一次函数复习导学案
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
一次函数复习课导学案班级 姓名学习目标:1.使学生巩固一次函数的概念、图象及性质,引导学生对一次函数的重点知识有一个整体把握,2.进一步体会数学来源于生活又服务于生活,提高学生数学知识的应用意识。
3.通过学生亲自参与合作学习,锻炼其概括总结能力、分析能力、识图能力。
一.一次函数的定义一次函数的概念:如果函数______=y (b 、k 为常数,且k ______),那么y 叫做x 的一次函数。
特别地,当b _____时,函数______=y (k ______)叫做正比例函数。
【练习】:求m 为何值时,关于x 的函数()312++=m x m y 是一次函数,并写出其函数关系式。
二.一次函数的图像*. 正比例函数()0≠=k kx y 的图象是过点(_____),(______)的_________。
*.一次函数()0≠+=k b kx y 的图象是过点(0,___),(____,0)的__________。
*.一次函数()0≠+=k b kx y 的图象与b 、k 符号的关系:k___0,b___0 k___0,b___0 k___0,b___0 k___0,b___0练习:一次函数2-3x y +=的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) (D )三.一次函数的性质一次函数()0≠+=k b kx y 的性质:⑴当k >0时,y 随x 的增大而_________。
⑵当k <0时,y 随x 的增大而_________。
【练习】:1、点A (5,1y )和B (2,2y )都在直线1+-=x y 上,则1y 与2y 的关系是( )A 、1y ≥2yB 、1y =2yC 、1y <2yD 、1y >2y2、已知一次函数y=(m+2)x+(m-3),(1)m 为何值时,直线经过原点? (2)m 为何值时直线与y 轴交于(0,2)?(3)m 为何值时直线与x 轴交于(3,0)?四.一次函数表达式的确定:待定系数法:求一次函数y=kx+b 的解析式,可由已知条件给出的两对x 、y 的值,列出关于k 、b 的一次方程。
一次函数复习课导学案知识点系统图一次函数概念一般形式: .正比例函数:性质k >0,y 随x 的增大而k <0,y 随x 的增大而图象是经过 0, 和 ,0 的直线,知识点扫描知识点1 一次函数的意义一次函数从解析式上理解注意两点:(1)y =kx +b 中k ,b 为,(2)k ;从图像上理解其图像一般是一条直线,但不平行于,有时是线段、射线或点。
知识点2 一次函数大致图像与k 、b 的符号关系知识点3 一次函数解析式的确定——待定系数法: ①将一次函数解析式设为y =kx +b (k ≠0);②找出函数图像上的点的坐标代入已设的关系式中,列出方程(组); ③解出方程(组),求出k ,b ;④将所求的值代入所设的函数关系式中。
知识点4 建立函数模型解决实际问题建立一次函数模型解决实际问题时,一般先要判断函数关系是否是一次函数。
焦点一 一次函数的性质例1 一次函数y =(2a +4)x -(3-b ),当a ,b 为何值时: (1)y 随x 的增大而增大;(2)图象经过第二、三、四象限; (3)图象与y 轴的交点在x 轴上方; (4)图象过原点.k_______,b_______k_______,b_______k_______,b_______k_______,b_______k_______,b_______k_______,b_______焦点二 一次函数解析式的确定例2 如图所示,直线l 过A (0,-1)、B (1,0)两点,求直线l 的解析式。
焦点三 根据图像信息解题例3在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?焦点四 一次函数与几何综合例4 如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第象限,将△OAB 绕点O 按逆时针方向旋转至△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB =2,∠BOA =30°. (1)求点B 和点A ′的坐标;(2)求经过点B 和点B ′的直线所对应的一次函数解析式,并判断点A 是否在直线BB ′上.例2图例4图课堂作业1.直线y =kx -1一定经过点( ) A .(1,0) B .(1,k ) C .(0, k ) D .(0,-1)2.已知一次函数y =mx +n -2的图象如图所示,则m 、n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >2 3.一条直线y =kx +b 其中k +b =-5,kb =6,那么该直线经过()A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 4.