中考数学第一部分考点研究复习第六章圆第26课时圆的基本性质练习含解析
- 格式:doc
- 大小:65.50 KB
- 文档页数:12
第六章 圆第26课时 圆的基本性质基础过关1. (2016济宁)如图,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( ) A. 40° B. 30° C. 20° D. 15°第1题图 第2题图2. (2016张家界)如图,AB是⊙O的直径,BC是⊙O的弦,若∠OBC=60°,则∠BAC的度数是( )A. 75°B. 60°C. 45°D. 30°3. (2016自贡)如图,在⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( )A. 15°B. 25°C. 30°D. 75°第3题图第4题图4. (2016陕西)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC 互补,则弦BC的长为( )A. 3 3B. 4 3C. 5 3D. 6 35. (2016毕节)如图,点A、B、C在⊙O上,∠A=36°,∠C=28°,则∠B=( )A. 100°B. 72°C. 64°D. 36°第5题图第6题图6. (2016聊城)如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°7. (2016南宁)如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( )A. 140°B. 70° C .60° D. 40°第7题图 第8题图8. (2016泰安)如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O于点F ,则∠BAF 等于( )A. 12.5°B. 15°C. 20°D. 22.5°9. (2016达州)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A. 13B. 2 2C. 24D. 223第9题图第10题图10. (2016杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )A. DE=EBB. 2DE=EBC. 3DE=DOD. DE=OB11. (2016黄冈)如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=________.第11题图第12题图12. (2016娄底)如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是________.13. (2016贵阳)如图,已知⊙O的半径为6 cm,弦AB的长为8 cm,P是AB延长线上一点,BP=2 cm,则tan∠OPA的值是________.第13题图 第14题图14. (2016长春)如图,在⊙O 中,AB 是弦,C 是AB ︵上一点,若∠OAB =25°,∠OCA =40°,则∠BOC的大小为________度.15. (2016永州)如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB =40°,直径CD ∥AB ,连接AC ,则∠BAC =________度.第15题图第16题图16.(2016南京二模)如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C在⊙O上,若⊙O的半径为5,AB=4,则AD的长为________.17. (2016宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=23,求CD的长.第17题图满分冲关1. (2016泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A. 38 B. 34 C. 24 D. 282. (2016安徽)如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC .则线段CP 长的最小值为( ) A. 32 B. 2 C. 81313 D. 121313第2题图第3题图︵3. (2016海南)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧ABC上,AB=8,BC=3,则DP=________.4. (2016威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为____________.第4题图第5题图5. (2016雅安)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为________.6. (2016株洲)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过D点的直线交AC于E点,交AB于F点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若DA=7AF,求证CF⊥AB.第6题图答案基础过关1. C 【解析】如解图,连接CO ,∵AB ︵=AC ︵,∴∠AOC =∠AOB =40°,∴∠ADC =12∠AOC =12×40°=20°.第1题解图2. D 【解析】∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =60°,∴∠BAC =90°-∠ABC =90°-60°=30°.3. C 【解析】∵∠C =∠AMD -∠A =30°,又∵∠C 与∠B 为同弧所对的圆周角,∴∠B =∠C =30°.4. B 【解析】如解图,延长CO 交⊙O 于点A ′,连接A ′B .设∠BAC =α,则∠BOC =2∠BAC =2α,∵∠BAC +∠BOC =180°,∴α+2α=180°,∴α=60°.又∵∠BAC 和∠BA ′C 都为BC ︵所对的圆周角,∴∠BAC =∠BA ′C =60°.∵CA ′为直径,故∠A ′BC =90°,则在Rt △A ′BC 中,由勾股定理得:BC =A ′C ·sin∠BA ′C =2×4×32=4 3.第4题解图5. C 【解析】如解图,设OB 与AC 的交点为E ,∵∠A =36°,∴∠O =72°,∴∠AEB =∠OEC =180°-72°-28°=80°,∴∠B =180°-80°-36°=64°.第5题解图6. B 【解析】∵四边形ABCD 是⊙O 的内接四边形,∠ABC =105°,∴∠ADC =75°,∵¼»DFBC ,∴∠DCF =∠BAC =25°,∴∠E =∠ADC -∠DCF =50°.7. B 【解析】由题知,∠DCE =40°,在四边形CDOE 中,∠CDO =∠CEO =90°, ∴∠DOE =360°-90°-90°-40°=140°,根据圆周角定理,得∠P =12∠AOB =12×140°=70°.8. B 【解析】如解图,∵四边形ABCO 是平行四边形,OA =OC ,∴四边形ABCO 是菱形,连接OB ,则△OBC 和△OAB 是等边三角形,∴∠COB =∠AOB =60°,∴∠AOC =120°,∵OF ⊥OC ,∴∠AOF =30°,∴∠BOF =∠AOB -∠AOF =30°,根据圆周角定理得:∠BAF =12∠BOF =15°.第8题解图 第9题解图9. C 【解析】如解图,设⊙A 与x 轴的另一个交点为D ,连接CD ,则∠OBC =∠ODC ,∴tan ∠OBC=tan ∠ODC =OC OD =2CD 2-OC 2=262-22=24. 10. D 【解析】如解图,连接OE ,则∠OBE =∠OEB ,∵∠AOB =∠OBE +∠ADB , ∠AOB =3∠ADB ,∴∠OBE = 2∠ADB ,∴∠OEB =2∠ADB ,∵∠OEB =∠D +∠DOE ,∴∠D =∠DOE ,∴DE =OB ,D 选项正确;若EB =OE =OB ,即△OBE 是等边三角形时,DE =EB 才成立,∴A 选项错误;若∠BOE =90°,即△OBE 是等腰直角三角形时,BE =2OE ,则2DE =EB 才成立,所以B 选项错误;若OD =3OE =3OB ,则3DE =DO 才成立,∴C 选项错误,故选D.第10题解图11. 35° 【解析】先根据“同弧所对圆周角是圆心角的一半”得∠BCA =12∠AOB ,又∵AB =AC ,∴∠ABC =∠BCA =12∠AOB =35°.12. 平行 【解析】∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°.∵∠D =∠C ,∴∠A+∠D =180°.∴AB ∥CD .13.53【解析】如解图,连接OB ,过点O 作OM ⊥AB 于点M , ∵OA =OB =6 cm ,OM ⊥AB , ∴在等腰△OAB 中,BM =AB 2=12×8=4 cm.∴在Rt △BOM 中,OM =62-42=2 5 cm.PM =BM +BP =6 cm ,∴在Rt △OPM 中,tan ∠OPA =OM PM =256=53.第13题解图14. 30 【解析】∵OA =OB =OC ,∴∠B =∠OAB =25°,∠OAC =∠OCA =40°,∴∠AOB =180°-2×25°=130°,∠AOC =180°-2×40°=100°,∴∠BOC =∠AOB -∠AOC =130°-100°=30°.15. 35 【解析】∵OA =OB ,∴∠OAB =∠B ,∵∠AOB =40°,∴∠B =70°,∵CO ∥AB ,∴∠B =∠COB =70°,∴∠BAC =12∠BOC =35°.16. 6 【解析】如解图,连接OB ,∵四边形ABCD 是矩形,∴AB =CD =4,∠BAO =∠CDO =90°,∵OB =5,∴AO =52-42=3,同理可得:DO =3,∴AD =3+3=6.