塔设备强度设计计算
- 格式:pptx
- 大小:1.36 MB
- 文档页数:46
㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。
它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。
在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。
表1中所示为几个典型的实例。
表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。
塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。
因此对设备的研究一直是工程界所关注的热点。
随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。
为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。
①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。
为了便于研究和比较,人们从不同的角度对塔设备进行分类。
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔设备设计课程设计一、教学目标本课程的教学目标是使学生掌握塔设备设计的基本原理和方法,能够运用所学知识进行简单的塔设备设计。
具体来说,知识目标包括:掌握塔设备的基本结构和工作原理;了解塔设备设计的基本理论和方法;熟悉塔设备的常用材料和计算方法。
技能目标包括:能够运用CAD等软件进行塔设备的绘图;能够进行塔设备的选型和计算;能够独立完成简单的塔设备设计。
情感态度价值观目标包括:培养学生的创新意识和团队合作精神;增强学生对工程实践的认知和兴趣;培养学生对塔设备设计和制造的热爱和敬业精神。
二、教学内容本课程的教学内容主要包括塔设备的基本原理、塔设备的结构设计、塔设备的强度计算、塔设备的材料选择、塔设备的制造工艺等。
具体来说,教学大纲如下:1.塔设备的基本原理:包括塔设备的定义、分类和应用;塔设备的工作原理和性能指标。
2.塔设备的结构设计:包括塔设备的塔体、塔板、塔内件等的设计方法和步骤。
3.塔设备的强度计算:包括塔设备的压力容器强度计算、塔板的强度计算等。
4.塔设备的材料选择:包括塔设备的常用材料、材料的性能和选择原则。
5.塔设备的制造工艺:包括塔设备的制造流程、制造技术和质量控制。
三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、案例分析法、实验法等。
具体来说:1.讲授法:通过教师的讲解,使学生掌握塔设备设计的基本原理和方法。
2.案例分析法:通过分析实际案例,使学生了解塔设备设计的具体应用和注意事项。
3.实验法:通过实验操作,使学生掌握塔设备的制造工艺和质量控制。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的塔设备设计教材作为主要教学资源。
2.参考书:提供相关的塔设备设计参考书籍,供学生自主学习。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,丰富教学手段。
4.实验设备:准备齐全的塔设备实验设备,为学生提供实践操作的机会。
论述内压塔塔体强度设计计算思路内压塔是一种用于储存压力容器中的气体或液体的设备。
在设计内压塔时,塔体的强度是一个重要的考虑因素。
塔体的强度设计计算思路涉及到确定塔体的结构类型、选择材料、计算荷载和应力分析等方面。
首先,确定塔体的结构类型是设计计算的基础。
常见的内压塔结构类型包括圆柱形、球形、圆锥形和矩形等。
根据具体的使用要求和场地条件,选择适合的结构类型。
