上海初三数学一模压轴题汇总(各区23-25题)
- 格式:docx
- 大小:1.32 MB
- 文档页数:32
压轴第25题精选30道-几何综合问题(教师版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒【答案】C【分析】 设A 灯旋转的时间为t 秒,求出t 的取值范围为016t <≤,再分①06t <≤,①612t <≤和①1216t <≤三种情况,先分别求出MAM '∠和PBP '∠的度数,再根据平行线的性质可得MAM PBP ''∠=∠,由此建立方程,解方程即可得.【详解】解:设A 灯旋转的时间为t 秒,A 灯光束第一次到达AN 所需时间为180630︒=︒秒,B 灯光束第一次到达BQ 所需时间为1801810︒=︒秒, B 灯先转动2秒,A 灯才开始转动,0182t ∴<≤-,即016t <≤,由题意,分以下三种情况:①如图,当06t <≤时,//AM BP '',30,10(2)MAM t PBP t ''∴∠=︒∠=︒+,//,//MN PQ AM BP '',1,1MAM PBP ''∴∠=∠∠=∠,MAM PBP ''∴∠=∠,即3010(2)t t ︒=︒+,解得1t =,符合题设;①如图,当612t <≤时,//AM BP '',18030(6)36030,10(2)MAM t t PBP t ''∴∠=︒-︒-=︒-︒∠=︒+,//,//MN PQ AM BP '',2180,2180MAM PBP ''∴∠+∠=︒∠+∠=︒,MAM PBP ''∴∠=∠,即3603010(2)t t ︒-︒=︒+,解得8.5t =符合题设;①如图,当1216t <≤时,//AM BP '',30(12)30360,10(2)MAM t t PBP t ''∴∠=︒-=︒-︒∠=︒+,同理可得:MAM PBP ''∠=∠,即3036010(2)t t ︒-︒=︒+,解得1916t =>,不符题设,舍去;综上,A 灯旋转的时间为1秒或8.5秒,故选:C .【点睛】本题考查了平行线的性质、一元一次方程的几何应用等知识点,正确求出时间t 的取值范围,并据此分三种情况讨论是解题关键.2.如图,E 在线段BA 的延长线上,①EAD =①D ,①B =①D ,EF①HC ,连FH 交AD 于G ,①FGA 的余角比①DGH 大16°,K 为线段BC 上一点,连CG ,使①CKG =①CGK ,在①AGK内部有射线GM ,GM 平分①FGC ,则下列结论:①AD①BC ;①GK 平分①AGC ;①①E +①EAG +①HCK =180°;①①MGK 的角度为定值且定值为16°,其中正确结论的个数有( )A.4个B.3个C.2个D.1个【答案】B【分析】根据平行线的判定定理得到AD①BC,故①正确;由平行线的性质得到①AGK=①CKG,等量代换得到①AGK=①CGK,求得GK平分①AGC;故①正确;延长EF交AD于P,延长CH交AD于Q,根据平行线的性质和三角形外角的性质得到①E+①EAG+①HCK=180°;故①正确;根据题意列方程得到①FGA=①DGH=37°,设①AGM=α,①MGK=β,得到①AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:①①EAD=①D,①B=①D,①①EAD=①B,①AD①BC,故①正确;①①AGK=①CKG,①①CKG=①CGK,①①AGK=①CGK,①GK平分①AGC;故①正确;延长EF交AD于P,延长CH交AD于Q,①EF①CH,①①EPQ=①CQP,①①EPQ=①E+①EAG,①①CQG=①E+①EAG,①AD①BC,①①HCK+①CQG=180°,①①E+①EAG+①HCK=180°;故①正确;①①FGA的余角比①DGH大16°,①90°-①FGA-①DGH=16°,①①FGA=①DGH,①90°-2①FGA=16°,①①FGA=①DGH=37°,设①AGM=α,①MGK=β,①①AGK=α+β,①GK平分①AGC,①①CGK=①AGK=α+β,①GM平分①FGC,①①FGM =①CGM ,①①FGA +①AGM =①MGK +①CGK ,①37°+α=β+α+β,①β=18.5°,①①MGK =18.5°,故①错误,故选:B .【点睛】本题考查了平行线的判定和性质,角平分线的定义,三角形的外角的性质,正确的识别图形是解题的关键.3.如图,在矩形纸片ABCD 中,6AB =,8BC =.将矩形纸片沿GH 折叠,使点B 与D 重合.有下列语句:①四边形BGDH 是菱形;①74AG =;①7.5GH =;①60BGH ∠=︒.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】 根据折叠的性质及矩形的性质可得BH =DH =GD =BG ,即可判定①正确;若设AG =x ,则BG =DG =8-x ,在Rt ①AGB 中由勾股定理建立方程可求得x ,即AG 的长,因此可判定①;连接BD ,利用菱形的面积相等,可求得GH 的长,从而可判定①;根据对①的判定可确定①ABG 是否为30°即可判定①.【详解】根据折叠的性质得:BH =DH ,BG =GD ,①BHG =①DHG ,①BGH =①DGH①四边形ABCD 是矩形①AD ①BC ,AD =BC =8,①A =90°①①DGH =①BHG①①DGH =①DHG①GD =DH①BH =DH =GD =BG①四边形BGDH 是菱形即①正确设AG =x ,则BG =GD =8-x在Rt ①AGB 中,由勾股定理建立方程得:2226(8)x x +=- 解得:74x = 即AG 的长74故①正确如图,连接BD在Rt ①ABD 中,由勾股定理得:10BD = ①12BD GH GD AB =,GD =AD -AG =725844-= ①12510624GH ⨯=⨯ ①GH =7.5故①正确①BG =GD =254 ①12AG BG ≠ ①①A =90°①①ABG ≠30°即①AGB ≠60°①①BGH =①DGH①①BGH +①DGH ≠120°从而①BGH ≠60°即①不正确故正确的有3个故选:C .【点睛】本题是矩形的折叠问题,有一定的综合性质,考查了矩形的性质,菱形的判定与性质,折叠的性质,勾股定理,解一元一次方程等知识,熟练掌握并灵活运用这些知识是解决本题的前提.4.如图,正方形ABCD 中,P 为CD 边上任意一点,DE①AP 于点E ,点F 在AP 延长线上,且EF =AE ,连结DF 、CF ,①CDF 的平分线DG 交AF 于G ,连结BG .给出以下结论:①DF=DC ;①①DEG 是等腰直角三角形;①①AGB =45°;①DG+BG .所有正确的结论是( )A .①①B .①①①C .①①①D .①①①①【答案】D【分析】 根据等腰三角形三线合一,得到AD =DF ,又根据正方形性质得AD =DC ,从而等量代换得,DF =DC ,即可判断①;设DAF DFA α∠=∠=,则1802ADF α∠=-,由902PDF ADF ADC α∠=∠-∠=-,推得1452FDG PDF α∠=∠=-,进一步得到=45DGE DFA FDG ∠=∠+∠,从而可判断①;在Rt ADE △和Rt ADP △中进行角等量代换,得到DAP EDP ∠=,再由AD DF =和角平分线两个条件,进行角之间的等量代换,结合DE AF ⊥,即可判断①;作BH ①AF ,分别在Rt BHG 和Rt DEG △中,进行边的转换,再根据BAH ADE ≅△△得到DG ,由AH GH AG +=,代入化简即可判断①.【详解】解:①四边形ABCD 是正方形,①AD DC =,90BAD ADC ∠=∠=,DE AF ⊥,EF AE =,①AD DF =,①DF DC =,①①正确;①AD DF =,①DAF DFA ∠=∠,设DAF DFA α∠=∠=,则1802ADF α∠=-,①902PDF ADF ADC α∠=∠-∠=-,①DG平分①CDF,①1452FDG PDFα∠=∠=-,①=45DGE DFA FDG∠=∠+∠,①①DEG是等腰直角三角形,①①正确;①四边形ABCD是正方形①90ADC∠=,①90ADE EDP∠+∠=,①DE AF⊥,①90ADE DAP∠+∠=,①DAP EDP∠=∠,①AD DF=,①DAP DFP∠=∠,①EDP DFP∠=∠,①CDF∠的平分线交AF于点G,①CDG FDG∠=∠,①EDP CDG DFP FDG ∠+∠=∠+∠,①EDG EGD∠=∠,又①DE AF⊥,①DEG△是等腰直角三角形.①①正确如下图:作BH①AF于H,①①AGB=45°,①BG,①DEG△是等腰直角三角形,①DG=,①四边形ABCD是正方形①AB AD=,又①BH AF⊥,DE AP⊥,①90BHA AED∠=∠=,①90BAH EAD EAD ADE∠+∠=∠+∠=,①BAH ADE∠=∠,①BAH ADE≅△△,①AH DE=,①DG=,①AH GH AG+=,=,①DG BG+=,①①正确;①故选:D.【点睛】本题考查等腰三角形的性质,全等三角形的判定,正方形的性质等相关知识点,结合条件找见相关切入点是解题关键.5.如图,Rt①ACB中,①ACB=90°,①ACB的角平分线AD,BE相交于点P,过P作PF①AD 交BC的延长线于点F,交AC于点H,则下列结论:①①APB=135°;①AD=PF+PH;①DH平分①CDE;①S四边形ABDE=74S①ABP;①S①APH=S①ADE,其中正确的结论有()个A.2B.3C.4D.5【答案】B【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.①正确.证明①ABP①①FBP,推出P A=PF,再证明①APH①①FPD,推出PH=PD即可解决问题.①错误.利用反证法,假设成立,推出矛盾即可.①错误,可以证明S四边形ABDE=2S①ABP.①正确.由DH①PE,利用等高模型解决问题即可.【详解】解:在①ABC中,A D、BE分别平分①BA C、①ABC,①①A +①B =90°,又①A D 、BE 分别平分①BA C 、①ABC ,①①BAD +①ABE =12(①A +①B )=45°,①①APB =135°,故①正确.①①BPD =45°,又①PF ①AD ,①①FPB =90°+45°=135°,①①APB =①FPB ,又①①ABP =①FBP ,BP =BP ,①①ABP ①①FBP (ASA ),①①BAP =①BFP ,AB =FB ,P A =PF ,在①APH 和①FPD 中, APH FPD PA PFPAH PFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①APH ①①FPD (ASA ),①PH =PD ,①AD =AP +PD =PF +PH .故①正确.①①ABP ①①FBP ,①APH ①①FPD ,①S ①APB =S ①FPB ,S ①APH =S ①FPD ,PH =PD ,①①HPD =90°,①①HDP =①DHP =45°=①BPD ,①HD ①EP ,①S ①EPH =S ①EPD ,①S ①APH =S ①AED ,故①正确,①S 四边形ABDE =S ①ABP +S ①AEP +S ①EPD +S ①PBD=S ①ABP +(S ①AEP +S ①EPH )+S ①PBD=S ①ABP +S ①APH +S ①PBD=S ①ABP +S ①FPD +S ①PBD=S ①ABP +S ①FBP=2S ①ABP ,故①不正确.若DH 平分①CDE ,则①CDH =①EDH ,①①CDH=①CBE=①ABE,①①CDE=①ABC,①DE①AB,这个显然与条件矛盾,故①错误,故选B.【点睛】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将①ADE沿AE对折至①AFE,延长EF交BC于点G,连结AG,CF,下列结论:①①ABG①①AFG;①BG=CG;①S①AGE=18;①①GAE=45°,其中正确的是()A.①①①B.①①①C.①①①D.①①①【答案】D【分析】根据正方形的性质得出AB=AD=DC=6,①B=①D=90°,求出DE=2,AF=AB,根据HL推出Rt①ABG①Rt①AFG,推出BG=FG,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,在Rt①ECG中,由勾股定理得出(6-x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,由DE=2,得出GE=GF+EF=5,AF=AB=6,计算出S△AGE=15;根据全等得出①DAE=①F AE,①BAG=①F AG,即可得出△GAE.【详解】解:①四边形ABCD是正方形,①AB=AD=DC=6,①B=①D=90°,①CD=3DE,①DE=2,①①ADE沿AE折叠得到①AFE,①DE=EF=2,AD=AF,①D=①AFE=①AFG=90°,①AF=AB,①在Rt①ABG和Rt①AFG中AG AG AB AF ==⎧⎨⎩ ,①Rt ①ABG ①Rt ①AFG (HL ).①①正确;①Rt ①ABG ①Rt ①AFG ,①BG =FG ,①AGB =①AGF .设BG =x ,则CG =BC -BG =6-x ,GE =GF +EF =BG +DE =x +2.在Rt ①ECG 中,由勾股定理得:CG 2+CE 2=EG 2.①CG =6-x ,CE =4,EG =x +2,①(6-x )2+42=(x +2)2,解得:x =3.①BG =GF =CG =3.①①正确;①BG =GF =CG =3,CD =3DE ,AB =AD =DC =6,DE =EF =2,①GE =GF +EF =5,AF =AB =6,①S △AGE =11561522GE AF ⨯=⨯⨯=, ①①错误;①①ADE 沿AE 折叠得到①AFE ,①①DAE ①①F AE .①①DAE =①F AE .①①ABG ①①AFG ,①①BAG =①F AG .①①BAD =90°,①①EAG =①EAF +①GAF =12×90°=45°.①①正确.故选D .【点睛】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.7.