第16题解图17. (1)证明:∵ED =EC ,∴∠EDC =∠C ,∵四边形ABED 是⊙O 的内接四边形,∴∠B +∠EDA =180°,又∵∠EDA +∠EDC =180°,∴∠EDC =∠B ,∴∠B =∠C ,∴AB =AC ;(2)解:如解图,连接AE ,第17题解图∵AB 为直径,∴AE ⊥BC ,由(1)知AB =AC ,∴BE =CE =12BC =3,∵∠B =∠C ,∠C =∠CDE ,∴∠B =∠CDE ,∴△CED ∽△CAB ,∴CE CA =CD CB, 即CE ·CB =CD ·CA ,又∵AC =AB =4,∴3·23=4CD ,∴CD =32.满分冲关1. D 【解析】半径为1的圆内接正三角形的边心距为12,内接正方形的边心距为22,内接正六边形的边心距为32,由12、22和32为边组成三角形时,由(12)2+(22)2=(32)2可得该三角形是直角三角形,所以该三角形的面积为12×22×12=28.2. B 【解析】如解图,∵∠PAB =∠PBC ,∠ABC =90°,∴∠BAP +∠PBA =90°,∴∠APB =90°,∴点P 始终在以AB 的中点O 为圆心,OA =OB =OP =12AB =3为半径的圆上,由解图知,只有当点P在OC 与⊙O 的交点处时, PC 的长最小,即为P ′C .在Rt △OBC 中,OC =OB 2+BC 2=32+42=5,∴P ′C =OC -OP ′=5-3=2,∴线段CP 长的最小值为2.第2题解图3. 5.5 【解析】∵AB 和DE 都是⊙O 的直径,∴OA =OB =OD =4,∠C =90°,又∵DE ⊥AC ,∴OP∥BC ,∴△AOP ∽△ABC ,∴OP BC =AO AB ,即OP 3=48,∴OP =1.5.∴DP =OP +OD =5.5. 4. 2 6 【解析】如解图,连接AC 、OF ,正方形ABCD 的边长为4,AC =42+42=42,即直径是42,∴半径OF =2 2.过点O 作OM ⊥EF ,∵△FGE 是等边三角形,∴FG =FE ,又∵OF 过圆心,∴OF 平分∠GFE ,∴∠OFM =12∠GFE =12×60°=30°, ∴OM =12OF =12×22=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴MF =OF 2-OM 2=(22)2-(2)2=6,∴EF =2MF=26,∴正三角形EFG 的边长是2 6.第4题解图 第5题解图5. 8 【解析】连接AD ,如解图,∵AB 是⊙O 的直径,∴AD ⊥BC ,∵AB =AC ,∴BD =CD ,∴OD 是△ABC 的中位线,∴DO =12AC ,点M 是BE 的中点.∴MD 是△BCE 的中位线,∴CE =2MD =4,∵AC =10,∴AE=6,∵AB是⊙O的直径,∴∠AEB=90°,在Rt△ABE中,由勾股定理得BE=AB2-AE2=102-62=8.6. (1)证明:∵AB为直径,∴∠ACB=90°,∵△AEF是等边三角形,∴∠EAF=∠EFA=60°,∴∠ABC=30°,∵∠AEF=∠CED=60°,AC⊥DB,∴∠FDB=30°,∴∠FBD=∠FDB,∴FB=FD,∴△DFB是等腰三角形;(2)解:设AF=a,则AD=7a,连接OC,如解图,则△AOC是等边三角形,第6题解图由题意得,BF =2-a =DF ,∴DE =2-a -a =2-2a ,CE =1-a ,在Rt △ADC 中,DC ()271a -271a - 在△DCE 中,tan30°=CE DC =271a -=33,解得,a =-2(舍去)或a =12,在△AOC 中,OA =1,∴AF =12=12OA ,则根据等边三角形的性质可得CF ⊥OA , 即CF ⊥AB .。
【中考高分指南】数学(选择+填空)【备战2024年中考·数学考点总复习】(全国通用)圆的有关概念和性质一、圆的有关概念弦 连接圆上任意两点的线段叫做弦。
直径经过圆心的弦叫做直径。
弧 圆上任意两点间的部分叫做圆弧,简称弧。
优弧 大于半圆的弧叫做优弧。
劣弧小于半圆的弧叫做劣弧。
常用公式:Lr r n S r n L 213601802===π,π扇形三角形扇形弓形S S S ±=三、垂径定理1.定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.2.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2:圆的两条平行弦所夹的弧相等.注意:轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.二、弧、弦、圆心角、圆周角的关系定理1.弧、弦、圆心角的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,则它们所对应的其余各组量也分别相等.2.圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角:顶点在圆上且角的两边和圆相交的角叫做圆周角.3.圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论:①同弧或等弧所对的圆周角相等.②半圆(或直径)所对的圆周角是直径,90°的圆周角所对的弦是圆的直径.③圆内接四边形的对角互补.【考点1】圆的相关概念⏜上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,【例1】(2023·江苏)如图,在扇形AOB中,D为AB∠O=75°,则∠A的度数为( )A. 35°B. 52.5°C. 70°D. 72°【答案】C【分析】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理、等腰三角形的性质.连接OD ,如图,设∠C 的度数为n ,由于CD =OA =OD ,根据等腰三角形的性质得到∠C =∠DOC =n ,则利用三角形外角性质得到∠ADO =2n ,所以∠A =2n ,然后利用三角形内角和定理得到75°+n +2n =180°,然后解方程求出n ,从而得到∠A 的度数. 【解析】解:连接OD ,如图,设∠C 的度数为n , ∵CD =OA =OD , ∴∠C =∠DOC =n ,∴∠ADO =∠DOC +∠C =2n , ∵OA =OD , ∴∠A =∠ADO =2n ,∵∠AOC +∠C +∠A =180°,∠AOC =75°, ∴75°+n +2n =180°, 解得n =35°, ∴∠A =2n =70°. 故选:C .【例2】(2024·全国模拟)如图,在△ABC 中,∠C =90°,AB =10.若以点C 为圆心,CA 长为半径的圆恰好经过AB 的中点D ,则⊙C 的半径为( ) A. 5√ 3 B. 8 C. 6 D. 5 【答案】D【解析】解:如图,连结CD , ∵CD 是直角三角形斜边上的中线, ∴CD =12AB =12×10=5. 故选:D .连结CD ,根据直角三角形斜边中线定理求解即可.本题考查了直角三角形斜边上的中线,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键. 【例3】(2024·江西模拟)一张直径为10cm 的半圆形卡纸,过直径的两端点剪掉一个三角形,以下四种裁剪图中,所标数据(单位:cm)长度不合理的是( )A.B.C.D.【答案】D【解析】解:A 、B 、C 图形中的三角形,满足三角形三边关系定理,且三角形三边长度合理,故A 、B 、C 不符合题意;D 、如图,过A 作AH ⊥BC 于H ,∵AB =AC ,∴BH =12BC =12×10=5(cm), ∴AH =√ AB 2−BH 2=√ 39, ∴AH >5, ∴A 在圆外,∴三角形三边长度不合理, 故D 不符合题意. 故选:D .由三角形三边关系定理,点和圆的位置关系即可判断.本题考查三角形三边关系,等腰三角形的性质,勾股定理,点和圆的位置关系,关键是由等腰三角形的性质,勾股定理求出AH 的长.1.(2024·湖北模拟)以下命题:(1)等弧所对的弦相等;(2)相等的圆心角所对的弧相等;(3)三点确定一个圆;(4)圆的对称轴是直径;(5)在同圆或等圆中,同一条弦所对的圆周角相等;(6)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.其中正确的命题的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】A【分析】本题主要考查圆的相关概念和性质,深刻理解圆的相关性质是解题的关键.根据圆的相关概念和性质,对各个选项逐一分析判断即可得出答案.【解析】解:(1)等弧所对的弦相等;正确;(2)在同圆或等圆中,相等的圆心角所对的弧相等;故(2)错误;(3)不在同一直线上的三点确定一个圆;故(3)错误;(4)圆的对称轴是直径所在直线;故(4)错误;(5)在同圆或等圆中,同一条弦所对的弧有两条,每一条弧所对的圆心角不一定相等,则所对的圆周角也不一定相等;故(5)错误;(6)三角形三边的垂直平分线的交点即为其外接圆的圆心,外心到三角形三个顶点的距离相等.故(6)正确;综上所述,正确的有(1)(6),故选A.2.(2024·江苏模拟)下列说法中,正确的是①对角线垂直且互相平分的四边形是菱形;②对角线相等的四边形是矩形;③同弧或等弧所对的圆周角相等;④半圆是弧,但弧不一定是半圆.( )A. ①④B. ②③C. ①③④D. ②③④【答案】A【解析】解:①、对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形为菱形,故该项正确;②、对角线相等的平行四边形为矩形,故该选项错误;③、在同圆或等圆中,同弧或等弧所对的圆周角相等,故该选项错误;④、弧分为优弧、劣弧、半圆弧,则半圆是弧,但弧不一定是半圆,故该项正确;故选:A.根据对角线互相垂直的平行四边形为菱形,对角线相等的平行四边形为矩形,在同圆或等圆中,同弧或等弧所对的圆周角相等,弧分为优弧、劣弧、半圆弧分别判断即可.本题考查基本概念,熟记知识点是解题关键.3.(2023·全国模拟)下列说法中,不正确的是( )A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧【答案】D【分析】本题主要考查了圆的基本概念,解答此题的关键是正确理解弦,弧的定义,解答此题根据圆的基本概念判断即可.【解析】解:A.直径是最长的弦,正确;B.同一个圆的半径相等,正确;C.圆既是轴对称图形,也是中心对称图形,正确;D.