随机过程与马尔可夫链习题答案
- 格式:doc
- 大小:755.00 KB
- 文档页数:10
1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。
称(){}:,==∈E x X t x t T 为状态空间。
参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。
若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。
第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
协方差矩阵及n 维正态分布1、设n 维随机变量)(n X X ,,,X 21⋯的二阶混合中心距:[][];,,2,1,},)()({),(,n j i j X E j X X E X E X X Cov c i i j i j i ⋯=--==都存在,则称矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=∑nn c c c c c c c c c n2n12n 22211n 1211为n 维随机变量)(n X X ,,,X 21⋯的协方差矩阵,它是一对称矩阵。
2、n 维正态分布定义:若n 维随机变量)(n X X ,,,X 21⋯的概率密度可以表示成以下的形式:⎭⎬⎫⎩⎨⎧-∑--∑==⋯-)()(21ex p )(det )2(1)(),,,(f 12/12/21U X U X X f x x x T n n π其中,Tn T T n X E X E X E U x x x X ))(,),(),((),,,(,),,,(21n 2121⋯=⋯=⋯=μμμ∑是)(n X X ,,,X 21⋯的协方差矩阵,则称n 维随机变量)(n X X ,,,X 21⋯为n 维正态随机变量,记为),(~),,,X (21∑⋯=μN X X X n ,),,,(f 21n x x x ⋯为n 维正态概率密度函数。
N 维正态随机变量的性质(1) n 维正态随机变量)(n X X ,,,X 21⋯的每一个分量都是正态变量;反之,若nX X ,,,X 21⋯都是正态随机变量,且相互独立,则)(n X X ,,,X 21⋯是n 维正态随机变量。
(2) n 维随机变量)(n X X ,,,X 21⋯服从n 维正态分布的充要条件是n X X ,,,X 21⋯的任意的线性组合n n X l X l X l +⋯++2211服从一维正态分布;(3) 若)(n X X ,,,X 21⋯服从n 维正态分布,设n Y Y ,,,Y 21⋯是),,3,2,1(X n j j ⋯=的线性函数,则n Y Y ,,,Y 21⋯也服从正态分布。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =为相互独立的随机变量序列,则 (1){,1,2,}i Y i =是否为Markov 链?(2)令1nn ii X Y ==∑,问{,1,2,}iX i =是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================因此,{,1,2,}n Y n =是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++为1n U -的函数,记为1112(),n n n nf U X U U U --=+++为n U 的函数,记为().n n f U 由于12,,,,n U U U 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑因此{,1,2,}n X n =是马尔可夫链.3 设,1,2,i X i =是相互独立的随机变量,且使得(),0,1,i j P X j a j ===,如果max{,1,2,,1}n i X X i n >=-,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
随机过程答案2012-2013学年第一学期统计10本《随机过程》期中考试一. 填空题1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵()()n ij P p =,二者之间的关系为(n)n P P =2.状态i 常返的充要条件为()0n iin p ∞==∑∞。
3.在马氏链{},0n X n ≥中,记()n i jp ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1.i j p =()1n i j n p ∞=∑,若i j p <1,称状态i 为。
二. 判断题1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若()1011100111111,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X=并且满足,则{:0n n X ≥}是一个马氏链。
×2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。
×3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。
×4. 若状态i ?状态j ,则i 与j 具有相同的周期。
√5. 一个有限马尔科夫链中不可能所有的状态都是暂态。