如图,在平面直角坐标系中,一次函数12125y x =-+的图象交x 轴、y 轴于A 、B 两点,以AB 为边在直线右侧作正方形ABCD ,连接BD ,过点C 作CF x ⊥轴于点F ,交BD 于点E ,连接AE .则下列说法中正确的是( )A.点D的坐标为(17,7)B.45EAF∠=︒C.点C的坐标为(12,17)D.AEF的周长为(14+【答案】C【分析】根据一次函数教师式,令x、y分别为0,即可求出A、B两点坐标,再利用勾股定理即可算出AB的长,过点D作x轴垂线交x轴于点H,构造三角形全等即可推出点D的坐标;求出BD的教师式,可得点E的坐标,可得出AF≠EF,则①EAF≠45°,过点C作y轴垂线交y轴于点N,构造三角形全等即可推出点C的坐标;将AE+EF利用全等转换为CF即可求出①AEF 的周长.【详解】解:①一次函数12125y x=-+的图象交x轴、y轴与A、B两点,①当x=0,则y=12,故B(0,12),当y=0,则x=5,故A(5,0),①AO=5,BO=12,在Rt①AOB中,AB,故AB的长为13;过点D作x轴垂线交x轴于点H,过点C作y轴垂线交y轴于点N,如图所示:①四边形ABCD是正方形,①①ABC =①BAD =90°,AB =DA =BC =CD ,①①OAB +①OBA =①OAB +①HAD =90°,①①OBA =①HAD ,在①OBA 和①HAD 中,AOB DHA OBA HAD AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①OBA ①①HAD (AAS ),①DH =AO =5,AH =BO =12,①OH =OA +AH =17,①点D 的坐标为(17,5),A 错误,不符合题意;①①CBN +①NCB =①CBN +①ABO =90°,①①NCB =①ABO ,在①CNB 和①BOA 中,NCB OBA CNB BOA CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①CNB ①①BOA (AAS ),①BN =AO =5,CN =BO =12,又①CF ①x 轴,①CF =BO +BN =12+5=17,①C 的坐标为(12,17),C 正确,符合题意;设直线BD 的教师式为y =kx +b ,①17512k b b +=⎧⎨=⎩,解得:71712k b ⎧=-⎪⎨⎪=⎩, ①直线BD 的教师式为71217y x =-+, ①OF =CN =12, ①AF =12-5=7,E 点的坐标为(12,12017), ①EF =12017≠AF , ①CF ①x 轴,①①EAF ≠45°,B 错误,不符合题意;在①CDE 和①ADE 中,CD AD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ①①CDE ①①ADE (SAS ),①AE =CE ,①AE +EF =CF =17,AF =OF -AO =12-5=7,①C ①AEF =AE +EF +AF =CF +AF =17+7=24,D 错误,不符合题意.故选:C .【点睛】本题考查一次函数性质的综合应用,熟练一次函数图象的基本性质并能结合全等三角形逐步推理细心运算是解题关键.8.如图,在ABC 中,AD 是BC 边上的高,90BAF CAG ∠=∠=︒,AB AF =,AC AG =.连接FG ,交DA 的延长线于点E ,连接BG ,CF .则下列结论:①BG CF =;①BG CF ⊥;①2BC AE =;①EF EG =,其中正确的有( )A .①①①B .①①①C .①①①D .①①①①【答案】D【分析】 证得①CAF ①①GAB (SAS ),从而推得①正确;利用①CAF ①①GAB 及三角形内角和与对顶角,可判断①正确;证明①AFM ①①BAD (AAS ),得出FM =AD ,①F AM =①ABD ,同理①ANG ①①CDA ,得出NG =AD ,则FM =NG ,证明①FME ①①GNE (AAS ).可得出结论①,①正确.【详解】解:①①BAF =①CAG =90°,①①BAF +①BAC =①CAG +①BAC ,即①CAF =①GAB ,又①AB =AF ,AC =AG ,①①CAF ①①GAB (SAS ),①BG =CF ,故①正确;①①F AC ①①BAG ,①①FCA =①BGA ,又①BG 与AC 所交的对顶角相等,①BG 与FC 所交角等于①GAC ,即等于90°,①BG ①CF ,故①正确;过点F 作FM ①AE 于点M ,过点G 作GN ①AE 交AE 的延长线于点N ,①①FMA =①F AB =①ADB =90°,①①F AM +①BAD =90°,①F AM +①AFM =90°,①①BAD =①AFM ,又①AF =AB ,①①AFM ①①BAD (AAS ),①FM =AD ,①F AM =①ABD ,同理①ANG ①①CDA ,①NG =AD ,,AN CD =①FM =NG ,①FM ①AE ,NG ①AE ,①①FME =①ENG =90°,①①AEF =①NEG ,①①FME ①①GNE (AAS ).①,EM EN = EF =EG .故①正确.222,BD DC BC AM AN AM ME AE ∴+==+=+=故①正确故选:D .【点睛】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键. 9.如图,ABC ∆中,135ACB ∠=︒,CD AB ⊥,垂足为D ,若6AD =,20BD =,则CD 的长为( )A.B .C .72 D .4【答案】D【分析】 做,ACD BCD ∆∆分别关于,AC BC 的对称图形,ACE BCF ∆∆延长,AE BF 交于点G ,连接CG ,构造正方形,再根据等量关系用勾股定理计算.【详解】做,ACD BCD ∆∆分别关于,AC BC 的轴对称图形,ACE BCF ∆∆延长,AE BF 交于点G ,连接CG ,如图:①,ACE BCF ∆∆是,ACD BCD ∆∆的对称三角形①6,20,AE AD BF BD CE CD CF ======,,,AEC ADC BFC BDC ACE ACD BCF BCD ∠=∠∠=∠=∠∠=∠①CD AB ⊥①90ADC BDC AEC BFC ∠=∠=∠=∠=︒又①135ACB ∠=︒①135ACE BCF ∠+∠=︒①36013513590ECF ∠=︒-︒-︒=︒①四边形CEGF 是正方形设CD CF GF CE GE x =====,在Rt GAB ∆ 中:222AG +BG AB =即:()()22262026x x +++= 解得:124,30x x ==-(舍) ①CD 的长为4.【点睛】 本题是一道综合性较强的题目,整体图形的对称构造正方形是解决本题的关键. 10.如图,ABC 中,,AB AC BAC α=∠=,点D 在ABC 内部,且使得302ABD BAD α=∠-∠=︒.则ACD ∠的度数为( )A .30α-︒B .60α-︒C .30D .不能确定【答案】C【分析】 如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,证明ABD ACE ≅,得到ACE 为等腰三角形,再证明ADE 为等边三角形,推出DCE 为等腰三角形,由三角形外角的性质得出12ACD AED ∠=∠即可. 【详解】如图,在ABC 内作CAE BAD ∠=∠,且使得AE AD =,连,DE CE ,在ABD △和ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,(),ABD ACE SAS ∴≅ABD BAD ∠=∠,∴ABD △为等腰三角形,∴ACE 为等腰三角形,CAE BAD ∠=∠,BAC α∠=,302BAD α-∠=︒,30302260,DAE BAC BAD CAEααα∴∠=∠-∠-∠⎛⎫⎛⎫=--︒--︒ ⎪ ⎪⎝⎭⎝⎭=︒ADE ∴为等边三角形,,DE AE CE ∴==∴DCE 为等腰三角形,延长CE 交AD 于F 点,(),,2222,116030,22AEF EAC ECA DEF ECD EDC AED AEF DEFACE DCEACE DCE ACD ACD AED ∠=∠+∠∠=∠+∠∴∠=∠+∠=∠+∠=∠+∠=∠∴∠=∠=⨯︒=︒故选:C .【点睛】 本题主要考查了三角形的综合问题,涉及等腰三角形的等边三角形的判定和性质,全等三角形的判定和性质,三角形外角的性质,有一定难度,根据题意做出适当的辅助线是解题的关键.二、填空题11.如图,在等腰①ABC 中,AB=AC ,①BAC=120°,点D 是线段BC 上一点,①ADC=90°,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP=OC ,下面的结论:①①APO=①ACO ;①①APO+①DCO=30°;①AC=AO+AP ;①PO=PC ,其中正确的有______.【答案】①①①①【分析】连接BO ,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出①APO =①ACO ,①APO +①DCO =30°,由三角形的内角和定理,角的和差求出①POC =60°,再由等边三角的判定证明①OPC 是等边三角形,得出PC =PO ,①PCO =60°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO +AP =AC ,即可得出结果.【详解】解:连接BO ,如图1所示:①AB=AC,AD①BC,①BO=CO,①①OBC=①OCB,又①OP=OC,①OP=OB,①①OBP=①OPB,又①在等腰①ABC中①BAC=120°,①①ABC=①ACB=30°,①①OBC+①OBP=①OCB+①ACO,①①OBP=①ACO,①①APO=①ACO,故①正确;又①①ABC=①PBO+①CBO=30°,①①APO+①DCO=30°,故①正确;①①PBC+①BPC+①BCP=180°,①PBC=30°,①①BPC+①BCP=150°,又①①BPC=①APO+①CPO,①BCP=①BCO+①PCO,①APO+①DCO=30°,①①OPC+①OCP=120°,又①①POC+①OPC+①OCP=180°,①①POC=60°,又①OP=OC,①①OPC是等边三角形,①PC=PO,①PCO=60°,故①正确;在线段AC上截取AE=AP,连接PE,如图2所示:①①BAC +①CAP =180°,①BAC =120°,①①CAP =60°,①①APE 是等边三角形,①AP =EP ,又①①OPC 是等边三角形,①OP =CP ,又①①APE =①APO +①OPE =60°,①CPO =①CPE +①OPE =60°,①①APO =①EPC ,在①APO 和①EPC 中,AP EP APO EPC OP CP =⎧⎪∠=∠⎨⎪=⎩, ①①APO ①①EPC (SAS ),①AO =EC ,又①AC =AE +EC ,AE =AP ,①AO +AP =AC ,故①正确;故答案为:①①①①.【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的性质定理、等腰三角形的判定与性质、等边三角形的判定与性质、角的和差、线段的和差、等量代换等相关知识点;作辅助线构建等腰三角形、等边三角形、全等三角形是解题的关键.12.如图,矩形ABCD 中,AB =8,AD =4,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是________.【答案】【分析】取CD中点H,连接AH,BH,可证四边形AECH是平行四边形,可得AH//CE,由三角形中位线定理可得PH//EC,可得点P在AH上,当BP①AH时,PB有最小值,即可求解.【详解】解:如图,取CD中点H,连接AH,BH,设AH与DE的交点为O,连接BO,①四边形ABCD是矩形,①AB=CD=8,AD=BC=4,CD//AB,①点E是AB中点,点H是CD中点,①CH=AE=DH=BE=4,①四边形AECH是平行四边形,①AH//CE,①点P是DF的中点,点H是CD的中点,①PH//EC,①点P在AH上,①当BP①AH时,此时点P与H重合,BP有最小值,①AD=DH=CH=BC=4,①①DHA=①DAH=①CBH=①CHB=45°,AH=BH=①①AHB=90°,①BP的最小值为故答案为【点睛】本题考查了矩形的性质,三角形中位线定理,等腰直角三角形的性质,平行四边形的性质,垂线段最短等知识,确定点P的运动轨迹是本题的关键.13.如图,在ABC中,点D,点E分别是AC和AB上的点,且满足2=,3AE BE=,CD AD过点A的直线l平行BC,射线BD交CE于点O,交直线l于点F.若CDF的面积为12,则四边形AEOD的面积为____________.【答案】525【分析】连接AO ,根据三角形边之间的关系得到面积之间的关系进行推理解答.【详解】如图,连接AO ,①CD =3AD ,①AD :CD =1:3, ①13ADF CDF S S =△△,13ADO CDO S S =△△,3ABD CBD S S =△△, ①12CDF S =△,①4ADF S =△,16ACF S =△,①AF ①BC ,①16ABF ACF S S ==△△,①12ABD S =,①36CBD S =△,48ABC S =△,①AE =2BE ,①BE :AE =1:2,①2AEC BEC S S =△△,2AEO BEO S S =△△,①32AEC S =△,16BEC S =△,①()2AOE AOD COD BOE BOC S S S S S ++=+△△△△△,即22AOE AOD COD BOE BOC S S S S S ++=+△△△△△, ①123COD COD BOC S S S +=△△△,即423COD BOC S S =△△, ①:3:2COD BOC S S =△△,①36BCD BOC COD S S S =+=△△△, ①1085COD S =△, ①S 四边形AEOD 108523255AEC COD S S =-=-=△△. 故答案为:525. 【点睛】 本题考查了三角形的边与面积之间的关系,平行线之间距离处处相等,能正确把边之间的关系转化为面积之间的关系是解题的关键.14.