长度相等的弧不一定是等弧,同圆或等圆中长度相等的弧才是等弧,故该选项的说法错误.故选D.4.(2024·广东模拟)如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )A. 38°B. 52°C. 76°D. 104°【答案】C【分析】本题考查了圆的认识:掌握与圆有关的概念.根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【解析】解:∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°−2×52°=76°.故选:C.【考点2】垂径定理【例1】(2023·四川)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=2√ 3,则OC=( )A. 1B. 2C. 2√ 3D. 4【答案】B【解析】解:连接OB,设OA交BC于E,如图:∵∠ADB=30°,∴∠AOB=60°,∵OA⊥BC,BC=2√ 3,BC=√ 3,∴BE=12,在Rt△BOE中,sin∠AOB=BEOB,∴sin60°=√ 3OB∴OB=2,∴OC=2;故选:B.连接OB,设OA交BC于E,由∠ADB=30°,得∠AOB=60°,根据OA⊥BC,BC=2√ 3,得BE=1BC=√ 3,2故sin60°=√ 3,从而OC=OB=2.OB本题考查垂径定理,圆周角定理及勾股定理的应用,解题的关键是掌握含30°角的直角三角形三边关系.【例2】(2024·湖南模拟)如图,AB是⊙O的直径,弦CD⊥OA于点E,连接OC,OD.若⊙O的半径为m,∠AOD=α,则下列结论一定成立的是A. OE=m·tanαB. CD=2m·sinαC. AE=m·cosαD. S△OCD=m2·sinα【答案】B【分析】本题考查了垂径定理,解直角三角形,解决本题的关键是掌握垂径定理,解直角三角形等知识.根据垂径定理和锐角三角函数计算则可进行判断.【解析】解:A.∵AB是⊙O的直径,弦CD⊥OA于点E,CD,∴DE=12在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=DEOE,∴OE=DEtanα=CD2tanα,故选项A错误不符合题意;B.∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD⋅sinα=m⋅sinα,∴CD=2DE=2m⋅sinα,故选项B正确符合题意;C.∵cosα=OEOD,∴OE=OD⋅cosα=m⋅cosα,∵AO=DO=m,∴AE=AO−OE=m−m⋅cosα,故选项C错误不符合题意;D.∵CD=2m⋅sinα,OE=m⋅cosα,∴S△COD=12CD×OE=12×2m⋅sinα×m⋅cosα=m2sinα⋅cosα,故选项D错误不符合题意;故选B.【例3】(2024·全国模拟)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为.( )A. 3√ 3B. 32C. 3√ 32D. 3【答案】C【解析】连接OC、OD,如图所示,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°.∵OC=OD,OG⊥CD,∴∠COG =30°. ∵⊙O 的周长等于6π,∴OC =3,∴CG =32,∴OG =3√ 32. 故选C .1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.根据垂径定理构造直角三角形,一般为过圆心作已知弦的弦心距,常用于求线段的长度.1.(2024·广东模拟)已知:如图,在⊙O 中,OA ⊥BC ,∠AOB =70°,则∠ADC 的度数为( )A. 30°B. 35°C. 45°D. 70°【答案】B【分析】本题考查的是垂径定理、圆周角定理、圆心角与弧的关系定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.先根据垂径定理得出AB ⏜=AC ⏜,再由圆周角定理即可得出结论. 【解析】解:如图,连接OC .∵OA ⊥BC , ∴AB⏜=AC ⏜, ∴∠AOC =∠AOB =70°,∴∠ADC =12∠AOC =35°. 故选B .2.(2024·江苏模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD =2√3.则BC ⌒的长为( ) A. π3B.2π3C. √3π3D.2√3π3【答案】B【解析】解:连接AC 、OC , ∵AB 是⊙O 的直径,CD ⊥AB , ∴CE =ED =12CD =√3,BC ⌒=BD ⌒,∴AB 是线段CD 的垂直平分线, ∴AC =AD , ∵AD =CD , ∴AC =AD =CD , ∴△ACD 为等边三角形, ∴∠CAD =60∘, ∴∠COB =60∘,在Rt △COE 中,OC =CEsin∠COE =2, ∴BC ⌒的长=60π×2180=2π3, 故选:B.连接AC 、OC ,根据垂径定理得到CE =ED =12CD =√3,BC ⌒=BD ⌒,根据线段垂直平分线的性质得到AC =AD ,根据等边三角形的性质求出∠CAD =60∘,根据正弦的定义求出OC ,根据弧长公式计算,得到答案. 本题考查的是弧长的计算、垂径定理,掌握弧长公式:l =nπr180是解题的关键. 3.(2024·陕西模拟)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,且∠ACD =22.5°,CD =4,则⊙O 的半径长为( ) A. 2 B. 2√ 2 C. 4 D. 10【答案】B【解析】解:连接OD ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =4,∴CE =DE =12CD =2,∵∠ACD =22.5°,∴∠AOD =2∠ACD =45°,∴△DOE 为等腰直角三角形,∴OD =√ 2DE =2√ 2,即⊙O 的半径为2√ 2,故选:B .连接OD ,由圆周角定理得出∠AOD =45°,根据垂径定理可得CE =DE =2,证出△DOE 为等腰直角三角形,利用特殊角的三角函数可得答案.此题主要考查了圆周角定理、垂径定理、以及三角函数的应用;关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2023·江苏)如图,矩形内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是( )A. 414π−20B. 412π−20C. 20πD. 20【答案】D【解析】解:如图,连接BD ,则BD 过点O ,在Rt △ABD 中,AB =4,BC =5,∴BD 2=AB 2+AD 2=41,S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆=π×(42)2+π×(52)2+4×5−π×(BD 2)2 =41π4+20−41π4=20,故选:D .根据矩形的性质可求出BD ,再根据图形中各个部分面积之间的关系,即S 阴影部分=S 以AB 为直径的圆+S 以AD 为直径的圆+S 矩形ABCD −S 以BD 为直径的圆进行计算即可.本题考查勾股定理,矩形的性质以及圆形面积的计算,掌握矩形的性质、勾股定理以及圆形面积的计算方法是正确解答的前提.5.(2023·内蒙古)如图,⊙O 是锐角三角形ABC 的外接圆,OD ⊥AB ,OE ⊥BC ,OF ⊥AC.垂足分别为D ,E ,F ,连接DE ,EF ,FD.若DE +DF =6.5,△ABC 的周长为21,则EF 的长为( )A. 8B. 4C. 3.5D. 3【答案】B【解析】解:∵OD ⊥AB ,OE ⊥BC ,OF ⊥AC ,∴AD =BD ,AF =CF ,BE =CE ,∴DE ,DF ,EF 是△ABC 的中位线,∴DE =12AC,DF =12BC,EF =12AB ,∴DE +DF +EF =12(AB +BC +AC)=12×21=10.5,∵DE +DF =6.5,∴EF =10.5−6.5=4,故选:B .根据垂径定理得到AD =BD ,AF =CF ,BE =CE ,根据三角形的中位线定理得到DE +DF +EF =12(AB +BC +AC)=12×21=10.5,于是得到结论.本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.【考点3】垂径定理的应用【例1】(2023·湖北)如图,一条公路的转弯处是一段圆弧(AC⏜),点O 是这段弧所在圆的圆心,B 为AC ⏜上一点,OB ⊥AC 于D.若AC =300√ 3m ,BD =150m ,则AC⏜的长为( )A. 300πmB. 200πmC. 150πmD. 100√ 3πm【答案】B【解析】解:如图所示:∵OB ⊥AC ,∴AD =12AC =150√ 3m ,∠AOC =2∠AOB ,在Rt △AOD 中,∵AD 2+OD 2=OA 2,OA =OB ,∴AD 2+(OA −BD)2=OA 2,∴(150√ 3)2+(OA −150)2=OA 2解得:OA =300m ,∴sin∠AOB =AD OA =√ 32, ∴∠AOB =60°,∴∠AOC =120°,∴AC ⏜的长=120×300π180=200πm .故选:B .先根据垂径定理求出AD 的长,由题意得OD =OA −BD ,在Rt △AOD 中利用勾股定理即可求出OA 的值,然后再利用三角函数计算出AC⏜所对的圆心角的度数,由弧长公式求出AC ⏜的长即可. 本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD 的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.【例2】(2024·山东模拟)唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该桨轮船的轮子直径为( )A. 10mB. 8mC. 6mD. 5m【答案】A【解析】解:设半径为r m ,则OA =OC =r m ,∴OD =(r −2)m ,∵AB =8m ,∴AD =4m ,在Rt △ODA 中,有:OA 2=OD 2+AD 2,即:r 2=(r −2)2+42,解得r =5m ,则该桨轮船的轮子直径为10m .故选:A .设半径为r ,再根据圆的性质及勾股定理,可求出答案.本题考查垂径定理,勾股定理,关键在于知道OC 垂直平分AB 这个隐藏的条件.垂径定理及其推论方法技巧:1.圆中模型“知2得3”由图可得以下5点:①AB ⊥CD ;②AE=EB ;③AD 过圆心O ;④⋂⋂=BC AC ;⑤⋂⋂=BD AD ;以上5个结论,知道其中任意2个,剩余的3个都可以作为结论使用。