√三. 简答题1.什么是随机过程,随机序列答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。
当T 为整数集或正整数集时,则一般称为随机序列。
2 .什么是时齐的独立增量过程答:称随机过程{t ξ:t ≥0}为独立增量过程,如果对于01,0,n n t t t ??≤<<<="" 起始随机变量及其后的增量s="">3.由4个状态组成的马氏链的转移概率矩阵000.50.5100001000010P=??,确定哪些状态是暂态,哪些状态是常返态4.考虑由状态0,1,2,3,4组成的马尔科夫链,而0.50.50000.50.5000000.50.50000.50.500.250.25000.5P=,确定常返态5.设有四个状态{}I=0123,,,的马氏链,它的一步转移概率矩阵1100221100P=22111144440011) 对状态进行分类;2) 对状态空间I 进行分解。
第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。
信息论与编码课程习题1——预备知识 概率论与马尔可夫链1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。
若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。
假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析:天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。
由题意可知已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P即题目实际上给出了八个个条件概率和四个概率[][][][]0,0|00|000===⋅==⋅===X Y Z P X Y P X P Z P[][][]0,1|00|10===⋅==⋅=+X Y Z P X Y P X P [][][]1,0|01|01===⋅==⋅=+X Y Z P X Y P X P [][][]1,1|01|11===⋅==⋅=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有[][][][]0,0|0000===⋅=⋅===X Y Z P Y P X P Z P[][][]0,1|010===⋅=⋅=+X Y Z P Y P X P [][][]1,0|001===⋅=⋅=+X Y Z P Y P X P [][][]1,1|011===⋅=⋅=+X Y Z P Y P X P[]5.02.03.00⨯⨯==Z P 1.08.03.0⨯⨯+9.02.07.0⨯⨯+1.08.07.0⨯⨯+ =?注意:全概率公式的应用2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==211,,()Y X Y X g Z /,22==,求:Z的分布律与数学期望1)1Z的分布律与数学期望2)23)1Z 大于10的概率4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。
分析: 1)[]()()()()()22222211221222111121212111,p y x p y x p y x p y x p y x g Z E j i ij j i ⋅++⋅++⋅++⋅+==∑∑==()()()()4.0621.0523.0612.0512222⨯++⨯++⨯++⨯+=?=2)[]()()()()()2222211212211111212122////,p y x p y x p y x p y x p y x g Z E j i ij j i ⋅+⋅+⋅+⋅==∑∑==()()()()4.06/21.05/23.06/12.05/1⨯+⨯+⨯+⨯=?=说明:主要考虑联合分布律与随机变量函数分布律的关系 3)[]101>Z P ()[]=Y E thenX g Y if14)()[]()∑∑==ijij j i p y x g Z E thanY X g Z if ,,22()[]()∑∑∑==kijijk k j i p z y x g A E thanZ Y X g A if,,,,33and so on.3、已知随机变量X 的概率密度函数为⎩⎨⎧≥≥<>=-ax b ax or b x x f ab X 10)(,其中10,3==b a ,()2X X g Y ==为X 的函数,求:1)随机变量X 小于或等于5的概率 2)随机变量Y 的概率密度函数 3)随机变量Y 大于10的概率 4)随机变量Y 的数学期望 分析1)[]()72537155===≤⎰⎰∞-dx dx x f X P X2)假设用()()()y F y f x F Y Y X ,,分别表示随机变量X 的分布函数、随机变量Y 的概率密度函数和分布函数,则有:()[][]yX P y Y P y F Y ≤=≤=2[]⎩⎨⎧≥≤≤-<=00y yX y P y ()⎪⎩⎪⎨⎧≥<=⎰-00y dxx f y y yX()()⎩⎨⎧≥--<=000y y F y F y XX有()()()()[]⎪⎪⎩⎪⎪⎨⎧≥--<==0y dyy F y F d y dy y dF y f XXY Y()()⎪⎩⎪⎨⎧≥⋅-+⋅<=02121y y f y f y yX y X3)[][][]()⎰--=≤≤--=≤-=>101011010110110dx x f X P Y P Y P X73101110371--=-=⎰dx 4)[][]()?10371222====⎰⎰∞∞-dx x dx x f x X E Y E X4、已知随机变量X 和Y 的联合概率密度函数为⎩⎨⎧≥≥≥≥=others y and x y x f XY 00231),(41,()Y X Y X g Z 2,2+==。