已知①ABC 和①ADE 均为等腰直角三角形,①BAC=①DAE=90°,AB=6,AD=4,连接CE 、BE ,点F 和G 分别为DE 和BE 的中点,连接FG ,在①ADE 旋转过程中,当D 、E 、C 三点共线时,线段FG 的长为_______.【分析】分两种情况画出图形,如图1,连接BD ,证明①ADB ①①AEC ,求得①BDC =90°,在Rt ①BDC 中利用勾股定理求出BD 长度,最后利用三角形中位线性质求解FG 长度,如图2,同理可求出BD 的长,则可得出答案.【详解】解:如图1,连接BD ,①①BAD =90°-①BAE ,①CAE =90°-①BAE ,①①BAD =①CAE .在①ADB 和①AEC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===①①ADB ①①AEC (SAS ).①BD =CE ,①ADB =①AEC =135°,①①BDC =135°-45°=90°.①①ABC 和①ADE 均为等腰直角三角形,AB =6,AD =4,①DE =42,BC =62. 设BD =x ,则DC =42+x ,在Rt ①BDC 中,利用勾股定理BD 2+DC 2=BC 2,①x 2+(42+x )2=72,解得x 1=-22-27(舍去),x 2=-22+27.①点F 、G 分别为DE 、BE 的中点,①FG =12BD =-2+7.如图2,同理,设BD =CE =a ,在Rt ①BDC 中,BD 2+CD 2=BC 2,①a 2+(a −42)2=72,解得a =22-27(舍去),a =22+27,①FG =12BD =2+7,故答案为:72±.【点睛】本题主要考查了全等三角形的判定和性质、勾股定理、三角形中位线性质,解题的关键是找到共顶点的全等三角形,从而得到直角三角形,运用勾股定理求解线段长度.15.如图, ABCD 中,AB //x 轴,12AB =.点A 的坐标为()2,8-,点D 的坐标为()6,8-,点B 在第四象限,点G 是AD 与y 轴的交点,点P 是CD 边上不与点C ,D 重合的一个动点,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将①PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,点P 的坐标为______.【答案】8)或(8) 【分析】 先求出直线AD 的教师式为24y x =--,则可求(0,4)G -,设(,8)P m ,则(,4)M m -,可求12PM =,8PN =,分两种情况讨论:当M '在x 轴负半轴时,由折叠可知12PM '=,在Rt ①M NP '中,由勾股定理可求M N '=Rt ①M OG '中,M G x '=,4OG =,可求M O ',所以x =855x ,则P ,8);当M '在x 轴正半轴时,同理可得,x -x =(P 8). 【详解】解:设AD 的直线教师式为y kx b =+,将(2,8)A -,(6,8)D -代入可得,2868k b k b +=-⎧⎨-+=⎩, 解得24k b =-⎧⎨=-⎩, 24y x ∴=--,(0,4)G ∴-,点P 是CD 边上,//CD x 轴,设(,8)P m , //GM y 轴,(,4)M m ∴-,12PM ∴=,8PN =,当M '在x 轴负半轴时,如图,由折叠可知GM GM '=,PM PM '=,12PM '∴=,在Rt ①M NP '中,M N '在Rt ①M OG '中,M G x '=,4OG =,M O '∴=∴x = 解得855x,P ∴,8); 当M '在x 轴正半轴时,如图,同理可得,x -+=解得x =(P ∴8);综上所述:P 点坐标为8)或(8),故答案为8)或(8).【点睛】本题考查折叠的性质,熟练掌握平行四边形的性质、平面上点的坐标特点、并灵活应用勾股定理是解题的关键.16.如图,矩形ABCD的边AB=112,BC=3,E为AB上一点,且AE=1,F为AD边上的一个动点,连接EF,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,连接CG,则CG的最小值为______.【答案】2.5【分析】过点G作GH①AB于H,过点G作MN①AB,由“AAS”可证①GEH①①FEA,可得GH=AE=1,可得点G在平行AB且到AB距离为1的直线MN上运动,则当F与D重合时,CG有最小值,即可求解.【详解】解:如图,过点G作GH①AB于H,过点G作MN①AB,①四边形ABCD是矩形,AB=112,BC=3,①①B=90°,CD=112,AD=3,①AE=1,①BE=92,①①GHE=①A=①GEF=90°,①①GEH+①EGH=90°,①GEH+①FEA=90°,①①EGH =①FEA ,又①GE =EF ,①①GEH ①①EF A (AAS ),①GH =AE =1,①点G 在平行AB 且到AB 距离为1的直线MN 上运动,①当F 与D 重合时,CG 有最小值,此时AF =EH =3,①CG 2.5, 故答案为:2.5.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,确定点G 的运动轨迹是本题的关键.17.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合)且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .若CG =则四边形BCDG 的面积为 _____.【答案】【分析】过点C 作CM ①GB 于M ,CN ①GD 于N ,先证明①ABD 为等边三角形,AED DFB △≌△求得60BGD ∠=︒,证明①CBM ①①CDN , 所以S 四边形BCDG =S 四边形CMGN ,CG 是NGB ∠的角平分线,进而求得CGM S △,根据S 四边形BCDG =S 四边形CMGN 即可求得四边形BCDG 的面积.【详解】如图,过点C 作CM ①GB 于M ,CN ①GD 于N .四边形ABCD 是菱形AB AD DC BC ∴===,A BDC ∠=∠AB BD =AB BD DA ∴==ABC ∴是等边三角形60A ∴∠=︒60BDC A ∴∠=∠=︒BCD ∴△是等边三角形60BCD ∴∠=︒,BC CD =,AE DF AD BD ==∴AED DFB △≌△ADE DBF ∴∠=∠60BGE BDG FBD BDG ADE ∴∠=∠+∠=∠+∠=︒180********BGD BGE ∴∠=︒-∠=︒-︒=︒12060180BGD BCD ∴∠+∠=︒+︒=︒180CBM CDG ∴∠+∠=︒180CDG CDN ∠+∠=︒CDN CBM ∴∠=∠,CN DN CM BM ⊥⊥90CND CMB ∴∠=∠=︒又CD CB =CDN CBM ∴△≌△CN CM ∴=CG ∴是NGB ∠的角平分线1602CGM DGB ∴∠=∠=︒ 12CGM S GM CG ∴=⨯△ ①CBM ①①CDN ,S 四边形CMGN =CGM CDG BMC CGM CDG DNC S S S S S S ++=++=△△△△△△2S ①CMG ,①①CGM =60°,30MCG ∴∠=︒①GM =12CG ,CM ∴===①S 四边形CMGN =2S ①CMG =2×12×12CG 2,2CG =∴ S 四边形CMGN =故答案为:【点睛】本题考查了菱形的性质,等边三角形的性质,含30度角的直角三角形的性质,三角形全等的性质与判定,角平分线的性质,证明60CGM ∠=︒是解题的关键.18.如图,在边长为2的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),连接AE ,BF 交于点P ,过点P 作PM①CD交BC 于M 点,PN①BC 交CD 于N 点,连接MN ,在运动过程中则下列结论:①①ABE①①BCF ;①AE =BF ;①AE①BF ;①线段MN 1.其中正确的结论有___.(填写正确的序号)【答案】①①①①【分析】由正方形的性质及F ,E 以相同的速度运动,利用SAS 证明①ABE ①①BCF ,得到AE =BF ,①BAE =①CBF ,再根据①CBF +①ABP =90°,可得①BAE +①ABP =90°,进而得到AE ①BF ,根据点P 在运动中保持①APB =90°,可得点P 的路径是一段以AB 为直径的弧,设AB 的中点为H ,连接CH 交弧于点P ,此时CP 的长度最小,根据勾股定理,求出CH 的长度,再求出PH 的长度,即可求出线段CP 的最小值,根据矩形对角线相等即可得到MN .【详解】解:①动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动,①DF =CE ,①四边形ABCD 是正方形,①AB =BC =CD =2,①ABC =①BCD =90°,①CF =BE ,①①ABE ①①BCF (SAS ),故①正确;①AE =BF ,①BAE =①CBF ,故①正确;①①CBF +①ABP =90°,①①BAE +①ABP =90°,①①APB =90°,即AE ①BF ,故①正确;①点P 在运动中始终保持①APB =90°,①点P 的路径是一段以AB 为直径的弧,如图,设AB 的中点为H ,连接CH 交弧于点P ,此时CP 的长度最小,在Rt ①BCH 中,CH①PH =12AB =1,①CP =CH -PH 1,①PM ①CD ,PN ①BC ,①四边形PMCN 是平行四边形,①①BCD =90°,①四边形PMCN 是矩形,①MN =CP 1,即线段MN 1,故①正确.故答案为:①①①①.【点睛】本题主要考查正方形的性质、全等三角形、勾股定理等,解题的关键是证明①ABE ①①BCF .19.如图,A 在正方形CDBG 的边BD 的延长线上,且知AD BD =,E 在CD 上,EF AE ⊥交BC 的延长线于点F .有以下结论:①AE EF =①45EAB EFB ∠+∠=︒①BC CE CF =+①CF .其中,正确的结论有______.(填序号)【答案】①①①【分析】根据正方形性质得到①CBD =45°,进而得到①F AB +①AFB =135°,根据三角形性质即可得到①EAB +①EFB =45°,判断①正确;连接BE ,先证明AE =BE ,得到①EAB =①EBA ,根据①EAB+①EFB=45°证明EF=EB,即可判断①正确;作EH①BF,得到BC= FC+2CH,根据①CHE为等腰直角三角形得到CE,即可得到BC=FC,即可判断①错误;证明BC=,根据BC=FC得到FC=,即可得到①正确.【详解】解:①四边形CDBG为正方形,①①CBD=1①DBG=45°,2①①F AB+①AFB=135°,即①EAF+①AFE+①EAB+①EFB=135°,①EF①AE,①①AEF=90°,①①EAF+①AFE=90°,①①EAB+①EFB=45°,故①正确;连接BE,①四边形CDBG为正方形,①DE①AB,①AD=BD,①AE=BE,①①EAB=①EBA,①①EAB+①EFB=45°,①EBD+①EBF=45°,①①EFB=①EBF,①EF=EB,①AE=EF,故①正确;作EH①BF,①BE=FE,①BH=FH,①BC=BH+CH=FH+CH=FC+2CH,①四边形CDBG为正方形,①DCG=45°,①①HCE=12①EH①BF,①CE,即CH =, ①BC = FC +2CH =FC,故①不正确;①①BCD =45°,①CDB =90°,①BC,①BC = FC,①FC)CE CD +,①FC=,故①正确.故答案为:①①①【点睛】本题考查了正方形的性质,线段的垂直平分线性质,等腰直角三角形性质,等腰三角形性质等知识,综合性较强,熟知正方形性质和等腰直角三角形三边数量关系,添加适当辅助线是解题关键.20.在综合实践课上,小明把边长为2cm 的正方形纸片沿着对角线AC 剪开,如图l 所示.然后固定纸片①ABC ,把纸片①ADC 沿AC 的方向平移得到①A′D′C′,连A′B ,D′B ,D′C ,在平移过程中:(1)四边形A′BCD′的形状始终是 __;(2)A′B+D′B 的最小值为 __.【答案】平行四边形【分析】(1)利用平移的性质证明即可.(2)如图2中,作直线DD ′,作点C 关于直线DD ′的对称点C ″,连接D ′C ″,BC ″,过点B 作BH ①CC ″于H .求出BC ″,证明A ′B +BD ′=BD ′+CD ′=BD ′+D ′C ″≥BC ″,可得结论.【详解】解:(1)如图2中,①A ′D ′=BC ,A ′D ′①BC ,①四边形A ′BCD ′是平行四边形,故答案为:平行四边形.(2)如图2中,作直线DD ′,作点C 关于直线DD ′的对称点C ″,连接D ′C ″,BC ″,过点B 作BH ①CC ″于H .①四边形ABCD 是正方形,①AB =BC =2,①ABC =90°,①AC AB①BJ ①AC ,①AJ =JC ,①BJ =12AC ①①BJC =①JCH =①H =90°,①四边形BHCJ 是矩形,①BJ =CJ ,①四边形BHCJ 是正方形,①BH =CH在Rt ①BHC ″中,BH HC ,①BC ''==①四边形A ′BCD ′是平行四边形,①A ′B =CD ′,①A ′B +BD ′=BD ′+CD ′=BD ′+D ′C ″≥BC ″,①A ′B +BD①A ′B +D ′B 的最小值为故答案为:【点睛】本题考查作图-平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题21.ACB △和CDE △都是等腰直角三角形,90ACB DCE ∠=∠=︒,将CDE △绕点D 旋转.(1)如图1,当点B 落在直线DE 上时,若26AC =,CE =BE 的长;(2)如图2,直线BD 、AE 交于点F ,再连接CF EF DF =+;(3)如图3,8AC =,4CD =,G 为ED 中点,连接AG ,BG ,以AG 直角边构造等腰Rt AHG ,过H 作HI AB ⊥交AB 于点I ,连接GI ,当HI 最小时,直接写出GI 的长度.【答案】(1)34,(2)证明见教师,(3)【分析】(1)作CF ①DB 于F ,根据勾股定理求出CF 和BF 即可;(2)将①CEF 绕点C 逆时针旋转90°,得到①CDM ,可证点M 在BD 上,再证①FCM 是等腰直角三角形即可;(3)作CN ①AB 于N ,作AF ①AC 交AN 延长线于F ,得出①GAC ①①HAF ,当点H 落在CF 上时,HI 最小,此时点I 与点N 重合,利用勾股定理求解即可.