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质→➊考点精析←一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r ,母线长为l ,则这个扇形的半径为l ,扇形的弧长为2πr ,圆锥的侧面积为S 圆锥侧=12ππ2l r rl ⋅=.圆锥的表面积:S 圆锥表=S 圆锥侧+S 圆锥底=πrl +πr 2=πr ·(l +r ).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.→➋真题精讲←题型一圆周角和圆心角1.(2023·云南·统考中考真题)如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.2.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵ AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.3.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是()A.41︒B.45︒C.49︒D.59︒【答案】C【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵ AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠-∠=︒-︒=︒,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于()A.140︒B.120︒C.110︒D.70︒【答案】A 【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, 35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A.【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5.(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=︒,AD =CAO ∠的度数与BC 的长分别为()A.10°,1C.15°,1【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,122AE AD ==,进而可得122CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,3AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,1322AE AD ==∴15CAO CAD OAD ∠=∠-∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒,∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒-∠-∠=︒,∴1222,22CD OC CF CD ====∴21BC CF ==;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.6.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A.【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.7.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选:D.【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】73【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒ ,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,7sin 6032BD OB ∴=⋅︒=,23BC BD ∴==故答案为:73【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.9.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.10.(2023·上海·统考中考真题)如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.(2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=,12OC OB =,31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,2292CE BC BE =-=,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.题型二切线定理11.(2023·四川眉山·统考中考真题)如图,AB 切O 于点B ,连接OA 交O 于点C ,BD OA ∥交O 于点D ,连接CD ,若25OCD ∠=︒,则A ∠的度数为()A.25︒B.35︒C.40︒D.45︒【答案】C【分析】如图,连接OB ,证明90∠=︒ABO ,25CDB ∠=︒,可得250BOC BDC ∠=∠=︒,从而可得40A ∠=︒.【详解】解:如图,连接OB ,∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,25OCD ∠=︒,∴25CDB ∠=︒,∴250BOC BDC ∠=∠=︒,∴40A ∠=︒;故选:C.【点睛】本题考查的是切线的性质,圆周角定理的应用,三角形的内角和定理的应用,掌握基本图形的性质是解本题的关键.12.(2023·重庆·统考中考真题)如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B.【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.13.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.【答案】65︒【分析】连接,CO BO ,根据切线的性质得出90ACO ABO ∠=∠=︒,根据四边形内角和得出130COB ∠=︒,根据圆周角定理即可求解.【详解】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.【点睛】本题考查了切线的性质,圆周角定理,求得130COB ∠=︒是解题的关键.14.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点睛】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.15.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB =,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.16.(2023·四川·统考中考真题)如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==,如图,延长EP 交CB 于点Q ,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为224EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是4t ≤≤.故答案为:4t ≤≤.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.17.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【详解】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =532CE =,∴253CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.18.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆,AD 是O 的直径,F 是AD 延长线上一点,连接CD CF ,,且DCF CAD ∠=∠.(1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.【答案】(1)详见解析(2)907【分析】(1)根据直径所对的圆周角是直角,余角的性质即可求得结论;(2)根据已知条件可知FCD FAC ∽,再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC ,∵AD 是O 的直径,∴90ACD ∠=︒,∴90ADC CAD ∠+∠=︒,又∵OC OD =,∴ADC OCD ∠=∠,又∵DCF CAD ∠=∠,∴90DCF OCD ∠+∠=︒,即OC FC ⊥,∴FC 是O 的切线;(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos ,10,5CD ADC AD AD∠===∴3cos 106,5CD AD ADC =⋅∠=⨯=∴8AC =,∴34CD AC =,∵FCD FAC F F ∠=∠∠=∠,,∴FCD FAC ∽,∴34CD FC FD AC FA FC ===,设3FD x =,则4310FC x AF x ==+,,又∵2FC FD FA =⋅,即2(4)3(310)x x x =+,解得307x =(取正值),∴9037FD x ==,【点睛】本题考查了圆周角的性质,切线的判定定理,正切的定义,相似三角形的性质和判定,找出正切的定义与相似三角形相似比的关联是解题的关键.19.