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y =-x +1 B .y =x 2-1 C .y =1xD .y =-x 2+1 5.已知一次函数y =kx +b 的图象经过点A (1,-1),B (-1,3)两点,则( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <06.若实数a 、b 、c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的图象可能是( )A .B .C .D .7.一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数图象只可能是( )A .B .C .D .8.将直线y =2x 向右平移1个单位后所得图象对应的函数关系式为( )A .y =2x -1B .y =2x -2C .y =2x +1D .y =2x +2 9.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x <ax +4的解集为( ) A . 32x <B .x <3C . 32x >D .x >310. A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ), B (x ,y ),下列结论正确的是()第2题 第10题 第9题 第12题A .a >0B .a <0C .b =0D .ab <0 11. 下列关于一次函数y =-2x +1的说法:①y 随x 的增大而减小; ②图象与直线y =-2x 平行; ③图象与y 轴的交点坐标是(0,1);④图象经过第一、二、四象限.其中正确的有( )个. A .4B .3C .2 D .1 12.如图,是函数y =3−x (0≤x ≤2)x −1 (2<x ≤4)的图象,请说说这个函数的最小值是A .1B .2C .3D .413.若一次函数y =kx +b ,当x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值() A . 增加4 B .减小4 C . 增加2 D .减小2 14.如图,是直线y =x -3的图象,点P (2,m )在该直线的上方,则m 的取值范围是( ) A . m >-3B . m >-1C . m >0D . m <3 15.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 坐标为( )A .(0,0)B .(11,22--)C .(22-D .(22--)16.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起多少分钟时该容器内的水恰好放完.17(1)对于一次函数y =−3x +4,当0≤x ≤2时,求对应函数值y 的取值范围; (2)对于一次函数y =3x −2,当−2≤y ≤4时,求对应的自变量x 的取值范围; (3)对于一次函数y =kx +b ,当0≤x ≤2时,对应函数值y 的取值范围为−2≤y ≤4,求k 、b 的值。
八年级数学复习《一次函数》导学案.doc1、第十四章一次函数复习学习目标:1.了解本章的学问结构;2.把握一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式。
学习重点:一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式学习难点:一次函数学问的运用。
【学问提要】一、函数与函数的图象1.叫变量,叫常量.2.函数定义:在一个改变过程中,假如有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.函数的图象:对于一个函数,假如把自变量与函数的每对对应值分别作为点的,那么坐标平面2、内由这些点组成的图形,就是这个函数的图象。
4、描点法画图象的步骤:5.函数的三种表示方法:6、自变量的取值范围:〔1〕分式类:分母不为0,〔2〕根式类:开偶次方的被开方数大于等于0,〔3〕整式类:全体实数。
〔4〕实际类:使实际问题有意义。
例1、求以下函数中自变量x的取值范围〔1〕;〔2〕;〔3〕;〔4〕。
例2、以下四组函数中,表示同一函数的是〔〕A、y=x与y=B、y=x与y=C、y=x与y=x2/xD、y=x与y=例3、如下图的图象分别给出了x与y的对应关系,其中y是x的函数的是〔〕xyoAxyo3、BxyoDxyoC二、一次函数1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数。
2、正比例函数y=kx(k≠0)的图象是过点〔_____〕,(______)的。
3、一次函数y=kx+b(k≠0)的图象是过点〔0,___),〔____,0)的__________。
4.一次函数y=kx+b的图象是一条直线,其中k确定直线性,b确定直线与轴的交点位置.k和b确定了直线所在的象限,k0时,图象必过象限 4、;k0时,图象必过象限;b0,b0时,图象过象限;k0,b0时,图象过象限;k0k0B0B.yx2时,y1y2,则m的范围是11、直线y=3x+b与y轴的交点的纵坐标为-2,则这条直线肯定不过象限12、一次函数y=(m2-3)x-1和y=(m+2)x+(m2-3)的图像与y轴分别交于P,Q两点,若P、Q点关于x轴对称,则m=。
