过程设备强度计算软件 SW6 在工程设计中的应用
- 格式:pdf
- 大小:1.68 MB
- 文档页数:28
CHEMICAL ENGINEERING DESIGN化工设计2012,22(5)化工设备设计计算过程中应注意的问题邵拥军*天津市普莱特科技发展有限公司天津300384逯凯霄华北制药集团爱诺有限公司石家庄052165张文林河北工业大学化工学院天津300130摘要总结应用SW6-1998软件进行设备计算过程中一些容易混淆的问题,避免由于设计人员计算失误而发生安全事故。
关键词化工设备SW6-1998计算软件标准规范在石油化工装置设备进行结构设计之前,首先要应用SW6-1998计算软件对设备各受压元件进行强度计算。
为了保证计算的准确性,必须透彻理解SW6-1998软件计算的理论基础,但在实际工作中,一些设计者常常会忽视标准规范中的某些说明而导致取值错误,直接影响了设备的安全可靠性。
下面是几种在设计计算中常被忽视或误解的问题,提醒设计者在设计工作中引起重视。
1塔器计算中的最大管线外径和扶梯与最大管线的相对位置SW6-1998软件中的最大管线外径是指塔器顶部封头上接管的最大外径,一般就是气体出口管。
出气管直接影响塔体受风直径的大小,而不是塔体上最大接管直径。
有些设计人员对于计算公式不了解,所以在输入数据时输入的是整个设备的最大接管外径(通常都是人孔、卸料孔等)或者输入人孔筒节的外径。
所以要想正确输入这些数据,首先应了解计算公式中每个符号的内在含义。
文献1中介绍,当计算各计算段的顺风向水平风力时,需要先确定各计算段的有效直径D,塔顶管线一般都会有接管从塔顶部下来,当笼式扶梯与从塔顶下来的管线布置成180ʎ时,迎风面的有效直径D最大,顺风向水平风力也就最大,此时的计算最安全。
详细的计算公式可参见钢制塔式容器(JB/T4710-2005)中的式(8-17) (8-20)。
扶梯与最大管线的相对位置计算软件中有90ʎ和180ʎ两个选项,计算时可根据工艺配管实际情况进行选择。
通常在设备第一次计算时,笼式扶梯与塔顶管线的相对位置尚未确定,此时正确的做法应该是按扶梯与最大管线布置成180ʎ计算比较安全。
SW6-2011过程设备强度计算软件用户手册热心网友整理目录一、概述 (1)二、运行环境、安装及启动 (4)三、材料性能及其数据库 (10)四、四个基本受压元件 (16)五、卧式容器 (42)六、立式容器 (48)七、固定管板换热器 (54)八、浮头式及填料函式换热器 (80)九、U形管式换热器 (84)十、高压设备 (88)十一、塔设备 (96)十二、球形储罐 (107)十三、非圆形容器 (113)十四、零部件 (120)十五、非对称双鞍座及多鞍座卧式容器 (148)附录A SW6-2011安装说明 (161)附录B SW6-2011常见问题说明 (169)一、概述1.1 前言20世纪80年代,全国化工设备设计技术中心站(以下简称“中心站”)组织部分高等院校教师及工程技术人员开发,并在1985年正式推出了能在SHARP PC1500计算机上使用的国内第一套较为系统的承压容器常规设计计算程序。
该程序由于计算内容丰富、计算结果正确快捷等优势,很快得到了行业认可。
随着计算机硬件设备及应用技术的不断更新,20世纪90年代初,中心站发行的“IBM-PC 兼容机压力容器设计计算软件包”(简称为“SW2”),其在开发之处就注意了界面的用户友好性,发行前又通过了全国压力容器标准化技术委员会、化学工业部的审查、鉴定,获得了相应的审批号,成为行业中正式推荐使用的计算机应用程序。
该程序经过多次升级换版,分别增加了新版标准、规范的设计计算内容,以及能分别生成中、英文“设计计算书”的功能,适应了改革开放、与国际接轨、合作设计的时代潮流,成为行业中应用最广、拥有用户最多的软件。
该技术成果因此多次得到国家有关部委的奖励。
随着GB150、GB151等一系列与承压容器、化工设备设计计算相关的国家标准、行业标准全面更新和颁布,以及计算机技术的不断发展和软件应用平台的转变,在1998年10月下旬中心站推出了以windows为操作平台的“过程设备强度计算软件包”(简称为“SW6-1998”)。