(2023·辽宁·统考中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF 与O 相切;(2)若41sin 5BF AFE =∠=,,求BC 的长.【答案】(1)见解析(2)245BC =【分析】(1)利用圆周角定理得到2EOB EAB ∠=∠,结合已知推出CAB EOB ∠=∠,再证明OFE ABC ∽△△,推出90OEF C ∠=∠=︒,即可证明结论成立;(2)设O 半径为x ,则1=+OF x ,在Rt OEF △中,利用正弦函数求得半径的长,再在Rt ABC △中,解直角三角形即可求解.【详解】(1)证明:连接OE ,∵ =BEBE ,∴2EOB EAB ∠=∠,∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴245BC ==.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.题型三垂径定理20.(2023·四川凉山·统考中考真题)如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,,则OC =()A.1B.2C.D.4【答案】B 【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯在Rt OCE 中,603COE CE ∠=︒,32sin 6032CE OC ∴==︒,故选:B.【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.21.(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为()A.1123-B.113-C.823-D.843-【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(22441144MN l AB OA-=+=+=-故选:B.【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.22.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28m C.35m D.40m【答案】B 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=-=-,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+-= ⎪⎝⎭,解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.23.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =-=-=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.24.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =-=cm ,在Rt AOD 中,22221068AD AO OD =--cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.25.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是________寸.【答案】26【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,AB=可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x 由6的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OA,AB=寸,,且10⊥AB CDAE BE∴==寸,5==,设圆O的半径OA的长为x,则OC OD xQ,CE=1OE x∴=-,1在直角三角形AOE中,根据勾股定理得:222x x--=,化简得:222125(1)5-+-=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.26.(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD ⊥于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB ,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =-,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.。
2025年中考数学复习专题六圆A 诊断练考点1 圆的基本性质1.如图,在⊙O 中,弦AB的长为8,圆心 O 到AB 的距离OE=4,则⊙O的半径长为 ( )A.4B.4√2C.5D.5√22.如图,CD 是⊙O 的直径,点A,B 在⊙O 上. 若AC=BC,∠AOC=36°,则∠D= ( )A.9°B.18°C.36°D.45°3.如图,四边形ABCD是⊙O 的内接四边形,AB 是⊙O 的直径,若∠BEC=20°,则∠ADC的度数为( )A.100°B.110°C.120°D.130°4.如图,⊙O 的直径AB平分弦CD( 不是直径). 若∠D = 35°, 则∠C =°.5.如图,AB是半圆的直径,AC是一条弦,D 是AC的中点,DE⊥AB于点 E,交 AC 于点 F,DB 交 AC 于点 G,连接AD,给出下面四个结论:①∠ABD=∠DAC;②AF=FG;;③当DG=2,GB=3时,FG=√142̂=2AD̂,AB=6时,△DFG的面积√3上述结论中,正确结论的序号有 .④当BD考点2 与圆有关的位置关系6.如图,⊙O 中,弦AB 的长为√3,点 C在⊙O 上,OC⊥AB,∠ABC30°.⊙O所在的平面内有一点 P,若OP=5,则点 P与⊙O 的位置关系是 ( )A.点 P在⊙O上B.点 P在⊙O内C.点P在⊙O外D.无法确定7.如图,以AB 为直径的⊙O与AC相切于点 A,以AC 为边作平行四边形ACDE,点 D,E 均在⊙O 上,DE 与AB交于点F,连接CE,与⊙O交于点 G,连接 DG. 若 AB = 10,DE = 8,则 AF = ,DG=.8.如图,⊙O 是△ABC的外接圆,D 是直径AB 上一点,∠ACD 的平分线交AB 于点E,交⊙O于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M.若OM=OE=1,求AC的长.9.如图,△ABC 内接于⊙O,AB=AC=10,过点A作AE∥BC,交⊙O 的直径 BD的延长线于点 E,连接CD.(1)求证:AE 是⊙O 的切线;,求 CD 和DE 的长.(2)若tan∠ABE=12考点3 与圆有关的计算10.两个半径相等的半圆按如图方式放置,半圆O'的一个直径端点与半圆O的圆心重合,若半圆的半径为2,则阴影部分的面积是 ( )A.43π−√3B.43πC.23π−√3D.43π−√3411.已知圆锥的底面圆半径为 4,母线长为 5,则圆锥的侧面积为 .12.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,AB所在圆的圆心C恰好是△ABO 的内心,若.AB=2√3,则花窗的周长 ( 图中实线部分的长度 ) = .(结果保留π)B 考点突破练考点4 圆的基本性质基础考向1 弧、弦、圆心角的关系1.如图,AB是⊙O 的直径,BC=CD,∠COD=52°,,则∠AOD 的大小为 .2.如图,在⊙O中,AB̂=CD,有下列结论:①AB = CD;②AC = BD;③∠AOC=∠BOD;④AĈ=BD̂,其中正确的是 (填序号).考向2 垂径定理及其推论3.如图,OA,OB,OC都是⊙O的半径,AC,OB 交于点 D.若AD=CD=8,OD=6,则BD的长为 ( )A.5B.4C.3D.24.如图,⊙O 是一个盛有水的容器的横截面,⊙O的半径为10 cm,水的最深处到水面AB 的距离为4 cm,则水面AB的宽度为 cm.考向3 圆周角定理及其推论5.如图,在⊙O 中,弦AB,CD 相交于点 P,若∠A= 48°,∠APD=80°,则∠B的度数为( )A.32°B.42°C.48°D.52°6.如图,四边形 ABCD 内接于⊙O,AC,BD 为对角线,BD 经过圆心 O. 若∠BAC=40°,则∠DBC的度数为( )A.40°B.50°C.60°D.70°7.如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为 .8.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,∠BCD 的平分线交⊙O 于点E,AD,BE 的延长线交于点 F.(1)若∠BAD=70°,求∠ABE 的度数. (2)求证:AB=AF.考向4 圆内接四边形9.如图,圆内接四边形ABCD 中,∠BCD = 105°,连接 OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD 的度数是( )A.25°B.30°C.35°D.40°10.如图,四边形ABCD 内接于⊙O,BC∥AD,AC⊥BD. 若∠AOD =120°,AD √3 则∠CAO 的度数与 BC 的长分别为 ( )A.10°,1B.10°, √2C.15°,1D.15°, √211.如图,四边形ABCD 内接于 ⊙O,点 E 在 CD 的延长线上. 若∠ADE=70°,则∠AOC= °.12.