一次函数的图像和性质导学案班级:姓名:一、学习目标:1、会选取两个适当的点画一次函数的图像2、理解一次函数中k,b对函数图象的影响,掌握一次函数的性质。
二、重点难点:重点:通过画一次函数图像探究得出一次函数的性质难点:引导学生用数形结合法探究得出一次函数的性质。
三、学习过程:(一〕、复习、回忆:1.怎样画一次函数的图像?2.正比例函数的图像是什么形状?有哪些性质?① k>0时, y随x的增大而_________,这时函数的图像从左到右_______;图象经过第_________象限② k<O时, y随x的增大而_______ ,这时函数的图像从左到右_______.图象经过第__________象限(二〕、自主学习,合作探究:1、在同一直角坐标系内用两点法做出y=x+1,y=2x+1、y=-x+1,y=-2x+1的图像,1题)观察上面四个一次函数的图象,类比正比例函数y=kx(k≠0,k为常数)中 k的正负对图象的影响,探究一次函数y=kx+b (k≠0,k、b为常数)中K的正负对函数的影响,(小组交流分组展示)一次函数y=kx+b〔k,b为常数,k≠0〕的性质k的正负决定_____________________________;① k>0时, y随x的增大而_________,这时函数的图像从左到右_______;② k<O时, y随x的增大而_______ ,这时函数的图像从左到右_______.2、在同一直角坐标系内用两点法做出y=x+1, y=x-1、y=-2x+1,y=-2x-1的图像, x ......y=x+1y=x-1y=-2x+1y=-2x-1观察上面四个一次函数的图象,探究一次函数y=kx+b (k≠0,k、b为常数)中b 的正负对函数的影响,(小组交流分组展示)b的正、负决定________________________;①当b>0时,__________________________________②当b<0时,___________________________________3,:探究K、b对函数y=kx+b的图象位置的影响如图〔l〕所示,当k>0,b>0时,直线经过第____________象限;y随x 的增大而_________1题)如图〔2〕所示,当k >0,b <O 时,直线经过第_____________象限. y 随x 的增大而_________如图〔3〕所示, 当k ﹤O ,b >0时,直线经过第____________象限; y 随x 的增大而_________如图〔4〕所示,当k ﹤O ,b ﹤O 时,直线经过第_____________象限, y 随x 的增大而_________三,当堂训练1、有以下函数:①y=2x+1,②y=-3x+4,③y=,④y=x-6;其中过原点的直线是________;函数y 随x 的增大而增大的是__________;函数y 随x 的增大而减小的是___________;图象在第一、二、三象限的是________。
教学课题一次函数综合复习--导学案教学目标考点分析1、掌握一次函数、正比例函数的概念、图象及其性质、表达式的求法;2、掌握一次函数及其图象的应用;3、掌握一次函数关于坐标轴及原点对称后的一次函数表达式。
重点难点重点:一次函数、正比例函数的概念、图象及其性质、表达式的求法;难点:一次函数及其图象的应用,关于坐标轴及原点对称后的一次函数表达式求法。
教学方法讲练结合法、启发式教学教学过程知识要点梳理1、一次函数的定义一次函数的一般形式:y=kx+b (k ,b为常数k≠0)当b=0时y=kx (k为常数k≠0)也叫正比例函数。
思考:y=(m-1)X 是一次函数,则m=___________2、一次函数的图象与性质(1)一次函数y=kx+b (k ,b为常数k≠0) 的图象是一条直线,与x轴的交点是______,(2)与y轴的交点是_______思考:画一次函数图象的常用方法?如何画y=2x+3的图像?(2)正比例函数y=kx (k为常数k≠0)的图象是经过点_______和(1,k)的一条直线。
(3)一次函数y=kx+b (k ,b为常数k≠0)的性质:当k>0时,图象过_______象限,y随x的增大而______当k<0时,图象过_______象限,y随x的增大而_____当b>0时,图象与y轴交于_____半轴, 当b<0时,图象与y轴交于_____半轴, 当b=0时呢?3、一次函数解析式的求法:常用方法:待定系数法一、选择题1、下列函数关系中表示一次函数的有()①12+=xy②xy1=③xxy-+=21④ts60=⑤xy25100-=A.1个B.2个C.3个D.4个2、下列函数中,图象经过原点的为( )A.y=5x+1 B.y=-5x-1 C.y=-5xD.y=51-x3、下列各函数中,y是x的正比例函数的是()A、y=3x2B、y=3xC、y=3xD、y=113x+4、下列语句不正确的是A、所有的正比例函数都是一次函数B、一次函数的一般形式是y=kx+bC、正比例函数和一次函数的图象都是直线D、正比例函数的图象是一条过原点的直线5.