有波动,但是当产品数量很大的时候,就可以用中心极限定理来判断这个生产过程是不是稳定。
要是没有这个定理,我们就很难从那些杂乱的数据中找到规律,就像在黑暗中摸瞎一样,不知道该怎么去处理那些大量的数据。
所以说啊,中心极限定理就像是我们在数据海洋里的一盏明灯,给我们指引方向,让我们能够对那些看似无序的数据进行有效的分析和处理呢。