如图,四边形AB-CD 内接于 ⊙O,连接 AC,BD, ∠ABD =∠ADC,过点D 作DP∥AB,交⊙O 于点M,交BC 的延长线于点 P. (1)求证:BP=BD;诊断区检测区突破区,AB=10,求 CP 的长.(2)若cos∠ABD=2513.下列说法中正确的个数是 ( )①同圆或等圆中,同弧所对的圆周角相等;②在同圆或等圆中,同一条弦所对的圆周角相等;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦,并且平分弦所对的弧.A.1B.2C.3D.4提升1.如图,已知点A,B,C,D都在⊙O上,OB⊥AC,BC=CD,下列说法错误的是 ( )̂=BĈ B.∠AOD=3∠BOCA.ABC. AC=2CDD. OC⊥BD2.如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=√3,则OC( )A.1B.2C.√3D.43.在半径为2的⊙O中,弦AB的长度为2,点C 为⊙O上异于A,B两点的一个动点,则∠BCA=°.,E,F 分别为AC,BC的中点,弦EF 分别4.如图,AB 为半圆O的直径,C为半圆上一点且sin∠CAB=35交AC,CB 于点 M,N. 若MN=3√2,则 AB =5.如图,OA,OB,OC都是⊙O 的半径,∠ACB=2∠BAC.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=√5,求⊙O的半径.6.如图,以△ABC的边AC为直径作⊙O,交 BC 边于点 D,过点 C 作CE ∥AB 交⊙O 于点 E, 连接AD, DE,∠B=∠ADE.(1)求证:AC=BC;(2)若 tan B=2,CD=3,求AB 和DE 的长.7.如图,在扇形 AOB 中,OA=8,点 C 在半径 OA 上,将△BOC沿BC翻折,点 O 的对应点 D 恰好落在弧 AB 上,再将弧 AD 沿着 CD 翻折至弧A₁D(点A₁是点A的对应点),那么 OA₁的长为 .考点5 与圆有关的位置关系基础考向1 点、直线和圆的位置关系1.在同一平面内,已知⊙O的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P 到直线l的最大距离是 ( )A.2B.5C.6D.82.已知平面内有⊙O 和点A,B,若⊙O 的半径为3 cm,线段OA=4cm,OB=3cm,则直线AB与⊙O的位置关系为 ( )A.相离B.相交C.相切D.相交或相切3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD 是AB 边上的高,AB=4,若圆C是以点 C 为圆心,2为半径的圆,那么下列说法正确的是 ( )A.点 D 在圆 C 上,点 A,B 均在圆C外B.点 D 在圆 C 内,点 A,B 均在圆C外C.点A,B,D 均在圆C外D.点A在圆C外,点D在圆C内,点B在圆C上考向2 切线的性质及判定4.如图,AC 是⊙O 的切线,B 为切点,连接OA,OC.若∠A=30°,AB=√3,BC=3则OC的长度是( )A,3 B.√3C√13 D.65.如图,AB 切⊙O 于点B,连接OA交⊙O 于点C,BD∥OA交⊙O 于点D.连接CD,若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°̂上. 已知∠A = 50°, 6.如图,点 A 是⊙O 外一点,AB,AC分别与⊙O 相切于点 B,C,点 D 在BDC则∠D 的度数是 .7.如图,已知△ABC 内接于⊙O,CO 的延长线交AB 于点 D,交⊙O 于点E,交⊙O 的切线AF于点F,且AF∥BC.(1)求证:AO∥BE;(2)求证:AO 平分∠BAC.∠A,点O在BC上,以点O为圆心的8.如图,在△ABC 中,∠ACB=90°,点 D 是 AB 上一点,且∠BCD=12圆经过C,D两点.(1)试判断直线 AB 与⊙O 的位置关系,并说明理由;,⊙O的半径为3,求AC的长.(2)若sinB=35考向3 三角形的外接圆与内切圆9.如图,点O 是△ABC外接圆的圆心,点I 是△ABC 的内心,连接OB,IA.若∠CAI=35°,则∠OBC的度数为( )A.15°B.17.5°C.20°D.25°10.如图的方格纸中,每个方格的边长为1,A,O两点皆在格线的交点上.今在此方格纸格线的交点上另外找两点 B,C,使得△ABC 的外心为 O,求 BC 的长度()A.4B.5C.√10D.√2011.如图,⊙O是锐角三角形 ABC 的外接圆,OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为 D,E,F,连接 DE,EF,FD.若DE+DF=6.5,△ABC 的周长为21,则EF 的长为 ( )A.8B.4C.3.5D.312.如图,△ABC的内切圆⊙I与BC,CA,AB 分别相切于点 D,E,F,若⊙I的半径为r,∠A=α,则(BF+CE-BC)的值和∠FDE 的大小分别为 ( )A.2r,90°-αB.0,90°-αC.2r,90∘−α2D.0,90∘−α213.如图所示的网格由边长为1个单位长度的小正方形组成,点A,B,C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC 内心的坐标为 .14.在同一平面内,点P不在⊙O上,若点P到⊙O上的点的最大距离是11,最小距离是5,则⊙O的半径是 .提升1.已知点A在半径为3的圆O 上,如果点 A 到直线a 的距离是6,那么圆O与直线a的位置关系是( )A.相交B.相离C.相切D.以上答案都不对2.已知一个三角形的内心与外心重合,若它的内切圆的半径为2,则它的外接圆的面积为 ( )A.4πB.8πC.12πD.16π3.如图,在四边形AB-CD中,AB∥CD,AD⊥AB,以 D 为圆心,AD 为半径的弧恰好与 BC 相切,切点为E.若ABCD =13,则 sin C的值 ( )A 23 c 344.如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD 是矩形.当餐盘正立且紧靠支架于点A ,D 时,恰好与 BC 边相切,则此餐盘的半径等于 cm.5.如图,在平面直角坐标系中,已知点A(1,0),P(-1,0),⊙P 过原点O ,且与x 轴交于另一点D ,AB 为⊙P 的切线,B 为切点,BC 是⊙P 的直径,则∠BCD 的度数为 °.6.如图,在△ABC 中,AB=BC,以BC 为直径作⊙O 与AC 交于点D,过点 D 作DE⊥AB,交CB 延长线于点 F,垂足为点 E.(1)求证:DF 为⊙O 的切线;(2)若 BE =3,cosC =45,求 BF 的长.B.√53D.√747.如图,分别过矩形ABCD的四个顶点作其内部的⊙O 的切线,切点分别为E,F,G,H,若AE = a,BF = b, DH = c, 则 CG 的长为 .(用含a,b,c的代数式表示)考点6 与圆有关的计算基础考向1 圆内接正多边形的计算1.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= ( )A.60°B.54°C.48°D.36°2.如图,点 P₁~P₈是⊙O 的八等分点.若△P₁P₃P₇,四边形 P₃P₄P₆P₇的周长分别为a,b,则下列正确的是( )A. a<bB. a=bC. a>bD. a,b大小无法比较考向2 弧长与扇形面积的计算3.圆心角为90°,半径为3的扇形弧长为 ( )A.2πB.3π C32D.12π4.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于 ( )A.πB.3πC.2πD.2π−√35.马面裙(图(1)),又名“马面褶裙”,是我国古代女子穿着的主要裙式之一.将图(1)中的马面裙抽象成数学图形,如图(2)中的阴影部分所示,AD 和BC所在圆的圆心均为点O,且点A在 OB 上,点 D 在 OC 上,若OA=AB=6 dm,OA⊥OD,则该马面裙裙面(图(2)中阴影部分)的面积为 ( )A.36πdm²B.27πdm²C.18πdm²D.12πdm²6.如图,在矩形ABCD中,AB=3,BC=6,E为BC的中点,连接AE,DE.以E为圆心,EB 长为半径画弧,分别与AE,DE交于点M,N,则图中阴影部分的面积和是 (结果保留π).考向3 圆锥的有关计算7.如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.8.如图,小珍同学用半径为8cm ,圆心角为 100°的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是 cm².9.如图,圆锥形烟囱帽的底面半径为30cm ,母线长为50cm ,则烟囱帽的侧面积为 cm².(结果保留π)10.如图,在△ABC 中,AC=3,AB=4,BC 边上的高AD=2,将△ABC 绕着BC 所在的直线旋转一周得到的几何体的表面积为 .考向4 与圆有关的阴影部分面积11.如图,在△ABC 中,∠ABC=90°,∠ACB=30°,AB=4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点 D ,则图中阴影部分的面积是( )A.5√3−√33π B.5√3−4πC.5√3−2πD.10√3−2π12.如图,矩形ABCD 内接于⊙O,分别以AB,BC,CD,AD 为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是 ( )检测区突破区A.414π−20B.412π−20C.20πD.2013.如图,Rt△BCO中,∠BCO=90°,∠CBO=30°,BO=4cm,将△BCO绕点 O逆时针旋转至△B'C'O,点 C'恰好落在 BO 延长线上,则边 BC 扫过区域(图中阴影部分)的面积为 ( )A.πcm²B.(π+√3)cm2C.4πcm²D.(4π+√3)cm214.如图,点B在半圆O 上,直径AC=12,∠BAC=40°,则图中阴影部分的面积为(结果保留π).15.如图,△ABC的周长为20,⊙O 的半径为1,⊙O从与AB 相切的切点D的位置出发,在△ABC外部,按顺时针方向沿三角形的边无滑动滚动,当滚动一周又回到点 D 的位置时,⊙O的圆心O运动的长度 (填“>”“=”或“<”)三角形的周长,运动长度为 .