【详解】解:(1)作CF ①DB 于F ,①90DCE ∠=︒,CE =CDE △都是等腰直角三角形,①20DE ,10DF CF EF ===,①点B 落在直线DE 上,26AC BC ==①24BF =,①34BE EF FB =+=;BE 的长为34.(2)将①CEF 绕点C 逆时针旋转90°,得到①CDM ,由(1)得,①CDB =①CEA ,①点M 在BD 上,CF =CM ,①FCM =90°,EF =DM ,FM =,①FM DM DF EF DF =+=+;EF DF =+.(3)作CN ①AB 于N ,作AF ①AC 交AN 延长线于F ,①ACB △是等腰直角三角形,①①ACF =45°,①AC =AF ,①①GAH =①CAF =90°,①①GAC =①HAF ,①AG =AH ,①①GAC ①①HAF ,①CG =FH ,①当点H 落在CF 上时,HI 最小,此时点I 与点N 重合,如图所示,①①GCA =①AFC =45°,①①GCI =90°,①8AC =,4CD =, ①IC =CG =IG =【点睛】本题考查了全等三角形的判定与性质和勾股定理,解题关键是恰当作辅助线,构造全等三角形进行推理证明.22.教材呈现:如图为华师版八年级上册数学教材第65页的部分内容.做一做:如图,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所画的三角形都全等吗?此时,符合条件的角形有多少种?如图1,通过作图我们可以发现,此时(即“边边角”对应相等)的两个三角形全等(填“一定”或“不一定”).(2)[探究证明]阅读并补全证明已知:如图2,在ABC和DEF中,①B=①E,AC=DF,①C+①F=180°(①C<①F).求证:AB=DE.证明:在BC上取一点G,使AG=AC.①AG=AC,①①C=.又①①C+①F=180°,而①AGC+①AGB=180°,①①AGB=.①AC=DF,①AG=又①①ABC①DEF(AAS).①AB=DE.(3)[拓展应用]在ABC中,AB=AC,点D在射线BA上,点E在AC的延长线上,且BD=CE,连结DE,DE与BC边所在的直线交于点F.①当点D在线段BA上时,如图3所示,求证:DF=EF.①过点D 作DH①BC 交直线BC 于点H ,若BC =4,CF =1,则BH = (直接写出答案).【答案】(1)不一定;(2)①AGC ,①F ,DF , ①B =①E ;(3)①见详解;①1或3【分析】(1)根据SSA 可知两个三角形不一定全等;(2)在BC 上取一点G ,使AG =AC ,根据AAS 证明ABG ①DEF ,即可得到结论; (3)①过点D 作DG ①AC ,证明DGF ECF ≌,即可得到结论;①分两种情况:当点D 在线段AB 上时,过点E 作EO ①BC 交BC 的延长线于点O ;当点D 在BA 的延长线上时,过点E 作EO ①BC 交BC 的延长线于点O ,分别证明DHB EOC ≌,DHF EOF ≌,进而即可求解.【详解】解:(1)通过作图我们可以发现,此时(即“边边角”对应相等)的两个三角形不一定全等,故答案是:不一定;(2)证明:在BC 上取一点G ,使AG =AC .①AG =AC ,①①C = ①AGC .又①①C +①F =180°,而①AGC +①AGB =180°,①①AGB = ①F .①AC =DF ,①AG = DF又①①B =①E ①ABG ①DEF (AAS ).①AB =DE .故答案是:①AGC ,①F ,DF , ①B =①E ;(3)①过点D 作DG ①AC ,。
压轴第23题精选30道-相似三角形综合问题(二)(教师版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在平面直角坐标系中,一次函数y=2x+8的图象与x轴、y轴分别相交于点B、点A,以线段AB为边作矩形ABCD,且AB=2BC,点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣10B.﹣12C.﹣14D.﹣16【答案】D【分析】过点C作CE⊥x轴于E,证明⊥AOB⊥⊥BEC,可得点C坐标,代入求解即可.【详解】解:⊥当x=0时,y=2x+8=8,⊥A(0,8),⊥OA=8;⊥当y=0时,y=2x+8=0,⊥x=-4,⊥B(-4,0),⊥OB=4;过点C作CE⊥x轴于E,⊥四边形ABCD矩形,⊥⊥ABC=90°,⊥⊥CBE+⊥ABO=90°,⊥BAO+⊥ABO=90°,⊥⊥CBE=⊥BAO.⊥⊥BEC=⊥AOB=90°,⊥⊥AOB⊥⊥BEC,⊥CE BE BC OB OA AB==,⊥AB=2BC,⊥1482CE BE ==, ⊥OE =2,BE =4,⊥C 点坐标为(-8,2),⊥点C 在反比例函数y =k x(x <0)的图象上, ⊥k =-8×2=-16.故选:D .【点睛】本题考查了一次函数与坐标轴的交点、待定系数法求函数教师式、矩形的性质,以及三角形相似的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.2.如图,在等腰AOB 中,AO AB =,点A 为反比例函数k y x=(其中0x >)图象上的一点,点B 在x 轴正半轴上,过点B 作BC OB ⊥,交反比例函数k y x=的图象于点C ,连接OC 交AB 于点D ,若BCD △的面积为2,则k 的值为( )A .20B .503C .16D .403【答案】A【分析】 过点A 作AF OB ⊥交x 轴于F ,交OC 于点E ,利用等腰三角形性质可得12OF FB OB ==,再由//AF BC ,可得ADE BDC ∆∆∽,2BC EF =,设OF a =,则2=OB a ,可得24AF BC EF ==,3AE EF =,应用相似三角形性质及三角形面积可由BCD ∆的面积为2,求得AOF ∆的面积,应用||k 的几何意义求k .【详解】解:如图,过点A 作AF OB ⊥交x 轴于F ,交OC 于点E ,OA AB =,AF OB ⊥,12OF FB OB ∴==, BC OB ⊥,//AF BC ∴,ADE BDC ∴∆∆∽,12OE EF OF OC BC OB ===, 2BC EF ∴=, 设OF a =,则2=OB a ,(,)k A a a∴,(2,)2k C a a , k AF a ∴=,2k BC a=, 24AF BC EF ∴==,3AE AF EF EF =-=,ADE BDC ∆∆∽, ∴3322DE AE EF DC BC EF ===, ∴29()4ADE BDC S AE S BC ∆∆==, BCD ∆的面积为2,92ADE S ∆∴=, ∴35DE EC =, 12OE OC =, EC OE ∴=, ∴35DE OE =, ∴35ADE AOE S S ∆∆=, 152AOE S ∆∴=, 4433AF EF AE EF ==, ∴43AOF AOE S AF S AE ∆∆==,441510332AOF AOE S S ∆∆∴==⨯=, ∴1102k =, 0k >,20k ∴=.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、三角形面积以及相似三角形的判定与性质,解题的关键是灵活运用等腰三角形的性质和相似三角形的性质. 3.如图,在矩形ABCD 中,AD =10,在BC 边上取一点E ,连接AE 、DE ,使得DE =AD ,H 为AE 中点,连接DH ,在DE 上取一点F ,连接AF ,将⊥AEF 沿着AF 翻折得到⊥AGF ,且GF⊥AD 于M ,连接GD ,若AE =F 到直线DG 的距离为( )A .BCD 【答案】B【分析】 根据三线合一得出DH AE ⊥,根据矩形的性质及同角的余角相等易证ABE DHA △△,然后根据相似三角形的性质即可求得BE 的值,根据勾股定理可求得AB 的值;过点E 作EP AD ⊥于点P ,则四边形ABEP 为矩形,易证DMF DPE △△,再根据相似三角形的性质可设MF =4x ,DM =3x ,DF =5x ,根据折叠的性质可得105GF EF x ==-,AG AE ==103AM AD DM x =-=-,109GM GF MF EF MF x =-=-=-,然后根据勾股定理即可求得x 的值,最后根据面积公式即可得出答案.【详解】解:AD DE =,H 是AE 的中点DH AE ∴⊥四边形ABCD 为矩形90BAE EAD ∴∠+∠=︒,90EAD ADH ∠+∠=︒BAE HDA ∴∠=∠90B AHD ∠=∠=︒ABE DHA ∴△△BE AE HA AD∴= 111022AD AH AE ===⨯=,AE =4BE ∴=8AB ∴==,1046EC BC BE =-=-=过点E 作EP AD ⊥于点P ,则四边形ABEP 为矩形8PE AB ∴==,6PD EC ==GF AD ⊥90DMF DPE ∴∠=∠=︒MDF PDE ∠=∠DMF DPE ∴△△6384DM PD MF PE ∴=== 设MF =4x ,DM =3x ,DF =5x⊥AEF 沿着AF 翻折得到⊥AGF ,105GF EF x ∴==-,AG AE ==103AM AD DM x =-=-,109GM GF MF EF MF x =-=-=-在Rt AMG 中,222AM MG AG +=即()()(222103109x x -+-=解得:2x =(舍去)或23x = 32MD x ∴==,201053GF x =-=,1094MG x =-=GD ∴=设F 到GD 的距离是h ,根据面积公式得S ⊥GFD =1122GF MD GD h ⋅=⋅ 12012232∴⨯⨯=⨯h ∴=故选B .【点睛】本题考查了相似三角形的判定及性质、等腰三角形的性质、勾股定理、折叠的性质、矩形的判定及性质,熟练掌握性质定理及添加合适的辅助线是解题的关键.4.如图,菱形OABC 的顶点C 的坐标为(3,0),D 为AO 上一点,连接BD ,CD ,OB ,CD 与OB 相交于点E ,取EC 的三等分点F (EF >FC ),连接OF 并延长,交BC 于点G ,已知S ⊥BOD :S ⊥BOC =2:3,反比例函数y =k x(k >0)经过D ,G 两点,则k 的值为( )A .25BCD 【答案】A【分析】过点D 、G 分别作x 轴的垂线,垂足分别为M 、N ,设CN =a ,GN =b ,根据相似三角形的性质表示出D 点坐标,根据反比例性质列方程,求出a 、b 值即可.【详解】解:过点D 、G 分别作x 轴的垂线,垂足分别为M 、N ,⊥S ⊥BOD :S ⊥BOC =2:3,⊥OD :BC =2:3,⊥OA ⊥BC ,⊥⊥ODE ⊥⊥BCE ,⊥AOC =⊥GCN , ⊥23DE OD EC BC ==, ⊥OC =BC =3,⊥OD =2,⊥EC 的三等分点为点F (EF >FC ), ⊥14FC DF =, 同理,14GC OD =,CG =12 ⊥⊥AOC =⊥GCN ,⊥DMO =⊥GNC =90°,⊥⊥ODM ⊥⊥CGN , ⊥14GN GC CN DM OD OM ===, 设CN =a ,GN =b ,则OM =4a ,DM =4b ,⊥反比例函数y =k x(k >0)经过D ,G 两点, ⊥4a ×4b =(a +3)b ,解得,15a =,GN =则k 的值为:1(3)5+, 故选:A .【点睛】本题考查了反比例函数的性质、菱形的性质、相似三角形的判定与性质,解题关键是通过设参数,根据相似三角形性质表示点的坐标,依据反比例函数性质列方程.5.如图,正方形ABCD ,点F 在边AB 上,且12AF FB =,CE⊥DF ,垂足为点M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:⊥AE=BF ;⊥AN;⊥⊥ADF =⊥GMF ;⊥S ⊥ANF =19S ⊥ABC ,上述结论中,正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥⊥D .⊥⊥⊥【答案】C【分析】 ⊥正确.证明⊥ADF ⊥⊥DCE (ASA ),即可判断.⊥正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.⊥正确.作GH ⊥CE 于H ,设AF =DE =a ,BF =2a ,则AB =CD =BC =3a ,ECa ,通过计算证明MH =CH 即可解决问题.⊥错误.设⊥ANF的面积为m ,由AF ⊥CD ,推出13AF FN CD DN ==,⊥AFN ⊥⊥CDN ,推出⊥ADN 的面积为3m ,⊥DCN 的面积为9m ,推出⊥ADC 的面积=⊥ABC 的面积=12m ,由此即可判断.【详解】⊥四边形ABCD 是正方形,⊥AD =AB =CD =BC ,⊥CDE =⊥DAF =90°,⊥CE ⊥DF ,⊥⊥DCE +⊥CDF =⊥ADF +⊥CDF =90°,⊥⊥ADF =⊥DCE ,在⊥ADF 与⊥DCE 中,DAF CDE AD CDADF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ⊥⊥ADF ⊥⊥DCE (ASA ),⊥DE =AF ,⊥AD ﹣DE =BC ﹣AF ,即AE =BF ,故⊥正确;⊥AB ⊥CD ,⊥AF AN CD CN=,⊥AF:FB=1:2,⊥AF:AB=AF:CD=1:3,⊥13 ANCN=,⊥14 ANAC=,⊥AC,⊥AN=4AD;故⊥正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC a,由⊥CMD⊥⊥CDE,可得CM,由⊥GHC⊥⊥CDE,可得CH,⊥CH=MH=12CM,⊥GH⊥CM,⊥GM=GC,⊥⊥GMH=⊥GCH,⊥⊥FMG+⊥GMH=90°,⊥DCE+⊥GCM=90°,⊥⊥FMG=⊥DCE,⊥⊥ADF=⊥DCE,⊥⊥ADF=⊥GMF;故⊥正确,设⊥ANF的面积为m,⊥AF⊥CD,⊥13AF FNCD DN==,⊥AFN⊥⊥CDN,⊥⊥ADN的面积为3m,⊥DCN的面积为9m,⊥⊥ADC的面积=⊥ABC的面积=12m,⊥S⊥ANF:S⊥ABC=1:12,故⊥错误,故选:C.