多普勒效应综合实验
- 格式:doc
- 大小:114.50 KB
- 文档页数:3
多普勒效应综合实验报告1. 引言说起多普勒效应,大家可能觉得这名字听起来有点复杂,其实它跟我们的日常生活可有着千丝万缕的联系。
想象一下,你在路边悠闲地等车,突然一辆救护车呼啸而过,哔哔的警报声从远到近,接着又从近到远,听起来像是在和你打招呼似的。
这就是多普勒效应的真实写照,它让我们更好地理解声音是如何传播的。
这次实验,我们就是要深入探讨这个现象,看看它背后的奥秘。
2. 多普勒效应的原理2.1 基本概念多普勒效应,其实就是当声音源或观察者相对运动时,听到的声音频率发生变化的现象。
简单来说,如果一个物体朝你移动,你会听到比它实际发出的音调更高的声音;反之,如果它远离你,声音就会变低。
就像我们听到的那辆救护车,刚开始的时候它的声音尖锐得像是要冲破天空,离开时却变得温柔得多,像是在对我们说“再见”。
2.2 生活中的例子生活中其实随处可见多普勒效应的影子。
比如,当你在运动的时候,听到路边有人喊你的名字,声调总是高低起伏。
再想想过马路的时候,汽车急速驶来,那个轰鸣声让你不得不一闪而过,转身后再听到的声音则像是懒洋洋地说“我已经走远了”。
这些体验其实都在说明着多普勒效应的奇妙。
3. 实验过程3.1 准备工作这次实验我们准备了一些简单的设备,包括音频发生器、麦克风、扬声器和测量工具。
首先,我们设定一个音频频率,比如说440赫兹,这是一个标准的A音,听起来可亲切了。
接着,我们就要开始进行不同速度的实验,看看音频的变化。
3.2 实验步骤我们让扬声器固定在一个地方,然后把它调到一定的音频频率。
之后,一个同学(我们叫他“小明”吧)开始以不同的速度朝扬声器走近,或者远离。
每当他经过扬声器时,我们用麦克风记录下他听到的音频频率。
实验进行得相当顺利,小明从“飞奔”到“慢走”,记录下的数据一目了然。
通过这些数据,我们开始分析频率变化的规律,嘴上不敢说“哇,原来真有这么神奇”,但心里早就惊叹不已了。
4. 数据分析4.1 结果展示经过一番努力,我们得到了多个数据点,像是小明快速接近扬声器时,频率明显升高,而他远离时,频率又骤降。
实验8 多普勒效应综合实验对于机械波、声波、光波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,或者波源、观察者不动而传播介质运动时,或者波源、观察者、传播介质都在运动时, 观察者接收到的波的频率和发出的波的频率不相同的现象,称为多普勒效应。
多普勒效应在核物理、天文学、工程技术、交通管理、医疗诊断等方面有十分广泛的应用。
如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等。
【实验目的】1. 了解声波的多普勒效应现象,掌握智能多普勒效应实验仪的应用。
2. 测量超声接收器运动速度与接收频率的关系,验证多普勒效应。
3. 观察物体不同类型的变速运动的规律。
4. 掌握用时差法测量空气中声波的传播速度。
5.超声换能器特性测量。
【实验仪器】智能多普勒效应实验仪由A 718FB 型实验仪、测试架组成。
A 718FB 实验仪由信号发生器和功率放大器、接收放大器、微处理器,液晶显示器等组成。
测试架由步进电机,电机控制模块,超声收、发射换能器,光电门、小车等组成(如图2-8-1所示)。
【实验原理】1.声波的多普勒效应:设声源在原点,声源振动频率为f ,接收点运动和声波传播都在x 方向。
对于三维情况,处理稍复杂一点,其结果相似。
声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为:⎪⎭⎫⎝⎛-=x u t p p ωω cos 0 (2-8-1) (1)声源运动速度为S V ,介质和接收点不动:设声速为u ,在时刻t ,声源移动的距离为:)u x t (V S -因而声源实际的距离为: )(0u x t V x x S --= 所以00()/(1) ()/(1)SS S S V x x V t ux V t M =--=-- (2-8-2)其中u /V M S S =为声源运动的马赫数,声源向接收点运动时S V (或S M )为正,反之为负,将式(2-8-2)代入式(2-8-1) :⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--=u x t M p p S 001cos ω可见接收器接收到的频率变为原来的SM 11-, 即 :SS M 1ff -=(2-8-3)(2)声源、介质不动,接收器运动速度为r V ,同理可得接收器接收到的频率:f uV f M f rr r )1()1(+=+= (2-8-4) 其中uV M rr =为接收器运动的马赫数,接收点向着声源运动时r V (或r M )为正,反之为负。