1)求随机变量Z 的数学期望 2)求随机变量Z 的概率密度函数3)结合习题3,总结连续随机变量的函数的数学期望的一般表达式,包括包括一元和多元随机变量函数。
分析: 1)[]()()()?2,,2031412=⋅+=⋅=⎰⎰⎰⎰∞∞-∞∞-dy dx y xdy dx y x f y x g Z E XY2)()[][]z Y X P z Z P z F Z ≤+=≤=2=()⎰⎰≤+zy x XYdxdyy x f 2,3)()[]()()⎰∞∞-==dx x f x g Y E thenX g Y if X 11()[]()()⎰⎰∞∞-∞∞-==dy dx y x f y x g Z E thanY X g Z if XY ,,,22()[]()∑∑∑==kijijkkjip z y x g A E thanZ Y X g A if,,,,33and so on.P352 T2给定随机过程{}(),X t t T ∈,x 是任意实数,定义另一随机过程1()()0()X t x Y t X t x ≤⎧=⎨>⎩试将的均值函数和自相关函数用随机过程()X t 的一维和二位分布函数表示出来 分析:由题知,是随机过程,()Y t 的取值由()X t 决定,所以()Y t 也是随机过程。
由题中不知道随机过程()X t 是连续还是离散,但()Y t 一定是离散随机过程,它的样本空间是{}0,1。
概率分布可以表示成如下形式因为()Y t 等于1的概率等于()X t 小于等于x 的概率(),()Y t 等于0的概率等于()X t 大于x 的概率([][]()0()P Y t P X t x ==>)。
因此有[][][][]()1()0()()(;)X E Y t P X t x P X t x P X t x F x t =⨯≤+⨯>=≤=。
同理,由题知()()1122121()()0X t x X t x Y t Y t ≤≤⎧⋅=⎨⎩且其它所以得到[]()()[][]1212111111111212,1(),()0(),()(,;,)Y X R t t E Y t Y t P X t x X t x P P X t x X t x F x x t t =⋅⎡⎤⎣⎦=⨯≤≤+⨯⎡⎤⎣⎦=≤≤=其它P352 T3设随机过程()AtX t e =,0t >,其中A 是在区间[]0,a 服从均匀分布的随机变量。
试求()X t 的均值函数和自相关函数。
分析:A 是随机变量,t 是普通变量,所以()X t 是随机过程。
由题知A 的概率密度函数为10()0aA y a f y ≤≤⎧=⎨⎩其它 因为随机过程()X t 可以看作是随机变量A 的函数,因此有 ()1()()ayt yt X A a t E X t e f y dy e dyμ∞-∞==⋅=⋅⎡⎤⎣⎦⎰⎰()()()1212112120(,)()a y t tyt yt X A a R t t E X t X t e e f y dy edy∞+-∞=⋅=⋅⋅=⋅⎡⎤⎣⎦⎰⎰注意A 才是随机变量,不是我们习惯的X 。
注意理解其本质意义,否则换个符号表示就会难倒你。
P353 T9()(),X t Y t t T∈,是互不相关的随机过程。
()()()()()()Z t a t X t b t Y t c x =++,其中(),(),()a t b t c x 是普通函数。
求()Z t 的均值函数和自相关函数。
分析:1()()()()()()[]()()()()()()Z t E Z t E a t X t b t Y t c x E a t X t E b t Y t E c t μ==++⎡⎤⎡⎤⎣⎦⎣⎦=++⎡⎤⎡⎤⎣⎦⎣⎦因为数学期望运算只对随机变量和随机过程起作用,对普通函数、普通变量和常量不起作用。
(为什么?)。
所以()()()()()()()()()()()Z X Y t a t E X t b t E Y t c t a t t b t t c t μμμ=⋅+⋅+=++⎡⎤⎡⎤⎣⎦⎣⎦分析2()()()()()()()()Z X Y Z t t a t X t t b t Y t t μμμ-=-+-⎡⎤⎡⎤⎣⎦⎣⎦()()(){}121122,()()Z z z C t t E Z t t Z t t μμ=--⎡⎤⎡⎤⎣⎦⎣⎦()(){}()(){}{}111111222222()()()()()()()()X Y X Y E a t X t t b t Y t t a t X t t b t Y t t μμμμ=-+--+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦()()()(){}()(){}1212121211222211()(),()(),()()()()X Y X Y X Y a t a t C t t b t b t C t t E X t t Y t t E X t t Y t t μμμμ=++--+--⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦因为()(),X t Y t 相互独立,则其在任何时刻对应的随机变量之间也相互独立,即()()()()i j i j E X t Y t E X t E Y t ⎡⎤⎡⎤=⎡⎤⎣⎦⎣⎦⎣⎦。