专业应用软件综合训练专业:过程装备与控制工程班级:学号:姓名:指导教师:时间: 2012年 12 月日石油化工学院目录1. 软件综合训练的目的 (1)2. 专业软件介 (1)2.1 SW6-1998软件介绍 (1)2.1.1SW6-1998软件综合练习内容 (1)2.2 ANSYS软件介绍 (1)2.2.1ANSYS软件综合练习内容 (2)3. 专业软件上机作业 (3)3.1 SW6软件上机作业 (3)3.2、ANSYS软件具体训练项目 (7)心得体会 (11)附录: (11)1.软件综合训练的目的1. 了解并掌握软件SW6-1998,能够熟练运用并按照指导书要求完成相关练习;2. 了解并掌握软件ANSYS,能够熟练运用并按照指导书要求完成相关练习;3. 通过对专业软件SW6-1998,ANSYS的训练,能够更加深刻了解对化工容器方面的相关软件,从而提高了专业软件的应用能力。
2.专业软件介2.1 SW6-1998软件介绍多年来,SW6作为一个工程设计计算软件在化工设备设计领域为广大工程师提供了巨大的帮助,已成为设备设计人员进行设备设计,方案比较,在役设备强度评定等工作中所不可缺少的重要工具。
SW6-1998软件包是全国化工设备设计技术中心站研发,发布的权威压力容器设计软件!SW6-1998软件包以 GB150-1998 等标准为计算模型,以Windows为操作平台。
包括有十个设备计算程序(分别为卧式容器、塔器、固定管板换热器、浮头式换热器、填函式换热器、U形管换热器、带夹套立式容器、球形储罐、高压容器及非圆形容器等),以及零部件计算程序和用户材料数据库管理程序。
2.1.1SW6-1998软件综合练习内容1. 设计内压圆筒筒体壁厚;2. 设计立罐罐体壁厚;3.设计反应釜釜体及釜体封头厚度;4. 设计减压塔塔体的厚度及加强圈尺寸;5. 对某容器进行补强圈设计;6. 双鞍座支撑的内压容器设计;7. 等截面等壁厚塔的设计;8. 对某矩形容器进行厚度计算。
sw6计算膨胀节波纹管材料形态退火态成形态sw6计算是一种针对膨胀节波纹管材料形态的退火态和成形态的计算方法。
通过对这种计算方法进行全面评估和深入探讨,我们能够更好地理解这一主题。
在本文中,我将从简到繁地介绍sw6计算的原理和应用,并分享个人观点和理解。
一、sw6计算的基本原理sw6计算是一种基于膨胀节波纹管材料形态的退火态和成形态的计算方法。
膨胀节波纹管是一种常用于工业设备的连通管道,其材料形态的退火态和成形态对于其性能和使用寿命具有重要影响。
sw6计算通过考虑材料的退火态和成形态,以及其与温度和压力的关系,能够准确评估膨胀节波纹管的使用性能,为设计和使用提供依据。
二、sw6计算的应用领域sw6计算在许多领域都有着广泛的应用。
以石油化工行业为例,膨胀节波纹管常被用于储罐和管道的连接处,用于承受温度变化和压力波动带来的应力。
通过sw6计算,我们可以评估膨胀节波纹管的材料形态在温度和压力变化下的应力分布,从而确定其安全可靠的使用范围。
类似地,sw6计算在航空航天、核能等领域也有着重要的应用,为相关设备的设计和使用提供支持。
三、sw6计算的优势和不足对于sw6计算方法,其优点在于在考虑膨胀节波纹管材料形态的退火态和成形态的基础上,综合考虑了温度和压力两个重要因素。
这样能够更全面地评估材料形态的稳定性和性能,在决策和设计过程中提供更准确的参考。
然而,sw6计算也面临着一些挑战。
计算过程相对复杂,需要综合考虑多个因素的影响,对计算人员的经验和专业知识有一定要求。
计算结果的准确性和可靠性受到材料参数和输入数据的影响,需要进行合理的假设和验证。
四、个人观点和理解在我看来,sw6计算是一种非常有价值的计算方法。
通过综合考虑膨胀节波纹管材料形态的退火态和成形态,以及其与温度和压力的关系,能够更全面地评估膨胀节波纹管的使用性能。
这对于工业设备的设计和使用具有重要意义,能够提高设备的安全性和可靠性,并延长其使用寿命。
S W6应用体会使用sw6—2011计算压力容器开孔补强的几个问题作者:司文华来源:《山东工业技术》2013年第10期【摘要】开孔补强是压力容器设计中必不可少的一部分,在压力容器结构设计前需要使用sw6-2011过程设备强度计算软件进行强度计算。
为保证计算的准确性,必须透彻理解sw6-2011软件计算的理论基础,但在实际工作中,一些设计者常常会忽视标准规范中的某些说明或者对计算理论的理解不够透彻而导致取值错误,直接影响了设备的安全可靠性。