多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。
本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。
实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。
2. 将小车以一定速度向听音器移动,并记录每次移动的距离。
3. 同时记录听音器接收到的声音频率。
4. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。
当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。
实验分析:这种现象可以通过多普勒效应来解释。
当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。
相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。
实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一束激光和一个运动的反射镜。
2. 将激光照射到反射镜上,并记录反射光的频率。
3. 以一定速度移动反射镜,并记录每次移动的距离。
4. 同时记录反射光的频率变化。
5. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。
当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。
实验分析:这种现象同样可以通过多普勒效应来解释。
当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。
相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。
实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。
以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。
实验名称:多普勒效应实验实验目的:1. 理解多普勒效应的原理和现象;2. 掌握多普勒效应的实验方法;3. 通过实验验证多普勒效应的存在;4. 分析实验数据,得出实验结论。
实验原理:多普勒效应是指当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化的现象。
当波源向接收器移动时,接收到的频率会升高;当波源远离接收器时,接收到的频率会降低。
实验仪器:1. 发射器:频率为f的连续波发生器;2. 接收器:频率计;3. 跟踪器:用于控制波源与接收器之间的相对运动;4. 移动平台:用于承载波源和接收器;5. 测量工具:尺子、计时器等。
实验步骤:1. 将发射器和接收器放置在移动平台上,确保两者之间的距离为L;2. 设置发射器的频率为f,打开发射器;3. 通过跟踪器控制波源和接收器之间的相对运动,分别进行以下实验:a. 波源向接收器移动,记录接收器接收到的频率f1;b. 波源远离接收器,记录接收器接收到的频率f2;c. 接收器向波源移动,记录接收器接收到的频率f3;d. 接收器远离波源,记录接收器接收到的频率f4;4. 计算相对速度v,公式为v = (f1 - f) / f L;5. 计算相对速度v,公式为v = (f2 - f) / f L;6. 计算相对速度v,公式为v = (f3 - f) / f L;7. 计算相对速度v,公式为v = (f4 - f) / f L;8. 分析实验数据,得出实验结论。
实验结果:1. 波源向接收器移动时,接收器接收到的频率f1高于原始频率f;2. 波源远离接收器时,接收器接收到的频率f2低于原始频率f;3. 接收器向波源移动时,接收器接收到的频率f3高于原始频率f;4. 接收器远离波源时,接收器接收到的频率f4低于原始频率f;5. 计算得到的相对速度v分别为v1、v2、v3、v4,符合多普勒效应的规律。