下列函数(1)y=2xπ (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=12-x中,是一次函数的有()A、 4个 B、 3个 C、 2个 D、 1个6.点P关于x轴的对称点1P的坐标是(4,-8),则P点关于原点的对称点2P的坐标是()A、(-4,-8)B、(4,8)C、(-4,8)D、(4,-8)1O OO O7.下面哪个点不在函数32+-=x y 的图像上( )A 、(-5,13)B 、(0.5,2)C 、(3,0)D 、(1,1) 8.下面函数图象不经过第二象限的为 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2 9.已知P (x ,y )在第四象限,且|x|=3,|y|=5,则P 点坐标为( ) A 、 (3,5) B 、 (-3,5) C 、 (3,-5) D 、 (-3,-5) 10、若y=(m-2)x+(m 2-4)是正比例函数,则m 的取值是A 、2B 、-2C 、±2D 、任意实数 11、y=28(3)m m x--是正比例函数,则m 的值为 ( )A 、±3B 、3C 、﹣3D 、任意实数 12、若23y x b =+-是正比例函数,则b 的值是 ( )A. 0B.23C. 23-D. 32- 13、下列给出的四个点中,不在直线y =2x-3上的是 ( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 14、直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )(A)32+=x y (B)232+-=x y (C)23+=x y (D)1-=x y15、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个16、 一次函数b ax y -=中,0,0><b a ,则它的图像可能是( )17、如图,线段AB 对应的函数表达式为( ) A .y=-32x+2 B .y=-23x+2 C .y=-23x+2(0≤x ≤3) D .y=-23x+20(0<x<3)18、若m <0, n >0, 则一次函数y=mx -n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限 19、已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -120下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( ) 21、 一次函数b kx y +=与k bx y +=在同一坐标系中的图象大致是 ( )yyyy22、一次函数y=ax+b ,ab <0,则其大致图象正确的是( )23、一次函数y =kx +b 的图象经过(m ,1)、(-1,m),其中m>1,则k 、b ( ) A .k>0且b<0 B .k>0且b>0 C .k<0且b<0 D .k<0且b>024、两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的 ( )二、填空题25、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有_______ 正比例函数有______, 26.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。
七年级第六章一次函数的图像和性质一、知识梳理:1.一次函数与正比例函数的概念形如的函数,叫做x的一次函数。
当b 时,一次函数也叫做正比例函数. k叫做比例系数。
对应练习:1.已知函数y=(m-3)xm-1+5,当m= 时,y是x的一次函数;2.已知函数y=(a+3)x-a+1为正比例函数,则a= 。
3.要使y=(m-2)xn-1+n是关于x的一次函数,m,n应满足 .二、直线与坐标轴交点问题:一次函数y=kx+b的图象与x轴交点的特点是:一次函数y=kx+b的图象与y轴交点的特点是:对应练习:1.直线y=2x-4与x轴的交点坐标是________,和y轴的交点坐标是________2.直线y=x-3与直线y=-5x+b都交y轴上同一点,则b的值为 _________三、一次函数y=kx+b的图象与性质:⑴正比例函数y=kx(k≠0)的图像是一条经过原点(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0) 的图像是一条经和的一条直线。
⑵一次函数y=kx+b(k≠0) 的图像、性质与k、b的关系如下表所示:对应练习:1.在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为2.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是D用待定系数法求函数表达式的一般步骤为:(1)设;(2)代;(3)解;(4)答。