本文列举了几个在日常工作中经常遇到的在使用sw6-2011计算压力容器开孔补强时需要注意的问题及通常的处理办法,提醒设计者在设计工作中引起足够重视。
【关键词】开孔补强;压力容器;sw6-20110 引言为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。
容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。
虽然标准和规范对设计和计算都作了较为详细的规定,但在使用sw6-2011过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。
1.补强方法及适用范围1.1.计算时应注意的问题在使用sw6-2011计算开孔补强之前要先判断接管的直径和壁厚是否满足gb150.3-2011中6.1.3不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。
还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区b=2d范围内还有其他开孔,形成孔桥的,则应按孔桥处理。
在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线垂直距离计算是不正确的。
过程设备强度计算软件包SW6-98介绍
秦叔经
【期刊名称】《化工设备设计》
【年(卷),期】1998(35)4
【摘要】多年以来,SW6作为一个工程设计计算软件在化工设备设计领域为广大工程师提供了巨大的帮助,已成为设备设计人员进行设备设计、方案比较、在役设备强度评定等工作所不可缺少的重要工具。
随着国标GB150、GB151及其它相关标准的更新改版,SW6的计算内容也必须进行更新。
这次新推出的过程设备强度计算软件包SW6-98即是在新版GB150、GB151的基础上。
【总页数】2页(P50-51)
【关键词】化工设备;强度;应用程序;SW6-98;软件
【作者】秦叔经
【作者单位】全国化工设备设计技术中心站
【正文语种】中文
【中图分类】TQ050.2;TP317
【相关文献】
1.俄罗斯《核动力装置设备和管道强度计算规范》介绍与评述 [J], 吴绍增;何勇玲
2.通信系统的计算机仿真:介绍一种通用的通信系统计算机仿真软件包 [J], 俞晓阳
3.过程设备强度计算软件包SW6—98介绍 [J], 秦叔经
4.“化工设备强度计算软件包SICTPV1”通过省级科技成果鉴定 [J],
5.欢迎购买SW6-1998《过程设备计算软件包》 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
s w6过程设备强度计算书(总18页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除钢制卧式容器计算单位中航一集团航空动力控制系统研究所计算条件简图设计压力p0.1241MPa设计温度t50℃筒体材料名称Q235-C封头材料名称Q235-C封头型式椭圆形筒体内直径 Di2200mm筒体长度L4219.7mm筒体名义厚度δn10mm 支座垫板名义厚度δrn10mm 筒体厚度附加量C2mm 腐蚀裕量C22mm 筒体焊接接头系数Φ1封头名义厚度δhn10mm 封头厚度附加量 C h 2mm 鞍座材料名称Q235-B鞍座宽度 b290mm 鞍座包角θ120°支座形心至封头切线距离A500mm 鞍座高度H250mm 地震烈度七(0.1g)度计算所依据的标准GB 150.3-2011计算条件筒体简图计算压力 P c 0.16 MPa设计温度 t 50.00 ︒ C 内径 D i 2200.00mm 材料Q235-C ( 板材 ) 试验温度许用应力 [σ]123.00 MPa 设计温度许用应力 [σ]t121.88 MPa 试验温度下屈服点 σs 235.00 MPa 钢板负偏差 C 1 0.00 mm 腐蚀裕量 C 2 2.00 mm 焊接接头系数 φ1.00厚度及重量计算计算厚度 δ = P D P c it c 2[]σφ- = 1.48 mm 有效厚度 δe =δn - C 1- C 2= 8.00 mm 名义厚度 δn = 10.00 mm 重量 2299.74Kg压力试验时应力校核压力试验类型 液压试验试验压力值 P T = 1.25P [][]σσt = 0.2045 (或由用户输入)MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 211.50MPa试验压力下 圆筒的应力 σT = p D T i e e .