其次,选择合适的材料对于塔体的强度设计非常重要。
常用的材料包括碳钢、不锈钢和铝合金等。
根据塔体的使用环境和具体要求,选择材料的抗压强度、抗蠕变性能和耐腐蚀性能等指标,确保材料满足设计要求。
接下来,计算内压塔的荷载是进行强度设计的关键步骤。
塔体的内部压力是主要的荷载,通常以设计工作压力为准。
此外,还需要考虑塔体的温度、自重、地震荷载和风荷载等,以获取完整的荷载信息。
然后,进行应力分析是设计计算的核心内容。
通过应力分析,可以评估塔体的强度和稳定性,确保其能够承受设计荷载,并保证不会出现塑性变形、失稳或破坏等情况。
应力分析中涉及到的主要方法包括静力学分析、有限元分析和材料的损伤塑性理论等。
在进行应力分析时,需要考虑不同部位的应力集中情况。
塔体的连接部位、转角处和受力集中区域等容易出现应力集中的部位需要进行特殊的设计和计算。
最后,根据应力分析的结果,选择适当的安全系数进行设计计算。
安全系数是设计中的一个重要指标,它考虑了不确定性因素和材料的可靠性,确保塔体在使用过程中的安全性和可靠性。
除了上述提到的主要计算思路之外,塔体的设计还需要考虑其他因素,如焊接连接的设计、防震设计和防腐设计等。
这些设计因素都是为了保证内压塔的强度和安全性。
综上所述,内压塔塔体强度设计计算思路包括确定结构类型、选择材料、计算荷载、应力分析和选择安全系数等。
通过合理的设计计算,可以确保塔体在使用过程中具有足够的强度和稳定性,提高其安全性和可靠性。
带导向支撑塔设备强度、挠度的计算邢玲谢腾腾解德甲于啸孙冬来(上海蓝滨石化设备有限责任公司)摘要采用公式解析法和有限元建立梁模型的方法分别计算塔设备在风载荷、地震载荷作用下的弯矩和挠度。
对比发现:公式解析法简单、易操作,但仅适用于塔体无变径、等厚且仅有一处支撑的模型;有限元软件建立梁模型的方法能够更加准确地模拟塔设备的受力情况,得到更加精确的结果。
关键词塔设备导向支撑公式解析法梁模型中图分类号TQ053.5文献标识码A文章编号0254-6094(2020)04-0526-04在化工、炼油、医药、食品及环境保护等领域,塔设备是一种重要的单元设备,其作用是实现气(汽)-液相或液-液相之间的充分接触,从而达到相间传质传热的目的%据统计,塔设备无论是投资费用还是所消耗的钢材重量,在整个过程设备中所占的比例都非常高&以年产120万吨催 化裂化装置为例,塔设备重量占比高达48.9%⑴。
一方面,装置的大型化有着较高的效益,例如在乙烯生产中,随着装置的增大生产成本大幅降低,年产100万吨与年产50万吨乙烯装置相比,生产成本可降低约25%;年产150万吨与年产50万吨乙烯装置相比,生产成本可降低约40%;年产150万吨与年产100万吨乙烯装置相比,生产成本可降低约15%'2(。
另一方面,随着装置的大型化,出现了很多直径较小而高度很高(即大长径比$的塔设备,这些塔设备在地震载荷或者风载荷的作用下会产生较大的塔底弯矩和塔顶挠度%为满足塔的强度和挠度要求,在工程上通常采用两种方法:增加壁厚或者在塔体某个高度上加设导向支撑&由于增加壁厚会使成本增加较多,出于经济性考虑,通常采用导向支撑结构来分担风载荷和地震载荷,并且该做法在工程上得到了广泛应用。
加设导向支撑会改变塔体的支承方式,使塔内各截面弯矩重新分布,在不增加塔体壁厚的情况下大幅降低最大弯矩和塔顶挠度[3]。
但是,加设导向支撑使得塔设备的计算模型与标准中的模型不一致,其设计计算是个难点&目前对于带导向支撑塔设备的计算方法有⑷:采用有限元对塔设备整体分析,采用公式解析法计算弯矩和挠度(简化算法),借助软件采用梁模型计算弯矩和挠度(详细算法$&由于第1种计算方法对设计人员要求高、耗时长,因此在工程中的应用主要以后两种方法为主&笔者针对具体案例,通过对后两种计算方法的对比,找出两种计算方法的优缺点,以供工程技术人员参考。
(一) 已知条件:(1) 塔体直径i D =800mm ,塔高H=29.475m 。