实验结论:通过实验验证了多普勒效应的存在,即当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。
多普勒效应综合实验报告结论在这个充满科技与创新的时代,我们总是在追求更高效、更智能的解决方案。
就像一位舞者在舞台上旋转跳跃,我们的耳朵也在聆听着声音世界里的每一次变化。
今天,我要带大家跳进一个科学实验的世界,一起感受一下“声波”是如何翩翩起舞的。
想象一下,你站在一片空旷的草地上,周围是一群欢快的小麻雀。
它们叽叽喳喳地叫着,仿佛在为春天的到来而庆祝。
突然,一只小麻雀飞得离你远远的,你能听到它的叫声了吗?没错,这就是多普勒效应在起作用。
多普勒效应,这个听起来有点抽象的科学名词,其实就发生在我们的生活中。
它告诉我们,当声源和观察者之间有相对运动时,声波的频率和波长会发生变化。
这种现象就像是一场无声的交响乐,虽然看不见乐谱,但每个音符都在跳动。
让我们回到那个实验现场。
科学家们用一个小球作为声源,通过移动它来模拟不同的声音环境。
他们发现,随着小球的移动,周围的声音似乎也跟着变了调。
这就像是一首没有歌词的歌曲,但它却能触动每一个人的心弦。
这个实验不仅让我们对声音有了更深的理解,还让我们意识到,生活中处处充满了科学的乐趣。
就像那些看似简单的日常用品,其实都蕴含着丰富的科学原理。
比如,当你按下电视遥控器上的按钮时,其实是在通过电磁波传递信号;当你打开水龙头,水流就会哗哗作响,这是因为水分子振动产生的声响。
在这个实验中,我们还学会了如何观察和思考。
我们不再只是被动地接受信息,而是主动地去探索声音的秘密。
这种积极主动的态度,正是我们在面对生活中的各种问题时所需要的。
多普勒效应不仅仅局限于声音领域。
在我们的日常生活中,还有很多现象都能体现出它的存在。
比如,当我们乘坐火车旅行时,窗外的风景会不断变化,这是因为风速和方向的变化导致声音传播路径的改变;又如,当我们开车经过隧道时,前方传来的声音会变得模糊不清,这是因为声音在空气中的传播速度会受到隧道墙壁的影响。
在这个实验中,我们不仅仅是学习了多普勒效应的原理,更是学会了如何将科学知识应用到实际生活中去。
一、实验目的1. 理解多普勒效应的原理,掌握其应用领域。
2. 通过实验验证多普勒效应,了解其在实际应用中的表现。
3. 掌握多普勒效应的测量方法,学会利用多普勒效应进行速度测量。
4. 了解多普勒效应在医学、交通、气象等领域的应用。
二、实验原理多普勒效应是指当波源和观察者之间有相对运动时,观察者接收到的波的频率会发生变化。
具体来说,当波源向观察者靠近时,接收到的频率会变高;当波源远离观察者时,接收到的频率会变低。
多普勒效应的公式为:f' = f (v + vo) / (v + vs)其中,f'为观察者接收到的频率,f为波源频率,v为波速,vo为观察者速度,vs 为波源速度。
三、实验器材1. 多普勒频移仪2. 发射器3. 接收器4. 电脑5. 超声波发生器6. 超声波接收器四、实验步骤1. 将发射器和接收器分别固定在实验台上,确保它们之间的距离为已知值。
2. 使用超声波发生器产生频率稳定的超声波,并将其输入发射器。
3. 启动多普勒频移仪,将发射器发出的超声波输入接收器,同时记录接收器接收到的频率。
4. 调整发射器和接收器之间的距离,使它们之间有相对运动,例如让发射器向接收器靠近或远离。
5. 观察并记录接收器接收到的频率变化,分析多普勒效应。
6. 重复步骤4和5,分别记录不同速度下的频率变化。
7. 利用多普勒效应公式计算实际速度。
五、实验结果与分析1. 通过实验,观察到当发射器向接收器靠近时,接收器接收到的频率变高;当发射器远离接收器时,接收器接收到的频率变低。
这验证了多普勒效应的存在。
2. 根据实验数据,计算不同速度下的实际速度,并与理论值进行比较。
结果表明,多普勒效应可以用来测量速度,且测量结果与理论值基本吻合。
3. 分析多普勒效应在医学、交通、气象等领域的应用。
例如,在医学领域,多普勒效应可以用来测量血流速度;在交通领域,多普勒效应可以用来测量车辆速度;在气象领域,多普勒效应可以用来测量风速。
多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。
2、测量声速,并通过多普勒效应计算声源的运动速度。
3、深入理解多普勒效应的原理及其在实际生活中的应用。
二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。
对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。