【点睛】本题是一个综合性的题目,综合考查了正方形的性质、相似三角形的判定与性质、三角形全等的判定与性质等知识.6.勾股定理是几何中一个重要定理.著名数学家毕达哥拉斯用如图⊥所示的图形验证了勾股定理,把图⊥放入矩形内得到图⊥,⊥ACB=90°,BC=2AC,E,F,G,H,I都在矩形MNOP的边上,则MNMP的值为()A.911B.910C.45D.34【答案】A【分析】如图所示,延长BA交PM于,J过I作IK AB⊥于,K设BC=2AC=2a,由题意可知,AC=CD=DE=AE=a,BH=HI=CI=BC=2a,由勾股定理可得,AB,可得AB=BG=FG=AF,再利用相似三角形的性质分别用含a的代数式表示,MN MP,即可得到答案.【详解】解:如图所示,延长BA交PM于,J过I作IK AB⊥于,K设BC =2AC =2a ,由题意可知,AC =CD =DE =AE =a ,BH =HI =CI =BC =2a , 由勾股定理可得,AB, ⊥AB =BG =FG =AF,⊥⊥AKI =⊥ACB =90°,⊥CAB =⊥IAK , ⊥⊥AKI ⊥⊥ACB , ⊥AI IK AK AB BC AC==, ⊥IK=2AI AC CI BC BC a AB AB +⨯=⨯=, ⊥MP =MJ +JP =IK +AF,= ⊥AK=AI AC CI AC AC a AB AB +⨯=⨯=, 同理可得:⊥AEJ ⊥⊥BAC , ⊥AJ AE BC BA=, ⊥AJ=AE CB BA ⨯=, 同理可得:⊥ABC ⊥⊥HIN , ⊥BC IN AB IH=,⊥2BC IN IH a AB =⨯==, ⊥MN =MI +IN =AJ +AK +IN=,⊥911MN MP =,故选:A . 【点睛】本题考查的是勾股定理的应用,矩形,正方形的性质,相似三角形的性质与判定,掌握利用相似三角形的性质寻求边与边之间的关系是解题的关键.7.如图,点M 是正方形ABCD 内一点,MBC △是等边三角形,连接AM 、MD 对角线BD 交CM 于点N ,现有以下结论:⊥150AMD ∠=︒;⊥2MA MN MC =⋅;⊥ADM BMC S S =△△,其中正确的结论有( )A .4B .3C .2D .1【答案】C 【分析】⊥根据等边三角形得⊥CMB =60°,再根据等腰三角形的性质得⊥AMB =⊥CMD =75°,最后根据周角的定义即可得出结论;⊥证明⊥MND ⊥⊥MDC ,列比例式即可得出结论;⊥过点M 作MG ⊥AB 于G ,设MG =x ,根据直角三角形30度角的性质和勾股定理分别计算BC 、AG 、BG 的长,根据面积公式计算即可得出结论. 【详解】解:⊥⊥MBC 是等边三角形,⊥⊥MBC =⊥MCB =⊥CMB =60°,BM =BC , ⊥四边形ABCD 是正方形,⊥⊥ABC =⊥BCD =⊥BAD =⊥ADC =90°,AB =BC , ⊥⊥ABM =⊥DCM =30°, ⊥AB =BM ,⊥⊥AMB =⊥BAM =12×(180°−30°)=75°, 同理:⊥CMD =⊥CDM =75°, ⊥⊥AMD =360°−75°−75°−60°=150°; 故⊥正确;⊥四边形ABCD 是正方形, ⊥⊥BDC =45°,⊥⊥MDN =⊥CDM −⊥BDC =75°−45°=30°, ⊥⊥CMD =⊥CMD ,⊥MDN =⊥DCM =30°, ⊥⊥MND ⊥⊥MDC , ⊥MN DMDM MC=, ⊥DM 2=MN •MC ,⊥⊥BAD =⊥ADC ,⊥BAM =⊥CDM , ⊥⊥MAD =⊥MDA , ⊥MA =DM , ⊥MA 2=MN •MC , 故⊥正确;过点M 作MG ⊥AB 于G ,设MG =x ,Rt ⊥BGM 中,⊥GBM =30°, ⊥BM =BC =AB =2x ,BG, ⊥AG =2x,⊥1212ADM BMCAD AGAG BG BC BG S S⋅===⋅故⊥错误. 故选C . 【点睛】本题考查了相似三角形的判定与性质、正方形的性质、等边三角形的性质、等腰三角形的判定与性质,勾股定理、平行线的性质等知识;设出未知数,表示出各边长是解题的关键. 8.如图,在Rt⊥ABC 中,∠BAC=90°,以其三边为边分别向外作正方形,延长EC ,DB 分别交GF ,AH 于点N ,K ,连结KN 交AG 于点M ,若S 1-S 2=2,AC=4,则AB 的长为 ()A .2 BC.D .73【答案】A 【分析】先证ABC ⊥FCN △,根据全等三角形的性质可得AB =FN ;再证⊥BCK ⊥⊥ACB ,根据相似三角形的性质可得214KC BC =;设五边形ACFNM 的面积为S ,可得S 1+S 2=S 正方形ACFG =AC 2=16, S 2+S = S 梯形CFNK ==()2CK NF =+,设AB =x ,BC =y ,可得方程组22216116224x y y x ⎧+=⎪⎨⎛⎫-+= ⎪⎪⎝⎭⎩ ,解方程组即可求解. 【详解】⊥⊥ACB +⊥CAN =90°,⊥FCN +⊥CAN =90°, ⊥⊥ACB =⊥FCN , 在⊥ABC 和⊥FCN 中,90BAC NFC AC CFBCA NCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ⊥ABC ⊥FCN △, ⊥AB =FN ;⊥⊥BAC =⊥KBC =90°, ⊥⊥BCK ⊥⊥ACB , ⊥AC BCBC KC=, ⊥214KC BC =; 设五边形ACFNM 的面积为S ,⊥(S 1+S )-(S 2+S )=2, 设AB =x ,BC =y ,由勾股定理可得,2216x y +=,⊥S 1+S 2=S 正方形ACFG =AC 2=16, S 2+S = S 梯形CFNK =()()()114222CK NF CF CK NF CK NF +⋅=+⨯=+,S 1-S 2=2, ⊥(S 1+S )-(S 2+S )=16-()2CK NF +=16-2124y x ⎛⎫+ ⎪⎝⎭=2,⊥22216116224x y y x ⎧+=⎪⎨⎛⎫-+= ⎪⎪⎝⎭⎩,解得,2x y =⎧⎪⎨=⎪⎩2x y =⎧⎪⎨=-⎪⎩6x y =-⎧⎪⎨=⎪⎩6x y =-⎧⎪⎨=-⎪⎩⊥x 、y 都为正数,⊥2x y =⎧⎪⎨=⎪⎩即AB =2,BC= 故选A . 【点睛】本题考查了正方形的性质、勾股定理、全等三角形的判定与性质及相似三角形的判定与性质,熟练运用相关知识是解决问题的关键.9.如图平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接,//AE AE y 轴,反比例函数(0)ky x x=>的图象经过点A 及AD 边上一点,4F AF FD =,若,2DA DE OB ==,则k 的值为( )A .11B .12C .15D .16【答案】C根据题意得到ADE ∆和ABE ∆是等腰直角三角形,设AE y =,则1122DM AM EM AE y ====,即可得到(2,)A y y -,进而通过三角形相似对得出F 点的坐标为7(25y -,3)5y ,即可得到73(2)(2)55k y y y y =-=-,解方程即可求得k 的值.【详解】解:作DM AE ⊥于M ,FN AE ⊥于N , 四边形ABCD 是矩形,AD BC ∴=,90ADE BCD ∠=∠=︒, DA DE =,ADE ∴∆是等腰直角三角形,45DAE AED ∴∠=∠=︒,M 是AE 的中点,12DM AM EM AE ∴===,45BAE ∠=︒, //AE y 轴,90AEB ∴∠=︒,ABE ∴∆是等腰直角三角形, BE AE ∴=,设AE y =,则1122DM AM EM AE y ====, 2OB =,2OE y ∴=-, (2,)A y y ∴-, //FN DM , ANF AMD ∴∆∆∽,∴AN NF AFAM DM AD==, 4AF FD =,∴411522AN FN y y ==, 25AN NF y ∴==, 2355EN y y y ∴=-=, 7(25F y ∴-,3)5y ,反比例函数(0)ky k x=>的图象经过点A 、F , 73(2)(2)55k y y y y ∴=-=-,解得5y =或0y =(舍去),(2)15k y y ∴=-=,故选:C .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,三角形相似的判定和性质,反比例函数图象上点的坐标特征,表示出A 、F 的坐标是解题的关键.10.如图所示,G 、E 分别是正方形ABCD 的边AB 、BC 上的点,且AG CE =,AE EF ⊥,AE EF =,现有如下结论:⊥BE DH =;⊥AGE ECF △≌△;⊥45FCD ∠=︒;⊥AGE CHF △∽△.其中,正确的结论有( )A .4个B .3个C .2个D .1个【答案】C 【分析】由⊥BEG =45°知⊥BEA >45°,结合⊥AEF =90°得⊥HEC <45°,据此知 HC <EC ,即可判断⊥;求出⊥GAE +⊥AEG =45°,推出⊥GAE =⊥FEC ,根据 SAS 推出⊥GAE ⊥⊥CEF ,即可判断⊥;求出⊥AGE =⊥ECF =135°,即可判断⊥;求出⊥FEC <45°,根据相似三角形的判定得出⊥GBE 和⊥ECH 不相似,即可判断⊥. 【详解】解:⊥四边形 ABCD 是正方形, ⊥AB =BC =CD ,⊥AG=GE,⊥BG=BE,⊥⊥BEG=45°,⊥⊥BEA>45°,⊥⊥AEF=90°,⊥⊥HEC<45°,⊥HC<EC,⊥CD﹣CH>BC﹣CE,即DH>BE,故⊥错误;⊥BG=BE,⊥B=90°,⊥⊥BGE=⊥BEG=45°,⊥⊥AGE=135°,⊥⊥GAE+⊥AEG=45°,⊥AE⊥EF,⊥⊥AEF=90°,⊥⊥BEG=45°,⊥⊥AEG+⊥FEC=45°,⊥⊥GAE=⊥FEC,在⊥GAE 和⊥CEF 中,⊥AG=CE,⊥GAE=⊥CEF,AE=EF,⊥⊥GAE⊥⊥CEF(SAS)),⊥⊥正确;⊥⊥AGE=⊥ECF=135°,⊥⊥FCD=135°﹣90°=45°,⊥⊥正确;⊥⊥BGE=⊥BEG=45°,⊥AEG+⊥FEC=45°,⊥⊥FEC<45°,∴∠=︒+∠<135︒,FHC FEC90∴∠≠∠FHC AGE,△不相似,⊥AGE和FCH⊥⊥错误;故选C.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题11.如图,在Rt⊥ABC 中,⊥ACB =90°,将⊥ABC 沿AB 翻折得⊥ABC′,过点C′作CA 的垂线,交CA 延长线于点F 点D 为边BC′上一点,过点D 作DE⊥BC ,垂足为点E ,连接CD ,交AB 于点M ,若DC 平分⊥EDC′,CE =CF =6,C′F =4,则AM =_____.【分析】延长ED 交FC '的延长线于R ,连接CC '交AB 于J ,过点C 作CT BC ⊥'于T .首先证明四边形ECFR 是正方形,利用全等三角形的性质证明DE DT =,4FC C T '='=,再想办法求出JC ,AJ ,证明JM JC =,可得结论.【详解】解:延长ED 交FC '的延长线于R ,连接CC '交AB 于J ,过点C 作CT BC ⊥'于T .90REC CFR ECF ∴∠=∠=∠=︒,∴四边形ECFR 是矩形,CE CF =,∴四边形ECFR 是正方形,CD 平分EDC ∠',CE DE ⊥,CT EC ⊥',CDE CDT ∴∠=∠,90CED CTD ∠=∠=︒,CD CD =,()CDE CDT AAS ∴∆≅∆,CE CT ∴=.DE DT =,90CTC F ∠'=∠=︒,CF CE CT ==,CC CC '=', Rt ∴⊥CC T Rt '≅⊥()CC F HL ',4FC C T ∴'='=,在Rt CFC '△中,CC ' 由翻折的性质可知,CJ JC ='=ACJ FCC ∠=∠',90CJA F ∠=∠=︒,CJA CFC ∴∆∆'∽,∴CJ AJCF FC =',∴4AJ =,AJ ∴=DCE DCT ∠=∠,C CT C CF ∠'=∠', 45JCM ∴∠=︒,JM CJ ∴=AM JM AJ ∴=+. 【点睛】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是想添加常用辅助线,构造特殊四边形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.12.如图,边长为3的等边三角形ABC 中,点M 在直线BC 上,点N 在直线AC 上,且⊥BAM =⊥CBN ,当BM =1时,AN =___.【答案】2或4或92或94【分析】先根据等边三角形的性质可得60,3ABC ACB AB BC AC ∠=∠=︒===,再分⊥点M 在边BC 上,点N 在边AC 上,⊥点M 在边BC 上,点N 在边AC 延长线上,⊥点M 在边CB 延长线上,点N 在边AC 上,⊥点M 在边CB 延长线上,点N 在边AC 延长线上四种情况,然后根据三角形全等的判定定理与性质、相似三角形的判定与性质即可得.【详解】解:ABC 是边长为3的等边三角形,60,3ABC ACB AB BC AC ∴∠=∠=︒===,由题意,分以下四种情况:⊥如图,当点M 在边BC 上,点N 在边AC 上时,在ABM 和BCN △中,BAM CBN AB CB ABM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABM BCN ASA ∴≅,1BM CN ∴==,312AN AC CN ∴=-=-=;⊥当点M 在边BC 上,点N 在边AC 延长线上时,如图,过点N 作//ND AB ,交BC 延长线于点D ,60D ABM ∴∠=∠=︒,60DCN ACB ∠=∠=︒,CDN ∴是等边三角形,CN DN CD ∴==,在ABM 和BDN 中,BAM DBN ABM D ∠=∠⎧⎨∠=∠⎩, ABM BDN ~∴,DN BD BC CD BC DN BM AB AB AB ++∴===,即313DN DN +=, 解得32DN =, 32CN ∴=, 39322AN AC CN ∴=+=+=; ⊥当点M 在边CB 延长线上,点N 在边AC 上时,如图,过点N 作//ND AB ,交BC 于点D ,60CDN ABC ACB ∴∠=∠=︒=∠,CDN ∴是等边三角形,CN DN CD ∴==,60CDN ABC ∠=∠=︒,120BDN ABM ∴∠=∠=︒, 在BDN 和ABM 中,DBN BAM BDN ABM ∠=∠⎧⎨∠=∠⎩, BDN ABM ~∴,DN BD BC CD BC DN BM AB AB AB --∴===,即313DN DN -=, 解得34DN =, 34CN ∴=, 39344AN AC CN ∴=-=-=;⊥如图,当点M 在边CB 延长线上,点N 在边AC 延长线上时,60ABC ACB ∠=∠=︒,120ABM BCN ∴∠=∠=︒,在ABM 和BCN △中,BAM CBN AB CB ABM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABM BCN ASA ∴≅,1BM CN ∴==,314AN AC CN ∴=+=+=;综上,AN 的值为2或4或92或94, 故答案为:2或4或92或94. 