1.已知一次函数的图象经过点(3,2)与(4,-3).求这个一次函数的解析式.2.正比例函数经过点(-3,9),求此函数解析式.3.求下图中直线的函数表达式4.若y-2与x-2成正比例,当x=-2时,y=4,则x=_________时,y = -4。
五.一次函数与一次方程(组)和不等式(组)的关系:⑴当一次函数y=kx+b(k≠0)的值y=0时,相应自变量的值即为方程的解;⑵两个一次函数1122y k x b y k x b=+=+与的交点坐标就是他们所对应的的解对应练习:1. 如图,是在同一坐标系内作出的一次函数y1、y2的图象l1、l2,设y1=k1x+b1,y2=k2x+b2,则方程组⎩⎪⎨⎪⎧y1=k1x+b1y2=k2x+b2的解是_______.A、⎩⎪⎨⎪⎧x=-2y=2B、⎩⎪⎨⎪⎧x=-2y=3C、⎩⎪⎨⎪⎧x=-3y=3D、⎩⎪⎨⎪⎧x=-3y=4六、直线11bxky+=(01≠k)与22bxky+=(02≠k)的位置关系(1)两直线平行⇔21kk=且21bb≠(2)两直线相交⇔21kk≠(3)两直线重合⇔21kk=且21bb=(4)两直线垂直⇔121-=kk对应练习:1、直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
中考第一轮复习《一次函数》导学案复习目标 :1. 清楚一次函数的意义及其图像的性质;会利用函数图象解决实际问题; 2.会求一次函数的解析式;3.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.复习重点:掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.复习难点:1. 会利用函数图象解决实际问题.2. 理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.数学思想方法:数形结合的思想方法,转化的思想方法,函数与方程的思想复习过程:一. 自主复习(知识梳理)1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质4. 如果要求两条直线的交点坐标,你会采用的方法是 .5. 如果两条直线y =k 1x +b 1和y =k 2x +b 2平行,可以得到 .6. 求一次函数的解析式: (1)、设函数解析式为 (2)、代入已知两点的坐标或者x,y 的两组对应值,得到 (3)、解 (4)、写出函数解析式。
7. 求一次函数的图象与坐标轴围成的三角形或四边形的面积;一次函数在解决实际问题中的应用;用函数观点看方程(组)和不等式。
二.合作交流k >0,b >0k >0,b <0k <0,b >01.(2008重庆)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )2.(2007重庆) 已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。
一次函数的复习(一)【学习目标】1.会画一次函数的图像,掌握它的性质2.会求一次函数图像与坐标轴的交点3.会根据图像利用待定系数法求解析式以及看图像解决问题。
【学习重难点】利用一次函数的图象和性质解题【课前自习】1.一次函数的一般形式是___________________________正比例函数的一般形式是________________________,2.画一次函数图像有三步:_______、________、________.3.已知一次函数y=2x+2,(1)比例系数K=_____,b=________(2) 在给出的直角坐标系中画出它的图像。
(3)从图像中可以看出它与 x 轴的交点坐标为______与y 轴的交点坐标为___________思考:你能找到求图像与坐标轴交点的方法吗?_______________________________________________(4)利用图像求出当22≤-x π时,y 的范围为________(5) 利用图像求出不等式022φ+x 的解为___________.若点P(b-1,b+1)在其上,求b 的值。
4. 已知一次函数)4()22(m x m y -+-=(m 为常数)(1)、当m 满足什么条件时,一次函数经过原点。
______________(2)、当m 满足什么条件时,y 随x 的增大而减小. _________________ 你还能提出什么问题来求m 的范围。
5.已知某一次函数图像如图所示,求出它的解析式。
思考:你认为第2,3题都用到了什么数学方法?______________.已知一次函数y = kx + b 关系满足下表(x 为自变量), x…-2 -1 0 1 2 y …12 9 6 3 0则由表格可以看到,当x______时,0φb kx +在这一题中,我还可以知道:增减性,两点之间的距离,与坐标轴围成的三角形的面积,o 到直线的距离,通过平移过原点。