设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。
2、扬声器:作为声源。
3、麦克风:用于接收声音信号。
4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。
5、计算机:用于控制实验、采集数据和进行数据分析。
四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。
将麦克风连接到数据采集卡的输入端口。
将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。
2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。
选择合适的显示方式,以便观察和分析采集到的数据。
3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。
信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。
麦克风接收声音信号,并通过数据采集卡传输到计算机。
测量声音信号从扬声器发出到麦克风接收的时间差 t。
根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。
实验报告 多普勒效应综合实验物理科学与技术学院 13级弘毅班 20 吴雨桥 【实验目的】1.利用超声接收器运动速度与接收频率的关系验证多普勒效应并求声速。
2.利用多普勒效应测量物体运动过程中多个时间点的速度,得出物体在运动过程中的速度变化情况,借此研究:(1) 简谐振动。
可测量其振动周期等参数,并与理论值比较。
(2) 自由落体运动。
可以由v-t 关系直线的斜率求重力加速度。
(3) 匀加速直线运动。
测量力、质量与加速度的关系,验证牛顿第二定律。
【实验原理】1. 超声的多普勒效应。
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,如右图所示。
则接收器接收到的频率f 为 1122cos cos u V f f u V αα+=- (1)其中u 为声速,f 0为声源发射频率。
若声源保持不动,运动物体上的接收器向声源方向以速度V 运动,测接收器接收到的频率f 为01V f f u ⎛⎫=⋅+ ⎪⎝⎭(2)当接收器向声源运动时,V 取正;反之取负。
若保持f 0不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,由(2)式知,作f-V 图可以验证多普勒效应,并由实验点做直线,其斜率k=f 0/u ,由此可以计算声速u=f 0/k 。
也可以由(2)解出01f V u f ⎛⎫=- ⎪⎝⎭,若已知声速u 及声源频率f 0,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按照上式算出接收器运动速率,由显示屏显示v-t 图像,并调阅相关数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。
2. 研究简谐振动当质量为m 的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x 方向,则运动方程为22d xm kx dt=-,该式描述的即为简谐振动。
当初始条件为t=0时,x=-A 0,V=dx/dt=0,则运动方程的解为00cos x A t ω=- ,对时间求导,可得速度方程000sin V A t ωω= 其中0ω=为振动系统的固有角频率。
多普勒效应综合实验报告结论1. 引言嘿,大家好,今天咱们聊聊多普勒效应,简单来说,就是声音和光在移动的时候的“魔法”。
想象一下,当救护车呼啸而过时,声音是高高低低,像是在跟你打招呼。
今天的实验,咱们就是要深度探讨这个现象,让大家听得懂、看得懂,甚至还要乐得起来!2. 实验内容2.1 实验目的首先,我们得明确实验的目的。
咱们想要探究的就是多普勒效应如何影响声音的频率。
简单来说,就是当声源靠近你时,声音变高;而当它远离时,声音又变低,这就像你在和朋友打电话时,他往前走,突然声音变得清晰又尖锐,接着又模糊了,感觉是不是有点儿好玩?2.2 实验步骤在实验中,我们首先准备了一个音响系统和一个可以移动的发声器。
然后让发声器在固定轨道上来回移动,同时我们用手机录下声音的变化。
过程中的每一个音符,都是在告诉我们多普勒效应的“秘密”。