【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定定理与性质、相似三角形的判定与性质等知识点,正确分四种情况讨论是解题关键.13.如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴的正半轴上,且()0,630B OAB ∠=︒,,C 为线段AB 上一点,:1:2BC CA =,若M 为y 轴上一点,且:1:2OM OB =,设直线AM 与直线OC 相交于点N ,则ON 的长为________.或【分析】过点C 作CD ⊥x 轴于D ,证明⊥ACD ⊥⊥ABO ,得到CD AD AC BO AO AB==,求出CD 和AD ,得到点C 坐标,求出直线OC 的教师式,再求出点M 的坐标,分两种情况,联立教师式,求出点N 坐标,利用勾股定理得到ON 的长.【详解】解:过点C 作CD ⊥x 轴于D ,则⊥ADC =⊥AOB =90°,又⊥⊥CAD =⊥BAO ,⊥⊥ACD ⊥⊥ABO , ⊥CD AD AC BO AO AB==, ⊥B (0,6),⊥OB =6,⊥⊥OAB =30°,⊥AB =2OB =12,⊥AO⊥BC :CA =1:2,⊥AC =2812AB ⨯=+, ⊥BC =AB -AC =4,⊥8612CD =, 解得:CD =4,AD=⊥OD =OA -AD=⊥C(4),设直线OC 的教师式为y =kx ,将C 代入,则4=,解得:k = ⊥直线OC的教师式为y =, ⊥OM :OB =1:2,OB =6,⊥OM =3,⊥M 的坐标为(3,0)或(-3,0),当M (3,0)时,记为点M ′,设直线AM ′的教师式为y =ax +b ,则03b b ⎧+=⎪⎨=⎪⎩,解得:3a b ⎧=⎪⎨⎪=⎩⊥直线AM ′的教师式为3y =+, 联立直线AM ′和直线OC的教师式得3y x y ⎧=⎪⎪⎨⎪=+⎪⎩,解得:125x y ⎧=⎪⎪⎨⎪=⎪⎩, ⊥N,125), ⊥ON当M (-3,0)时,同理求得直线AM的教师式为3y =-,联立得3y y ⎧=⎪⎪⎨⎪=-⎪⎩,解得:4x y ⎧=-⎪⎨=-⎪⎩ ⊥N(--4),⊥ON综上:ON或或 【点睛】 本题考查了相似三角形的判定和性质,一次函数与二元一次方程组,勾股定理,有一定难度,解题的关键是根据题意画出图形,分类讨论解决问题.14.如图,在菱形ABCD 中,⊥DAB =60°,AB =3,点E 在边AD 上,且DE =1,点F 为线段AB 上一动点(不与点A 重合),将菱形沿直线EF 折叠,点A的对应点为点A′,当点A′落在菱形的对角线上时,AF 的长为___.【答案】2或5【分析】分两种情况进行讨论:⊥当点A ′在BD 上时,可以证明⊥A ′DE ⊥⊥FBA ′,对应边成比例,可求出AF 的长;⊥当点A ′在AC 上时,可得⊥EAF 是等边三角形,进而可求AF 的长.【详解】解:⊥当点A ′在BD 上时,如图,由折叠可知:⊥EA ′F =⊥DAB =60°,⊥⊥DA ′E +⊥F A ′B =120°,⊥⊥A =60°,AB =AD ,⊥⊥ADB 是等边三角形,⊥⊥DBA =⊥ADB =60°,⊥⊥A ′FB +⊥BA ′F =120°,⊥⊥DA ′E =⊥BF A ′,⊥⊥A ′DE ⊥⊥FBA ′, ⊥DE DA EA A B FB FA ''=='', ⊥AB =AD =DB =3,DE =1,⊥EA ′=EA =AD -DE =2,设F A ′=F A =x ,DA ′=y ,则BA ′=3-y ,BF =3-x , ⊥3123y y x x-==-,解得x =5⊥当点A ′在AC 上时,如图:由折叠可知:EF 垂直平分AA ′,⊥⊥AOF =90°,⊥四边形ABCD 是菱形,⊥DAB =60°,⊥⊥DAC =⊥BAC =30°,⊥⊥AFE =60°,⊥⊥EAF 是等边三角形,⊥AF =AE =AD -DE =2.综上所述:AF =52.故答案为:2或5【点睛】本题考查了翻折变换、等边三角形的判定与性质、菱形的性质,解决本题的关键是掌握菱形的性质.15.如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:⊥ABF DBE ∠=∠;⊥ABF DBE ∽;⊥AF BD ⊥;⊥22BG BH BD =;⊥若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)【答案】⊥⊥⊥⊥【分析】⊥四边形BGEF 和四边形ABCD 均为正方形,BD ,BE 是对角线,得⊥ABD =⊥FBE =45°,根据等式的基本性质确定出ABF DBE ∠=∠;⊥倍,得到两边对应成比例,再根据角度的相减得到夹角相等,利用两边成比例且夹角相等的两个三角形相似即可判断;⊥根据两角相等的两个三角形相似得到⊥EBH ⊥⊥DBE ,从而得到比例式,根据BE ,代换即可作出判断;⊥由相似三角形对应角相等得到⊥BAF =⊥BDE =45°,可得出AF 在正方形ABCD 对角线上,根据正方形对角线垂直即可作出判断.⊥设CE =x ,DE =3x ,则BC =CD =4x ,结合BE 2=BH •BD ,求出BH ,DH ,即可判断.【详解】解:⊥⊥四边形BGEF 和四边形ABCD 均为正方形,BD ,BE 是对角线,⊥⊥ABD =⊥FBE =45°,又⊥⊥ABF =45°−⊥DBF ,⊥DBE =45°−⊥DBF ,⊥ABF DBE ∠=∠,⊥选项⊥正确;⊥⊥四边形BGEF 和四边形ABCD 均为正方形,⊥AD =AB ,BF =BE ,⊥BD,,⊥BD BE AB BF== 又⊥ABF DBE ∠=∠,⊥ABF DBE ∽,⊥选项⊥正确;⊥⊥四边形BGEF 和四边形ABCD 均为正方形,BD ,BE 是对角线,⊥⊥BEH =⊥BDE =45°,又⊥⊥EBH =⊥DBE ,⊥⊥EBH ⊥⊥DBE , ⊥BD BE BE BH= ,即BE 2=BH •BD ,又⊥BE ,⊥22BG BH BD =,⊥选项⊥确;⊥由⊥知:ABF DBE ∽,又⊥四边形ABCD 为正方形,BD 为对角线,⊥⊥BAF =⊥BDE =45°,⊥AF 在正方形另外一条对角线上,⊥AF ⊥BD ,⊥⊥正确,⊥⊥:1:3CE DE =,⊥设CE =x ,DE =3x ,则BC =CD =4x ,⊥BE ==,BD =⊥BE 2=BH •BD ,⊥228BE BH x BD ===,⊥DH =BD -BH =x x =, ⊥:17:15BH DH =,故⊥错误,综上所述:⊥⊥⊥⊥正确,故答案是:⊥⊥⊥⊥.【点睛】此题考查了相似三角形的判定与性质,全等三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形的判定和性质是解本题的关键.16.如图,已知Rt AOB ,90∠=︒ABO ,点(15,0)A ,反比例函数(0)k y x x =>经过点B ,交AB 于点C ,若:3:2BC OB =,则k 的值是______.【答案】18【分析】过点B 作BD ⊥x 轴于D ,过点C 作CE ⊥BD 于E ,CF ⊥x 轴于点F ,易证⊥BOD ⊥⊥CBE ,可得32BE EC BC OD BD OB ===,设BE =3a ,EC =3b ,则OD =2a ,BD =2b .易得四边形EDFC 为矩形,则FD =CE =3b ,FC =ED =BD −BE =2b −3a ,得到B (2a ,2b ),C (3b +2a ,2b −3a ).由待定系数法可得:k =2a ×2b =4ab ,k =(3b +2a )(2b −3a ),等量代换可得:4ab =(3b +2a )(2b −3a ),整理得到:b =2a .于是得到BD =4a ,EC =6a ,FC =a ;易证⊥BEC ⊥⊥CF A ,可得12CF BE FA EC ==,求出F A =2a ,从而OA =OD +FD +F A =10a ,由点A (15,0),可得OA =15,a 的值可求,B 点坐标可得,用待定系数法k 值可求.【详解】解:过点B 作BD ⊥x 轴于D ,过点C 作C E ⊥BD 于E ,CF ⊥x 轴于点F ,如图,⊥⊥ABO =90°,⊥⊥OBD +⊥EBC =90°.⊥BD ⊥OD ,⊥⊥OBD +⊥BOD =90°.⊥⊥BOD =⊥EBC .⊥⊥ODB =⊥BEC =90°,⊥⊥BOD ⊥⊥CBE . ⊥32BE EC BC OD BD OB ===, ⊥设BE =3a ,EC =3b ,则OD =2a ,BD =2b . ⊥BD ⊥DF ,CE ⊥BD ,CF ⊥AD ,⊥四边形EDFC 为矩形.⊥FD =CE =3b ,FC =ED =BD −BE =2b −3a . ⊥B (2a ,2b ),C (3b +2a ,2b −3a ). 将B ,C 坐标分别代入教师式(0)k y x x=>中得: k =2a ×2b =4ab ,k =(3b +2a )(2b −3a ). ⊥4ab =(3b +2a )(2b −3a ).整理得到:b =−12a (不合题意,舍去)或b =2a . ⊥BD =4a ,EC =6a ,FC =a .⊥EC ⊥AD ,⊥⊥BCE =⊥A .⊥⊥BEC =⊥CF A =90°,⊥⊥BEC ⊥⊥CF A . ⊥12CF BE FA EC ==, ⊥F A =2CF =2a .⊥点A (15,0),⊥OA =15.⊥OD +FD +F A =15.⊥10a =15.解得:a =32. ⊥OD =3,BD =6.⊥B (3,6).⊥k =3×6=18.故答案为:18.【点睛】本题主要考查了反比例函数图象上点的坐标的特征,三角形相似的判定与性质,矩形的判定与性质,待定系数法确定函数的教师式.利用点的坐标表示出相应线段的长度是解题的关键.17.如图,点A 是边长为2的正方形DEFG 的中心,在ABC 中,90ABC ∠=︒,2AB =,4BC =,//DG BC ,点P 为正方形边上的一动点,在BP 的右侧作90PBH ∠=°且2BH PB =,则AH 的最大值为______.【答案】【分析】连接BD ,连接BG 并延长到D ',且使GD BG '=,易得DPB D HB '△△,由此可得当点P 在DG 上运动时,点H 在过点D '且垂直于BC 的线段D G '' 上运动,且D G ''=-4,仿此,可得点H 在以点C 为中心的边长为4的正方形上运动,可得当点P 与点F 重合时,AH 取得最大值,在Rt ⊥AEF '' 中,利用勾股定理即可求得AH 的长.【详解】如图,当点P 在线段DG 上时,连接BD ,连接BG 并延长到D ',且使GD BG '=⊥BC ⊥DG ,⊥ABC =90°⊥AB ⊥DG⊥四边形DEFG 是正方形,且A 为正方形的中心,AB =DG =2⊥AB 、DG 相互垂直平分⊥BD =BG ,⊥DBG =90°⊥2BD BD '=⊥BH =2PB ⊥2BD BH BD PB'== ⊥⊥DBG =⊥PBH =90°⊥DBP D BH '∠=∠⊥⊥DBP D BH '△△⊥BDG BD H '∠=∠,2D H DP '=⊥⊥BDG =⊥BGD =45°,⊥DGF =90°⊥⊥45FGD '=︒,45BDG BD H '∠=∠=︒⊥FG ⊥D H '⊥DG ⊥FG⊥DG ⊥D H '故当点P 在边DG 上运动时,点H 则在线段D G ''上运动,且2D G ''=DG =4由此可得,当点P 在四边形DEFG 上运动时,点H 在以C 为中心的正方形D E F G ''''上运动,且其边长为4当点P 与点F 重合,点H 与点 F '重合时,AH 最长,此时连接AD ',则AD '=2⊥6AE AD D E ''''=+=在Rt AE F ''中,由勾股定理得:AH AF '===故答案为:【点睛】本题是动点问题,求线段的最大值,它考查了正方形的性质,三角形相似的判定与性质,勾股定理等知识,关键和难点是确定动点H 的运动路径.18.如图1是一种利用镜面反射,放大微小变化的装置.木条BC 上的点P 处安装一平面镜,BC 与刻度尺边MN 的交点为D ,从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .已知,, 6.5AB BC MN BC AB ⊥⊥=,4,8BP PD ==.(1)ED 的长为____________.(2)将木条BC 绕点B 按顺时针方向旋转一定角度得到BC '(如图2),点P 的对应点为P ',BC '与MN 的交点为D′,从A 点发出的光束经平面镜P '反射后,在MN 上的光点为E '.若5DD '=,则EE '的长为____________.【答案】13232【分析】(1)由题意,证明⊥ABP ⊥⊥EDP ,根据相似三角形的性质,即可求出ED 的长度; (2)过A 作AH ⊥BN 交NB 延长线于H ,过E′作E′F ⊥BN 于F ,设E′D =x ,E′D′=5+x ,在Rt ⊥BDN 中,由勾股定理D′B 12=,可证⊥ABH ⊥⊥BD′D ⊥⊥E′D′F ,=6=2.5AH BH ,,6012255,1313x x E F FD ++''==,从A 点发出的光束经平面镜P′反射后,在MN 上形成一个光点E′.⊥AHP′⊥⊥E′FP′,6 6.560+1225591313x x =+-,解得x =1.5. 