《一次函数》复习导学案复习目标:1、通过知识回顾和习题练习进一步明确一次函数和正比例函数的概念,熟练的应用待定系数法求出一次函数解析式。
2、通过知识表格,习题练习进一步明确一次函数的图象与性质,会熟练的应用性质去解决一些简单的问题。
3、通过知识表格,函数图象和习题练习进一步明确一次函数与一元一次方程、二元一次方程(组)和一元一次不等式组之间的关系,熟练的运用它们之间的关系解决一些简单的问题。
复习重点:1、熟练运用待定系数法求一次函数解析式。
2、熟练的运用一次函数的图像与性质去解决一些简单的问题。
复习难点熟练的运用一次函数与一元一次方程、二元一次方程(组)和一元一次不等式组之间的关系去解决一些简单数学问题。
学习过程知识点一:一次函数的概念与待定系数法求一次函数解析式。
(一)一次函数、正比例函数的概念形如________________________的函数叫做x 的一次函数,其中k 与b 是_______。
特别的,当b=0时,一次函数y=kx 也叫做________________,k 叫做_______________。
对应练习:1、下列语句不正确的是 ( ) A 、所有的正比例函数都是一次函数 B 、一次函数的一般形式是y=kx+bC 、正比例函数和一次函数的图象都是直线D 、正比例函数的图象是一条过原点的直线2、下列函数中,①y=31x ②y=-2+5x ③y=-x 1 ④ y=22x +2 ⑤y=32x-2⑥y=2∏x ,______________是一次函数;_______________正比例函数。
(只写序号) 3、当m=_____时,函数y=31m 2x -1是一次函数。
A 、1 B 、0 C 、-1 D 、-214、若y=(m-2)x+(2m -4)是正比例函数,则m 的取值是 ( )A 、2B 、-2C 、±2D 、任意实数 (二)用待定系数法求一次函数解析式。
第14章:一次函数复习导学案(53课时)
一、【使用说明】本节为复习第十三章而设计,见学习目标。
二、【学习目标】
①结合具体情境体会一次函数的意义,根据条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(h>0或b<0时,图象的变化情况)。
③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题。
【学法指导】自主探究法
三、【自主学习】
1 已知一次函数y=-2x-6。
(1)当x=-4时,则y= ,当y=-2时,则x= ;
(2)画出函数图象;
(3)不等式-2x-6>0解集是_____,不等式-2x-6<0解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为;
(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;
(6)如果y 的取值范围-4≤y≤2,则x的取值范围__________;
(7)如果x的取值范围-3≤x≤3,则y的最大值是________,最小
值是_______.
2 。
已知一次函数y=3
2
x+m和y=-
1
2
x+n的图象交于点A(-2,0)且与y轴
的交点分别为B、C两点,求△ABC的面积.
四、【合作探究】
1、已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,•求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
2.已知一次函数的图像交x轴于点A(-6,0),交正比例函数于点B,若B点的横坐标是-2,△AOB的面积是6,求:一次函数与正比例函数的解析式。
3.某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。
(1)分别写出两个印刷厂的收费y
甲、y
乙
(元)与印刷数量x(份)之间的函数
关系式;
(2)在同一坐标系中作出它们的图像;(3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算?
②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?
五、【课堂测试】
1、已知一次函数b ax y +=1与a bx y +=2,它们在同一坐标系中的图象如图,可能是 A
y
x O B y x O C y O D y
x
O
2、若一次函数42+=x y 的图象与x 轴交于A 点,A 点的坐标为 与y 轴交于B 点,B 点的坐标为 ,O 为原点,则的△AOB 面积为 ;当x 时,0≥y ,当x 时,0y <。
3、直线8)2(3--=x y 与y 轴的交点的纵坐标是 ,交点到x 轴的距离是
4、若要使函数)34(--=m mx y 的图象过原点,m 应取 ,若要使其图象和y 轴交于点)5,0(,m 应取
5、已知:一次函数的图象如图所示,
求此函数的解析式。
5、两条直线1y k x =与2y k x b =+交点为A (-1,2),
它们与x 轴围成的三角形的面积为53
,求两直线的解析式。
3-4O y x
B A。