(2) 设计压力p=2.3Mpa 。
(3) 设计温度t=19.25O C ,(4) 介质为有机烃类。
(5) 腐蚀裕量2C =4mm 。
(6) 安装在济南地区(为简化计算,不考虑地震影响)。
(二) 设计要求(1) 确定塔体和封头的厚度。
(2) 确定裙座以及地脚螺栓尺寸。
(三) 设计方法步骤A 材料选择设计压力p=2.3Mpa,属于中压分离设备,三类容器,介质腐蚀性不提特殊要求,设计温度19.25O C ,考虑选取Q235-C 作为塔体材料。
B 筒体、封头壁厚确定先按内压容器设计厚度,然后按自重、液重等引起的正应力及风载荷引起的弯曲应力进行强度和稳定性验算。
a 筒体厚度计算按强度条件,筒体所需厚度d δ=[]22it pD C pσ+Φ-= 2.3800420.85125 2.3⨯+⨯⨯-=12.75 mm 式中[]t t σ——Q235-C 在19.25O C 时的许用应力。
查《化工设备机械基础》为125MpaΦ——塔体焊缝为双面对接焊,局部无损检测,Φ=0.85。
2C ——腐蚀裕量,取值4mm 。
按刚度要求,筒体所需最小厚度min δ=22800 1.610001000i D mm ⨯==。
且min δ不小于3mm 。
故按刚度条件,筒体厚度仅需3mm 。
考虑到此塔较高,风载荷较大,而塔的内径不太大,故应适当增加厚度,现假设塔体厚度 n δ=20mm ,则假设的塔体有效厚度e δ=12n C C δ--=20-4.8=15.2mm式中1C ——钢板厚度负偏差,估计筒体厚度在8~25mm 范围内,查《化工设备机械基础》的1C =0.8mm 。
b 封头壁厚计算采用标准椭圆形封头,则[]2 2.3800421250.850.5 2.320.5id t pD C p δσ⨯=+=+⨯⨯-⨯Φ- =12.71mm 。
为便于焊接,取封头与筒体等厚,即n δ=20mm 。
塔设备强度设计计算概述1. 引言塔设备强度设计计算是在塔式结构工程中十分重要的环节。
塔式结构广泛应用于电力、通信、航空等领域,在保障设备可靠性和安全性方面起着至关重要的作用。
本文将概述塔设备强度设计计算的基本原理和方法。
2. 设计目标塔设备的强度设计主要目标是确保设备在外部负荷作用下不发生破坏或失效。
一般而言,塔设备的设计目标包括以下几个方面:•承受外部荷载的能力:塔设备需要能够承受各种外部荷载,如风荷载、重力荷载、地震荷载等。
设计中需要考虑这些荷载的大小和方向,以确定设备的主要强度参数。
•抗震能力:特别是在地震频发地区,塔设备需要具备足够的抗震能力,以保护设备的安全运行。
•稳定性:塔设备需要保持稳定,不发生失稳现象。
在设计中需要考虑设备的结构刚度和形状参数。
3. 强度计算方法塔设备的强度计算通常基于力学原理和结构力学方法,常用的计算方法包括以下几种:•静力计算方法:根据外部荷载的大小和方向,通过应力分析和形变计算,确定设备的强度参数。
这种方法一般适用于静态荷载情况下的强度计算。
•动力计算方法:根据外部荷载的动态特性,通过振动分析和响应计算,确定设备的强度参数。
这种方法适用于考虑塔设备在地震或风荷载下的强度计算。
•有限元方法:利用有限元分析软件,在计算机上建立塔设备的有限元模型,通过数值求解得到设备的应力分布和形变情况。
这种方法适用于复杂的塔式结构和荷载情况。
4. 设计要点在塔设备强度设计计算中,需要注意以下几个要点:•荷载分析:对于各种可能的外部荷载,需要进行详细的分析和计算,确定荷载的大小和方向。
•强度参数选取:根据实际情况和设计要求,选取适当的强度参数,并结合设计规范进行计算。
•材料选择:塔设备所使用的材料需要具备足够的强度和韧性,能够满足设计要求。
•施工质量控制:在塔设备的施工过程中,需要严格控制质量,确保各个构件和连接部位的强度和稳定性。
5. 设计规范塔设备的强度计算需要遵循相应的设计规范,以确保设计的合理性和安全性。