().+δδφ2 = 28.22 MPa校核条件 σT ≤ [σ]T 校核结果合格压力及应力计算最大允许工作压力 [P w ]= 2δσφδe t i e []()D += 0.88315MPa 设计温度下计算应力 σt= P D c i e e()+δδ2= 22.58 MPa [σ]tφ121.88 MPa校核条件 [σ]tφ ≥σt结论合格计算所依据的标准GB 150.3-2011计算条件椭圆封头简图计算压力P c 0.16MPa设计温度 t 50.00︒ C内径D i 2200.00mm曲面深度h i 550.00mm材料 Q235-C (板材)设计温度许用应力[σ]t 121.88MPa试验温度许用应力[σ] 123.00MPa钢板负偏差C1 0.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验试验压力值P T = 1.25P ct][][σσ= 0.2045 (或由用户输入)MPa压力试验允许通过的应力[σ]t[σ]T≤ 0.90 σs = 211.50MPa试验压力下封头的应力σT =φδδ.2)5.0.(eeiTKDp+= 28.17MPa校核条件σT≤[σ]T校核结果合格厚度及重量计算形状系数 K =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+2ii2261hD = 1.0000计算厚度δh =KP DPc itc205[].σφ- = 1.48mm有效厚度δeh =δnh - C1- C2= 8.00mm 最小厚度δmin = 3.30mm右封头计算计算单位中航一集团航空动力控制系统研究所计算所依据的标准GB 150.3-2011计算条件椭圆封头简图计算压力P c 0.16MPa设计温度 t 50.00︒ C内径D i 2200.00mm曲面深度h i 550.00mm材料 Q235-C (板材)设计温度许用应力[σ]t 121.88MPa试验温度许用应力[σ] 123.00MPa钢板负偏差C1 0.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验试验压力值P T = 1.25P ct][][σσ= 0.2045 (或由用户输入)MPa压力试验允许通过的应力[σ]t[σ]T≤ 0.90 σs = 211.50MPa试验压力下封头的应力σT =φδδ.2)5.0.(eeiTKDp+= 28.17MPa校核条件σT≤[σ]T校核结果合格厚度及重量计算形状系数 K =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+2ii2261hD = 1.0000计算厚度δh =KP DPc itc205[].σφ- = 1.48mm有效厚度δeh =δnh - C1- C2= 8.00mm 最小厚度δmin = 3.30mm卧式容器(双鞍座)计算单位中航一集团航空动力控制系统研究所计算条件简图计算压力p C0.1241MPa设计温度t50℃圆筒材料Q235-C鞍座材料Q235-B圆筒材料常温许用应力 [σ]123MPa圆筒材料设计温度下许用应力[σ]t121.875MPa圆筒材料常温屈服点σ235MPa鞍座材料许用应力 [σ]sa147MPa 工作时物料密度Oγ1830kg/m3液压试验介质密度γT1000kg/m3圆筒内直径D i2200mm 圆筒名义厚度δn10mm 圆筒厚度附加量C2mm 圆筒焊接接头系数φ1δ10mm 封头名义厚度hn封头厚度附加量 C h2mm 两封头切线间距离L4299.7mm 鞍座垫板名义厚度δrn10mm 鞍座垫板有效厚度δre10mm 鞍座轴向宽度 b290mm 鞍座包角θ120°鞍座底板中心至封头切线距离A500mm 封头曲面高度h i550mm 试验压力p T0.2045MPa。