【详解】解:(1)由题意,⊥,AB BC MN BC ⊥⊥,⊥90ABP EDP ∠=∠=︒,⊥从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .⊥APB EPD ∠=∠,⊥⊥ABP ⊥⊥EDP , ⊥AB BP ED DP =, 即6.548ED =, ⊥13ED =;故答案为:13.(2)过A 作AH ⊥BN 交NB 延长线于H ,过E′作E′F ⊥BN 于F ,设E′D =x ,E′D′=5+x , 在Rt ⊥BDN 中,⊥BD =12,DD′=5,由勾股定理D′B 13=,⊥⊥AHB =⊥ABD =⊥E′FN =⊥BDD′=90°,⊥⊥ABH +⊥DBD′=⊥DBD′+⊥DD′B =FE D ''∠+⊥E′D′F ,⊥⊥ABH =⊥BD′D =⊥E′D′F ,⊥⊥ABH ⊥⊥BD′D ⊥⊥E′D′F , ⊥AB AH BH BD BD DD =='',E D E F FD BD BD DD ''''=='', ⊥6.513125AH BH ==,513125x E F FD ''+==, ⊥=6=2.5AH BH ,,6012255,1313x x E F FD ++''==, ⊥从A 点发出的光束经平面镜P′反射后,在MN 上形成一个光点E′.⊥AP H E P F '''∠=∠,⊥⊥AHP′⊥⊥E′FP′,HP′=HB +BP =2.5+4=6.5,P′D′=BD′-BP′=13-4=9,P′F = P′D′-FD′=9-25513x +,⊥AH P H E F P F '=''即6 6.560+1225591313x x =+-, 解得x =1.5,经检验x =1.5是方程的解,EE′=DE -DE′=13-1.5=11.5=232.故答案为232. 【点睛】本题考查相似三角形性质与判定,勾股定理,光束经平面镜P 性质,掌握相似三角形性质与判定,勾股定理,光束经平面镜P 性质,利用相似三角形的性质构造方程6 6.560+1225591313x x =+-是解题关键. 19.如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作1B l ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C ,延长的43B C 交x 轴于点4A ;…;按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为________(结果用含正整数n 的代数式表示).132n-⎛⎫⎪⎝⎭【分析】根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第n个正方形的边长.【详解】解:点1B在直线1:2l y x=上,点1B的横坐标为2,∴点1B纵坐标为1.1OB∴=分别过1B,14,,C C⋅⋅⋅作x轴的垂线,分别交于14,,,D D D⋅⋅⋅,下图只显示一条;111111190,B DAC DB B OD A B D∠=∠=︒∠=∠,∴111Rt B DO Rt A DB∽类似证明可得,图上所有直角三角形都相似,有11111211112n nn nC AB D B AC AOD OB C A C A+====⋅⋅⋅=,不妨设第1个至第n个正方形的边长分别用:12,,,nl l l⋅⋅⋅来表示,通过计算得:112OBl==121123322ll l C A=+==,2232233322ll l C A⎛⎫=+== ⎪⎝⎭⋅⋅⋅11113322nnn n n nll l C A----⎛⎫=+= ⎪⎝⎭按照这个规律进行下去,则第n个正方形1n n n nA B B C+132n-⎛⎫⎪⎝⎭,132n-⎛⎫⎪⎝⎭.【点睛】本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第n个正方形边长的方法与技巧.20.如图,在ABC中,点D是AB边上的一点,且3AD BD=,连接CD并取CD的中点E,连接BE,若45ACD BED∠=∠=︒,且CD=AB的长为__________.【答案】【分析】延长BE交AC于点F,过D点作DG BE G⊥于点,由45ACD BED∠=∠=︒可得此时CEF△为等腰直角三角形,E为CD的中点且CD=CE DE==Rt CEF中,根据勾股定理求得CF,EF长度,由BF DG⊥可得EDG ECF△≌△,即EG EF=,由BF AC⊥,BF DG⊥可得AC DG∥,即BDG BAF△∽△,13BG BDFG AD==∴,求得,4AB BD==∴【详解】如下图,延长BE交AC于点F,过D点作DG BE G⊥于点,⊥45ACD BED∠=∠=︒,=45BED CEF∠=︒∠,⊥90EFC=∠,BF AC⊥,CEF△为等腰Rt CEF.由题意可得E为CD的中点,且CD=⊥CE DE==在等腰Rt CEF中,32CE,3CF EF ==∴,又⊥BF DG ⊥,在ECF EDG △和△中,90CFE DGE CEF DEG CE DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩⊥EDG ECF △≌△(AAS )⊥3EF EG ==,⊥BF AC ⊥,BF DG ⊥,⊥//AC DG , ⊥13BG BD FG AD == 6FG EF EG =+=,⊥2BG =,BD4AB BD ==∴故答案为:【点睛】本题考察了等腰直角三角形的性质,勾股定理求对应边的长度,全等三角形的性质与判定,相似三角形的性质与判定,构造合适的相似三角形,综合运用以上性质是解题的关键.三、解答题21.如图,在平面直角坐标系中,直线4y kx k =+交x 轴于点A ,交y 轴于点B ,且34OB OA =.(1)求直线AB 的教师式;(2)点(),0P t 是x 轴正半轴上一点,连接BP ,将射线PO 沿BP 翻折,与过点B 垂直于BP 的直线交于点C ,过点C 作CD x ⊥轴于点D ,求线段CD 的长;(3)在(2)的条件下,射线BD 交射线CP 于点Q ,若56BCD DCQ S S =△△,求P 点坐标.【答案】(1)334y x =+;(2)6;(3)P ⎫⎪⎪⎝⎭【分析】(1)根据直线4y kx k =+与x 轴,y 轴的交求得A ,继而求得OA ,OB ,再求得点B ,最后根据待定系数法求教师式;(2)根据翻折性质可得BPC BPE ∠=∠,继而易证⊥PBC ⊥⊥PBE (ASA ),可得BC BE =,继而证得OB 是⊥CDE 的中位线,即可求解;(3)作QN ⊥CD 于点N ,作BM ⊥CD 于点M ,设5OD OE BM m ===,6NQ m =, 求得185DN =,根据tan DP NQ DCP CD CN ∠==,求得154m DP =,继而求得CP ,在Rt CDP △中,由勾股定理得:222CD DP CP +=,解得m ,继而即可求解.【详解】(1)令x =0,得4y k =,则(0,4k ),令0y =得40kx k +=,解得:4x =-,则()4,0A -⊥4OA =, ⊥34OB OA = ⊥3OB =,即()0,3B ,⊥043k b b =-+⎧⎨=⎩, 解得:343k b ⎧=⎪⎨⎪=⎩, ⊥直线AB 的教师式334y x =+.(2)由翻折可知BPC BPE ∠=∠,又PB CE ⊥,即⊥PBC =⊥PBE =90°,又BP =BP ,⊥⊥PBC ⊥⊥PBE (ASA ),⊥BC BE =.⊥CD x ⊥轴于点D ,⊥//OB CD ,⊥OB 是⊥CDE 的中位线,⊥26CD OB ==.(3)作QN ⊥CD 于点N ,作BM ⊥CD 于点M ,由56BCD DCQ S S =△△,即151262CD OD CD NQ ⋅=⨯⋅, 5,6OD NQ ∴= ⊥BM ⊥DE ⊥NQ ,12BM DE OD OE ===,DM =OB =3, ⊥⊥BDM ⊥⊥QDN , ⊥DM BM DN NQ=, 设5OD OE BM m ===,6NQ m =, 即356m DN m=, 解得:185DN =, tan DP NQ DCP CD CN ∠==, 6,18665DP m ∴=+ 解得:154m DP =, ⊥15551044m CP PE DP DE m m ==+=+=. 在Rt CDP △中,由勾股定理得:222CD DP CP +=,即2221555644m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得:m =⊥1535355444OP OD DP m m m =+=+===,⊥P ⎫⎪⎪⎝⎭.【点睛】本题考查一次函数的综合题,涉及到勾股定理,相似三角形的判定及其性质,全等三角形的判定和性质,解题的关键是综合运用所学在求得关键线段和坐标,综合性较强,需认真审题. 22.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF 绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:⊥AE DF=_____;⊥直线AE 与DF 所夹锐角的度数为______. (2)小王同学继续将BEF 绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,则ADE 的面积为______.【答案】(130°;(2 【分析】(1)通过证明FBD EBA ∆∆∽,可得AE BE DF BF =BDF BAE ∠=∠,即可求解;(2)通过证明ABE DBF ∆∆∽,可得AE BE DF BF =,BDF BAE ∠=∠,即可求解; 拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠===, 如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF =,BDF BAE ∠=∠, 又DOB AOF ∠=∠,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30,30; (2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又BE AB BF DB == ABE DBF ∴∆∆∽,∴AE BE DF BF =,BDF BAE ∠=∠, 又DOH AOB ∠=∠,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,。
中考模拟数学试卷一、单项选择题(共12分)1.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对2.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=33.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=34.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:25.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈二、填空题(共24分)1.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达()。
(结果保留根号)|与(tanB−√3)2互为相反数,则∠C的度数2.已知△ABC,若有|sinA−12是。
三、解答题3.如图,在四边形A BCD中,A D∥BC,A B⊥BC,点E在A B上,∠DEC=90°。
求证:△ADE∽△BEC。
1.如图,同心圆O,大圆的面积被小圆所平分,若大圆的弦AB,CD分别切小圆于E、F点,当大圆半径为R时,且AB∥CD,求阴影部分面积。
2.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C,在x轴的正半轴上(C在B的右侧),BC=2,AB=2根号3,△ADC与△ABC关于AC所在的直线对称。
第18题:图形的运动1平移:平移的方向和距离2旋转:三不变找旋转(图形的形状大小旋转角不变)3翻折:两点一线找勾股(对称点,垂直平分线上海中考初三数学压轴题方法整理汇总)第23题几何证明(书写规范)证明边角相等:全等,相似,等腰证明平行线:角,比例线段,中位线,平行四边形证明等积式:三点定形找相似(等线段代换,等比代换,等积代换)(添平行线构造A 形,八形)证明四边形:常用辅助线:联结对角线第24题代数型综合题求坐标的方法1一作二设法②两点公式法③代入解析法④平移法二次函数与相似三角形1先找死角:由边出发,死角的两边对应成比例求边长;2先找死角:由角出发,利用三角比求边长二次函数与直角三角形1一线三等角②勾股定理二次函数与等腰三角形:两点间距离公式二次函数与角相等:1找相似三角形②找三角比二次函数与45度角1先找45度角转化为角相等,然后找相似或三角比2加高,转换为等腰直角三角形二次函数与四边形1由四边形的性质求边或角(等腰梯形加双高,两腰相等,加顶)2由边或角转化为相似或三角比第25题几何型综合题读题圈划五寻找(边,角,辅助线,基本图形,解题工具)解题工具:三角比,相似,勾股,面积法基本图形:一线三等角,母子三角形,角平分线+平行=等腰三角形,A形八形,特殊三角形……常用辅助线:中位线,三线合一,斜中,平行线,四边形对角线,,圆的半径与弦心距……等腰三角形:①相似转化;②分论讨论;③三线合一三角比:转角;加高(面积法);设K面积:①直接求;②相似;③等底等高求定义域:①极端位置;②解析式本身;③三边关系。