当发声器往我们这边冲来时,声音就像过山车一样,急速上升;而它一转身,声音就“啪”地掉下来了,仿佛是被什么东西打了一下。
3. 结果分析3.1 数据观察通过录音,我们发现,确实如我们所料,声音的频率随着距离的变化而变化。
数据记录下来后,我们分析发现,这个变化幅度还真是让人惊讶,大家几乎都笑出声来,感叹声波的“脾气”真是变化多端。
这就好比一首歌曲的节奏,有时快、有时慢,让人忍不住想跟着哼哼。
3.2 实验结论最终,咱们得出的结论是,声源运动的方向和速度直接影响声音的频率变化,真是再明显不过的事儿了!就像打篮球,球员们的移动决定了篮球飞向的方向和速度一样,声波也在告诉我们,它的旅行同样有着独特的节奏。
换句话说,多普勒效应就像一场无声的音乐会,让我们听见了声波的舞蹈。
4. 总结所以,朋友们,通过这个实验,我们不仅了解了多普勒效应的基本原理,还体会到了科学的乐趣。
每一个音符都在呼唤我们去探索更深层次的奥秘,仿佛在说:“嘿,快来跟我一起跳舞吧!”未来,我们还会继续探索更多这样的“魔法”,让科学的世界变得更加丰富多彩。
多普勒效应综合实验
实验目的:
a. 匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。
b. 自由落体运动,并由V-t 关系直线的斜率求重力加速度。
实验仪器:
多普勒效应综合实验仪。
实验原理:
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为:
)c o s /()cos (22110ααV u V u f f -+=
(1)
若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V 运动,则从(1)式可得接收器接收到的频率应为:
)/1(0u V f f +=
(2)
根据(2)式,作f-V 关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为u f k /0=,由此可计算出声速k f u /0=。
由(2)式可解出:
)1/(0-=f f u V 实验内容及步骤:
1. 实验仪的预调节
实验仪开机后,首先要求输入室温,这是因为计算物体运动速度时要代入声速,而声速是温度的函数。
2. 研究匀变速直线运动,验证牛顿第二运动定律
实验时仪器的安装如图4所示,质量为M 的垂直运动部件与质量m 的砝码托及砝码悬挂于滑轮的两端,测量前砝码托吸在电磁铁上,测量时电磁铁释放砝码,系统在外力作用下加速运动。
运动系统的总质量为M+m ,所受合外力(M+m )g (滑轮转动惯量与摩擦力忽略不计)。
根据牛顿第二定律,系统的加速度应为:
a= (M-m)/(M+m)
(4)
用天平称量垂直运动部件,砝码托及砝码质量,每次取不同质量的砝码放于砝码拖上,记录每次实验对应的m。
将垂直运动发射/接收器接入实验仪,在实验仪的工作模式选择界面上选择“频率调谐”调谐垂直运动发射/接收器的谐振频率,完成后回到工作模式选择界面,选择“变速运动测量实验”确认后进入测量设置界面。
设置采样点总数8,采样步距50ms,用↓键选择“开始测试”,按确认键使电磁铁释放砝码托,同时实验仪按设置的参数自动采样。
采样结束后会以类似图3的界面显示V-t直线,用→键选择“数据”,将显示的采样次数及相应速度记入表2中(为避免电磁铁剩磁的影响,第1组数据不记。
t n为采样次数与采样步距的乘积。
)由记录的t,V数据求的V-t直线的斜率即为此次实验的加速度a。
在结果显示界面中用→键选择返回,确认后重新回到测量设置界面。
改变砝码质量,按以上程序进行新的测量。
将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(4)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。
3. 研究自由落体运动,求自由落体加速度
实验时仪器的安装如图5所示,将电磁铁移到导轨的上方,测量前垂直运动部件吸在电磁铁上,测量时垂直运动部件自由下落1段距离后被细线拉住。
在实验仪的工作模式选择界面中选择“变速运动测量实验”,设置采样点总数8,采样步骤50ms。
选择“开始测试”,按确认键后电磁铁释放,接收器自由下落,实验仪按设置的参数自动采样。
将测量数据记入表3中,由测量数据求得V-t直线的斜率即为重力加速度g。
为减小偶然误差,可作多次测量,将测量的平均值作为测量值,并将测量值
与理论值比较,求百分误差。