提升1.如图,正六边形AB-CDEF内接于⊙O,点P在AB上,点Q是DÊ的中点,则∠CPQ的度数为 ( ) A.30° B.45° C.36° D.60°2.如图,正六边形AB-CDEF的外接圆⊙O 的半径为2,过圆心 O 的两条直线l₁,l₂的夹角为60°,则图中的阴影部分的面积为 ( )A.43π−√3B.43π−√32C.23π−√3D.23π−√323.如图,已知点 C 为圆锥母线 SB 的中点,AB 为底面圆的直径,SB=6,AB=4,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为 ( )A.5B.√3C.3√2D.2√34.如图,在▱ABCD中,AB=√3+1,BC=2,AH⊥CD,垂足为H,AH=√3.以点 A 为圆心,AH 长为半径画弧,AB,AC,AD 分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r₁;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r₂,则r₁−r₂=.(结果保留根号) 5.如图,在△ABC 中,AB=4,∠C=64°,以AB 为直径的⊙O 与AC 相交于点 D,E 为ABD̂上一点,且∠ADE=40°.(1)求BÊ的长;(2)若∠EAD=76°, 求证:CB为⊙O 的切线.6.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图(1),正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图(2),其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图(2)中(1)∠α= 度;(2)中间正六边形的中心到直线l的距离为 (结果保留根号).C 检测验收练一、选择题(每小题5分,共20分)1.如图,AB是⊙O 的直径,∠E=35°,则∠BOD= ( )A.80°B.100°C.120°D.110°2.数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是在工件圆弧上任取两点A,B,连接AB,作AB 的垂直平分线 CD 交AB于点D,交AB 于点 C,测出AB=40 cm, CD=10cm,则圆形工件的半径为 ( )A.50cmB.35 cmC.25 cmD.20cm3.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式. 如图,Rt△ABC 中,∠C =90°, AB,BC,CA 的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC 的内切圆直径d,下列表达式错误的是 ( )A. d=a+b-cB.d=2aba+b+cC.d=√2(c−a)(c−b)̅̅̅̅̅̅̅̅̅ D. d=|(a-b)(c-b)|4.如图,两个半径长均为 1 的直角扇形的圆心分别在对方的圆弧上,扇形 CFD 的圆心 C 是弧 AB的中点,且扇形 CFD 绕着点 C 旋转,半径 AE,CF交于点G,半径BE,CD交于点 H,则图中阴影部分的面积等于 ( )A.π2−1B.π2−12C.π-1D.π-2二、填空题(每小题5分,共30分)5.如图,AB 是圆的直径,∠1,∠2,∠3,∠4的顶点均在 AB上方的圆弧上,∠1,∠4的一边分别经过点A,B,则∠1+∠2+∠3+∠4=°.6.如图,四边形ABCD是⊙O 的内接四边形,点O 在四边形ABCD内部,过点C作⊙O 的切线交AB的延长线于点P,连接 OA,OB. 若∠AOB = 140°,∠BCP =35°,则∠ADC 的度数为 .7.[2024 浙江杭州校级二模]如图,正六边形AB-CDEF与正方形AGDH都内接于⊙O,则劣弧BG 所对圆周角的度数为 .8.如图,△ABC 内接于⊙O,点 O 在AB上,AD 平分∠BAC 交⊙O 于D,连接BD.若AB=10,BD=√5,则BC的长为 .9.如图,在边长为6的正六边形 ABCDEF中,以点 F为圆心,以 FB 的长为半径作BD,剪下图中阴影部分做一个圆锥的侧面,则这.个圆锥的底面半径为 .̂的圆心10.如图,四边形ABCD 是正方形,曲线DA₁B₁C₁D₁A₂B₂…叫做“正方形的渐开线”,其中DA1为点A,半径为AD;A₁B₁的圆心为点B,半径为BA₁;B₁C₁的圆心为点C,半径为(CB₁;C₁D₁的圆心为点 D,半径为DC₁;……,DA₁,A₁B₁,B₁C₁,C₁D₁,…I的圆心依次按A,B,C,D 的顺序循环,当AB=1时,的长是 .三、解答题(11 题 10 分,12 题 12 分, 13 题13分,14题15分,共50分)11.日晷仪也称日晷,是观测日影计时的仪器,主要根据日影的位置,以指定当时的时辰或刻数,是我国古代较为普遍使用的计时仪器,如图(1)所示. 小东为了探究日晷的奥秘,在不同时刻对日晷进行了观察探究.(1)探究1:如图(2),日晷的平面是以点O为圆心的圆,直线l是日晷的底座,OA⊥l于点A,与⊙O交于点B,点P在⊙O 上,OP 为某一时刻晷针的影长,PB的延长线与直线l交于点 C.连接A P,当AP=AC时,求证:AP与⊙O相切.(2)探究2:当小东观察到影长OP 落在图(3)所示位置时,连接AP,交⊙O 于点D,若∠POD=90∘,OA=√10,AD=√2,求⊙O的半径.12.已知△AOB 中,∠ABO =30°,AB为⊙O 的弦,直线MN与⊙O 相切于点 C.(1)如图(1),若AB∥MN,直径 CE 与 AB 相交于点 D,求∠AOB 和∠BCE的大小;(2)如图(2),若OB∥MN,CG⊥AB,垂足为G,CG与OB 相交于点 F,OA=3,求线段 OF的长.13.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点 D,交AC于点 E,过点 D 作DF⊥AC 于点 F,FD 的延长线交AB 的延长线于点 G.(1)若AB=10,BC=12,求△DFC的面积;(2)若 tan C=2,AE=6,求 BG的长.14.如图(1),O 是正方形ABCD对角线上一点,以O为圆心,OC长为半径的⊙O 与AD 相切于点E,与AC 相交于点 F.(1)求证:AB 与⊙O 相切;(2)若正方形ABCD 的边长为√2+1,求⊙O的半径;̂于点 N.(3)如图(2),在(2)的条件下,若点 M是半径OC 上的一个动点,过点 M 作MN⊥OC 交CE当CM:FM=1:4时,求CN的长.。
第六章 圆第26课时 圆的基本性质基础过关1. (2016济宁)如图,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( )A. 40°B. 30°C. 20°D. 15°第1题图 第2题图2. (2016张家界)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,若∠OBC =60°,则∠BAC 的度数是( )A. 75°B. 60°C. 45°D. 30°3. (2016自贡)如图,在⊙O 中,弦AB 与CD 交于点M ,∠A =45°,∠AMD =75°,则∠B 的度数是( )A. 15°B. 25°C. 30°D. 75°第3题图 第4题图4. (2016陕西)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC互补,则弦BC 的长为( )A. 3 3B. 4 3C. 5 3D. 6 35. (2016毕节)如图,点A 、B 、C 在⊙O 上,∠A =36°,∠C =28°,则∠B =( )A. 100°B. 72°C. 64°D. 36°第5题图 第6题图6. (2016聊城)如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°7. (2016南宁)如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( )A. 140°B. 70° C .60° D. 40°第7题图 第8题图8. (2016泰安)如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O于点F ,则∠BAF 等于( )A. 12.5°B. 15°C. 20°D. 22.5°9. (2016达州)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A. 13B. 2 2C. 24D. 223第9题图 第10题图10. (2016杭州)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )A. DE =EBB. 2DE =EBC. 3DE =DOD. DE =OB11. (2016黄冈)如图,⊙O 是△ABC 的外接圆,∠AOB =70°,AB =AC ,则∠ABC =________.第11题图 第12题图12. (2016娄底)如图,四边形ABCD 为⊙O 的内接四边形,已知∠C =∠D ,则AB 与CD 的位置关系是________.13. (2016贵阳)如图,已知⊙O 的半径为6 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,则tan ∠OPA 的值是________.第13题图 第14题图14. (2016长春)如图,在⊙O 中,AB 是弦,C 是AB ︵上一点,若∠OAB =25°,∠OCA =40°,则∠BOC的大小为________度.15. (2016永州)如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB =40°,直径CD ∥AB ,连接AC ,则∠BAC =________度.第15题图 第16题图16. (2016南京二模)如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB =4,则AD 的长为________.17. (2016宁夏)已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED .若ED =EC .(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.第17题图满分冲关1. (2016泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.38 B. 34 C. 24 D. 282. (2016安徽)如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC .则线段CP 长的最小值为( )A. 32B. 2C. 81313D. 121313第2题图 第3题图3. (2016海南)如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,直径DE ⊥AC 于点P .若点D 在优弧ABC︵上,AB =8,BC =3,则DP =________.4. (2016威海)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为____________.第4题图 第5题图5. (2016雅安)如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连OD 交BE 于点M ,且MD =2,则BE 长为________.6. (2016株洲)已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过D 点的直线交AC 于E 点,交AB 于F 点,且△AEF 为等边三角形.(1)求证:△DFB 是等腰三角形;(2)若DA =7AF ,求证CF ⊥AB .第6题图答案基础过关1. C 【解析】如解图,连接CO ,∵AB ︵=AC ︵,∴∠AOC =∠AOB =40°,∴∠ADC =12∠AOC =12×40°=20°.第1题解图2. D 【解析】∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =60°,∴∠BAC =90°-∠ABC =90°-60°=30°.3. C 【解析】∵∠C =∠AMD -∠A =30°,又∵∠C 与∠B 为同弧所对的圆周角,∴∠B =∠C =30°.4. B 【解析】如解图,延长CO 交⊙O 于点A ′,连接A ′B .设∠BAC =α,则∠BOC =2∠BAC =2α,∵∠BAC +∠BOC =180°,∴α+2α=180°,∴α=60°.又∵∠BAC 和∠BA ′C 都为BC ︵所对的圆周角,∴∠BAC =∠BA ′C =60°.∵CA ′为直径,故∠A ′BC =90°,则在Rt △A ′BC 中,由勾股定理得:BC =A ′C ·sin∠BA ′C =2×4×32=4 3. 第4题解图5. C 【解析】如解图,设OB 与AC 的交点为E ,∵∠A =36°,∴∠O =72°,∴∠AEB =∠OEC =180°-72°-28°=80°,∴∠B =180°-80°-36°=64°.第5题解图6. B 【解析】∵四边形ABCD 是⊙O 的内接四边形,∠ABC =105°,∴∠ADC =75°,∵DF BC ,∴∠DCF =∠BAC =25°,∴∠E =∠ADC -∠DCF =50°.7. B 【解析】由题知,∠DCE =40°,在四边形CDOE 中,∠CDO =∠CEO =90°, ∴∠DOE =360°-90°-90°-40°=140°,根据圆周角定理,得∠P =12∠AOB =12×140°=70°.8. B 【解析】如解图,∵四边形ABCO 是平行四边形,OA =OC ,∴四边形ABCO 是菱形,连接OB ,则△OBC 和△OAB 是等边三角形,∴∠COB =∠AOB =60°,∴∠AOC =120°,∵OF ⊥OC ,∴∠AOF =30°,∴∠BOF =∠AOB -∠AOF =30°,根据圆周角定理得:∠BAF =12∠BOF =15°.第8题解图 第9题解图9. C 【解析】如解图,设⊙A 与x 轴的另一个交点为D ,连接CD ,则∠OBC =∠ODC ,∴tan ∠OBC=tan ∠ODC =OC OD =2CD 2-OC 2=262-22=24. 10. D 【解析】如解图,连接OE ,则∠OBE =∠OEB ,∵∠AOB =∠OBE +∠ADB , ∠AOB =3∠ADB ,∴∠OBE = 2∠ADB ,∴∠OEB =2∠ADB ,∵∠OEB =∠D +∠DOE ,∴∠D =∠DOE ,∴DE =OB ,D 选项正确;若EB =OE =OB ,即△OBE 是等边三角形时,DE =EB 才成立,∴A 选项错误;若∠BOE =90°,即△OBE 是等腰直角三角形时,BE =2OE ,则2DE =EB 才成立,所以B 选项错误;若OD =3OE =3OB ,则3DE =DO 才成立,∴C 选项错误,故选D.第10题解图11. 35° 【解析】先根据“同弧所对圆周角是圆心角的一半”得∠BCA =12∠AOB ,又∵AB =AC ,∴∠ABC =∠BCA =12∠AOB =35°.12. 平行 【解析】∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°.∵∠D =∠C ,∴∠A+∠D =180°.∴AB ∥CD .13.53【解析】如解图,连接OB ,过点O 作OM ⊥AB 于点M , ∵OA =OB =6 cm ,OM ⊥AB , ∴在等腰△OAB 中,BM =AB 2=12×8=4 cm.∴在Rt △BOM 中,OM =62-42=2 5 cm.PM =BM +BP =6 cm ,∴在Rt △OPM 中,tan ∠OPA =OM PM =256=53.第13题解图14. 30 【解析】∵OA =OB =OC ,∴∠B =∠OAB =25°,∠OAC =∠OCA =40°,∴∠AOB =180°-2×25°=130°,∠AOC =180°-2×40°=100°,∴∠BOC =∠AOB -∠AOC =130°-100°=30°.15. 35 【解析】∵OA =OB ,∴∠OAB =∠B ,∵∠AOB =40°,∴∠B =70°,∵CO ∥AB ,∴∠B =∠COB =70°,∴∠BAC =12∠BOC =35°.16. 6 【解析】如解图,连接OB ,∵四边形ABCD 是矩形,∴AB =CD =4,∠BAO =∠CDO =90°,∵OB =5,∴AO =52-42=3,同理可得:DO =3,∴AD =3+3=6.第16题解图17. (1)证明:∵ED =EC ,∴∠EDC =∠C ,∵四边形ABED 是⊙O 的内接四边形,∴∠B +∠EDA =180°,又∵∠EDA +∠EDC =180°,∴∠EDC =∠B ,∴∠B =∠C ,∴AB =AC ;(2)解:如解图,连接AE ,第17题解图∵AB 为直径,∴AE ⊥BC ,由(1)知AB =AC ,∴BE =CE =12BC =3,∵∠B =∠C ,∠C =∠CDE ,∴∠B =∠CDE ,∴△CED ∽△CAB ,∴CE CA =CD CB, 即CE ·CB =CD ·CA ,又∵AC =AB =4,∴3·23=4CD ,∴CD =32.满分冲关1. D 【解析】半径为1的圆内接正三角形的边心距为12,内接正方形的边心距为22,内接正六边形的边心距为32,由12、22和32为边组成三角形时,由(12)2+(22)2=(32)2可得该三角形是直角三角形,所以该三角形的面积为12×22×12=28.2. B 【解析】如解图,∵∠PAB =∠PBC ,∠ABC =90°,∴∠BAP +∠PBA =90°,∴∠APB =90°,∴点P 始终在以AB 的中点O 为圆心,OA =OB =OP =12AB =3为半径的圆上,由解图知,只有当点P在OC 与⊙O 的交点处时, PC 的长最小,即为P ′C .在Rt △OBC 中,OC =OB 2+BC 2=32+42=5,∴P ′C =OC -OP ′=5-3=2,∴线段CP 长的最小值为2.第2题解图3. 5.5 【解析】∵AB 和DE 都是⊙O 的直径,∴OA =OB =OD =4,∠C =90°,又∵DE ⊥AC ,∴OP∥BC ,∴△AOP ∽△ABC ,∴OP BC =AO AB ,即OP 3=48,∴OP =1.5.∴DP =OP +OD =5.5. 4. 2 6 【解析】如解图,连接AC 、OF ,正方形ABCD 的边长为4,AC =42+42=42,即直径是42,∴半径OF =2 2.过点O 作OM ⊥EF ,∵△FGE 是等边三角形,∴FG =FE ,又∵OF 过圆心,∴OF 平分∠GFE ,∴∠OFM =12∠GFE =12×60°=30°, ∴OM =12OF =12×22=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴MF =OF 2-OM 2=(22)2-(2)2=6,∴EF =2MF=26,∴正三角形EFG 的边长是2 6.第4题解图 第5题解图5. 8 【解析】连接AD ,如解图,∵AB 是⊙O 的直径,∴AD ⊥BC ,∵AB =AC ,∴BD =CD ,∴OD 是△ABC 的中位线,∴DO =12AC ,点M 是BE 的中点.∴MD 是△BCE 的中位线,∴CE =2MD =4,∵AC =10,∴AE =6,∵AB 是⊙O 的直径,∴∠AEB =90°,在Rt △ABE 中,由勾股定理得BE =AB 2-AE 2=102-62=8. 6. (1)证明:∵AB 为直径,∴∠ACB =90°,∵△AEF 是等边三角形,∴∠EAF =∠EFA =60°,∴∠ABC =30°,∵∠AEF =∠CED =60°,AC ⊥DB ,∴∠FDB =30°,∴∠FBD =∠FDB ,∴FB =FD ,∴△DFB 是等腰三角形;(2)解:设AF =a ,则AD =7a ,连接OC ,如解图,则△AOC 是等边三角形,第6题解图由题意得,BF =2-a =DF ,∴DE =2-a -a =2-2a ,CE =1-a ,在Rt △ADC 中,DC 在△DCE 中,tan30°=CEDC ==33, 解得,a =-2(舍去)或a =12, 在△AOC 中,OA =1,∴AF =12=12OA , 则根据等边三角形的性质可得CF ⊥OA ,即CF ⊥AB .。