专题2020年上海各区分类汇编-25题专题一动点函数下的相似三角形【知识梳理】【历年真题】1.(2019秋•奉贤区期末)如图,已知平行四边形ABCD中,AD AB=5,tan A=2,点E在射线AD上,过点E作EF⊥AD,垂足为点E,交射线AB于点F,交射线CB于点G,联结CE、CF,设AE=m.(1)当点E在边AD上时,①求△CEF的面积;(用含m的代数式表示)②当S△DCE=4S△BFG时,求AE:ED的值;(2)当点E在边AD的延长线上时,如果△AEF与△CFG相似,求m的值.2.(2019秋•杨浦区期末)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.专题二动点函数背景下的面积问题【知识梳理】【历年真题】1.(2019秋•黄浦区期末)如图,△ABC 是边长为2的等边三角形,点D 与点B 分别位于直线AC 的两侧,且AD =AC ,联结BD 、CD ,BD 交直线AC 于点E .(1)当∠CAD =90°时,求线段AE 的长.(2)过点A 作AH ⊥CD ,垂足为点H ,直线AH 交BD 于点F ,①当∠CAD <120°时,设AE =x ,y =BCE AEFS S ∆∆(其中S △BCE 表示△BCE 的面积,S △AEF 表示△AEF 的面积),求y 关于x 的函数关系式,并写出x 的取值范围;②当BCE AEFS S ∆∆=7时,请直接写出线段AE 的长.2.(2019秋•松江区期末)已知tan∠MON=2,矩形ABCD的边AB在射线OM上,AD=2,AB=m,CF⊥ON,垂足为点F.(1)如图(1),作AE⊥ON,垂足为点E,当m=2时,求线段EF的长度.(2)如图(2),联结OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;(3)如图(3),当△AFD与△CDF相似时,求m的值.专题三动点函数背景下的等腰三角形【知识梳理】【历年真题】1.(2019秋•浦东新区期末)在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB边上一动点(点D与点A、B不重合),联结CD,过点D作DE⊥DC交边BC于点E.(1)如图,当ED=EB时,求AD的长;(2)设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;(3)把△BCD沿直线CD翻折得△CDB',联结AB',当△CAB'是等腰三角形时,直接写出AD的长.2.(2019秋•青浦区期末)如图,在梯形ABCD中,AD∥BC,BC=BD=10,CD=4,AD=6.点P是线段BD上的动点,点E、Q分别是线段DA、BD上的点,且DE=DQ=BP,联结EP、EQ.(1)求证:EQ∥DC;(2)当BP>BQ时,如果△EPQ是以EQ为腰的等腰三角形,求线段BP的长;(3)当BP=m(0<m<5)时,求∠PEQ的正切值.(用含m的式子表示)3.(2019秋•闵行区期末)已知:如图,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt△ABC的重心,射线CG交边AB于点F,AD=x,CE=y.(1)求证:∠DAB=∠DCF;(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.4.(2019秋•崇明区期末)如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.5.(2019秋•宝山区期末)如图,OC是△ABC中AB边的中线,∠ABC=36°,点D为OC上一点,如果OD=k⋅OC,过D作DE∥CA交于BA点E,点M是DE的中点,将△ODE绕点O顺时针旋转α度(其中0°<α<180°)后,射线OM交直线BC于点N.(1)如果△ABC的面积为26,求△ODE的面积(用k的代数式表示);(2)当N和B不重合时,请探究∠ONB的度数y与旋转角α的度数之间的函数关系式;(3)写出当△ONB为等腰三角形时,旋转角α的度数.专题四动点函数背景下的线段问题【知识梳理】【历年真题】1.(2019秋•虹口区期末)如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=3 5,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;=y,求y关于x的函数关系式(不需要写函数的定义域);(2)当点D在BC的延长线上时,设AG=x,S△DAF(3)如果AG=8,求DE的长.2.(2019秋•静安区期末)已知:如图1,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE•DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图2,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.专题四动点函数背景下四边形【知识梳理】【历年真题】1.(2019秋•长宁、金山区期末)如图,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,点P、Q分别在边AC、射线CB上,且AP=CQ,过点P作PM⊥AB,垂足为点M,联结PQ,以PM、PQ为邻边作平行四边形PQNM,设AP=x,平行四边形PQNM的面积为y.(1)当平行四边形PQNM为矩形时,求∠PQM的正切值;(2)当点N在△ABC内,求y关于x的函数解析式,并写出它的定义域;(3)当过点P且平行于BC的直线经过平行四边形PQNM一边的中点时,直接写出x的值.2.(2019秋•嘉定区期末)已知:点P在△ABC内,且满足∠APB=∠APC(如图),∠APB+∠BAC=180°.(1)求证:△PAB∽△PCA;(2)如果∠APB=120°,∠ABC=90°,求PCPB的值;(3)如果∠BAC=45°,且△ABC是等腰三角形,试求tan∠PBC的值.3.(2019秋•徐汇区期末)如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.4.(2019秋•普陀区期末)如图,在梯形ABCD中,AD//BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.专题2020年上海各区分类汇编-25题专题一动点函数下的相似三角形【历年真题】1.(2019秋•奉贤区期末)如图,已知平行四边形ABCD 中,AD AB =5,tan A =2,点E 在射线AD 上,过点E 作EF ⊥AD ,垂足为点E ,交射线AB 于点F ,交射线CB 于点G ,联结CE 、CF ,设AE =m .(1)当点E 在边AD 上时,①求△CEF 的面积;(用含m 的代数式表示)②当S △DCE =4S △BFG 时,求AE :ED 的值;(2)当点E 在边AD 的延长线上时,如果△AEF 与△CFG 相似,求m 的值.【考点】相似形综合题.【专题】综合题;运算能力;推理能力.【分析】(1)①先根据三角函数表示出EF ,再用勾股定理表示出AF ,再判断出△AEF ∽△BGF ,得出比例式表示出CG ,即可得出结论;②先表示出FG ,再用S △DCE =4S △BFG 建立方程求出m ,即可得出结论;(2)分两种情况:①当△AEF ∽△CGF 时,得出∠AFE =∠CFG ,进而得出BG =12BC =52,FG =BG tan ∠CBFBF =52,进而得出AF =AB +BF =5+52=152,最后判断出△BGF ∽△AEF ,得出比例式建立方程求解即可得出结论;②当△AEF ∽△CGF 时,先判断出∠AFC =90°,进而得出CF =2BF ,再根据勾股定理得,求出BF =1,得出AF =AB +BF =6,同理:BG =,再判断出△BGF ∽△AEF ,得出比例式建立方程求解即可得出结论.【解答】解:(1)①∵EF ⊥AD ,∴∠AEF =90°,在Rt △AEF 中,tan A =2,AE =m ,∴EF =AE tan A =2m ,根据勾股定理得,AF ,∵AB =5,∴BF =5,∵四边形ABCD 是平行四边形,∴BC =AD AD ∥BC ,∴∠G =∠AEF =90°,∴△AEF ∽△BGF ,∴AE AFBG BF =,∴m BG =,∴BG m ,∴CG =BC +BG =m =m ,∴S △CEF =12EF •CG =12•2m •(m )=m ﹣m 2;②由①知,△AEF ∽△BGF ,∴BF FG AF EF =,∴FG =BFAF •EF •2m =2m ),∴EG =EF +FG =2m +2﹣m )=∴S △CDE =12DE •EG =12(m )•5,S △BFG =12BG •FG =12m )•2m ﹣m )2,S △DCE =4S △BFG 时,∴5=4m )2,∴m m =354,∴DE =AD ﹣AE ﹣4=4,∴AE :ED =354:54=3,即:AE :ED 的值为3;(2)∵四边形ABCD 是平行四边形,∴BC =AD ,AD ∥BC ,∵EF ⊥AD ,∴EF ⊥BC ,∴∠AEF =∠CGF =90°,∵△AEF 与△CFG 相似,∴①当△AEF ∽△CGF 时,如图1,∴∠AFE =∠CFG ,∵EF ⊥BC ,∴BG =12BC =52,∵AD ∥BC ,∴∠CBF =∠A ,∵tan A =2,∴tan ∠CBF =2,在Rt △BGF 中,FG =BG tan ∠CBF根据勾股定理得,BF 52,∴AF =AB +BF =5+52=152,∵BC∥AD,∴△BGF∽△AEF,∴BG BFAE AF=,∴,∴m =35 2;②当△AEF∽△CGF时,如图2,∴∠EAF=∠GFC,∵∠EAF+∠AFE=90°,∴∠GFC+∠AFE=90°,∴∠AFC=90°,∵AD∥BC,∴∠CBF=∠A,∴tan∠CBF=tan A=2,在Rt△BFC中,CF=BF•∠CBF=2BF,根据勾股定理得,BF2+CF2=BC2,∴BF2+4BF2)2,∴BF=1,∴AF=AB+BF=6,在Rt△BGF中,同理:BG =5 5,∵AD∥BC,∴△BGF∽△AEF,∴AE AFBG BF=6155=,∴m =655.即:如果△AEF与△CFG相似,m 的值为35 2或.【点评】此题是相似形综合题,主要考查了平行四边形的性质,锐角三角函数,三角形的面积公式,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.2.(2019秋•杨浦区期末)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ ,直线PQ 与直线BC 交于点E ,如果△QCE 与△BCP 相似,求线段BP 的长.【考点】相似形综合题.【专题】几何综合题;应用意识.【分析】(1)如图1中,作PH ⊥BC 于H .解直角三角形求出BH ,PH ,在Rt △PCH 中,理由勾股定理即可解决问题.(2)如图1中,作PH ⊥BC 于H ,连接PQ ,设PC 交BD 于O .证明△POQ ∽△BOC ,推出∠OPQ =∠OBC =30°=∠PCQ ,推出PQ =CQ =y ,推出PC ,在Rt △PHB 中,BH =12x ,PH =2x ,根据PC 2=PH 2+CH 2,可得结论.(3)分两种情形:①如图2中,若直线QP 交直线BC 于B 点左侧于E .②如图3中,若直线QP 交直线BC 于C 点右侧于E .分别求解即可.【解答】解:(1)如图1中,作PH ⊥BC 于H .∵四边形ABCD 是菱形,∴AB =BC =4,AD ∥BC ,∴∠A +∠ABC =180°,∵∠A =120°,∴∠PBH =60°,∵PB =3,∠PHB =90°,∴BH =PB •cos60°=32,PH =PB •sin60°=332,∴CH =BC ﹣BH =4﹣32=52,∴PC =.(2)如图1中,作PH ⊥BC 于H ,连接PQ ,设PC 交BD 于O .∵四边形ABCD 是菱形,∴∠ABD =∠CBD =30°,∵∠PCQ =30°,∴∠PBO =∠QCO ,∵∠POB=∠QOC,∴△POB∽△QOC,∴PO BOQO CO=,∴PO QOBO CO=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC y,在Rt△PHB中,BH=12x,PH=32x,∵PC2=PH2+CH2,∴3y2=(2x)2+(4﹣12x)2,∴y=3(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=PCF=45°,∴PF=CF=,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE 与△BCP 相似,∴∠CQE =∠CBP =120°,∴∠QCE =∠PCB =15°,作CF ⊥AB 于F .∵∠FCB =30°,∴∠FCP =45°,∴BF =12BC =2,CF =PF =23∴PB =3﹣2.综上所述,满足条件的PB 的值为3或232.【点评】本题考查相似形综合题,考查了菱形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.专题二动点函数背景下的面积问题【历年真题】1.(2019秋•黄浦区期末)如图,△ABC 是边长为2的等边三角形,点D 与点B 分别位于直线AC 的两侧,且AD =AC ,联结BD 、CD ,BD 交直线AC 于点E .(1)当∠CAD =90°时,求线段AE 的长.(2)过点A 作AH ⊥CD ,垂足为点H ,直线AH 交BD 于点F ,①当∠CAD <120°时,设AE =x ,y =BCE AEFS S ∆∆(其中S △BCE 表示△BCE 的面积,S △AEF 表示△AEF 的面积),求y 关于x 的函数关系式,并写出x 的取值范围;②当BCE AEFS S ∆∆=7时,请直接写出线段AE的长.【考点】三角形综合题.【专题】等腰三角形与直角三角形;应用意识.【分析】(1)过点E 作EG ⊥BC ,垂足为点G .AE =x ,则EC =2﹣x .根据BG =EG 构建方程求出x 即可解决问题.(2)①证明△AEF ∽△BEC ,可得22BCE AEF S BE S AE∆∆=,由此构建关系式即可解决问题.②分两种情形:当∠CAD <120°时,当120°<∠CAD <180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC 是等边三角形,∴AB =BC =AC =2,∠BAC =∠ABC =∠ACB =60°.∵AD =AC ,∴AD =AB ,∴∠ABD =∠ADB ,∵∠ABD +∠ADB +∠BAC +∠CAD =180°,∠CAD =90°,∠ABD =15°,∴∠EBC =45°.过点E 作EG ⊥BC ,垂足为点G.设AE =x ,则EC =2﹣x .在Rt △CGE 中,∠ACB =60°,∴3sin ACB=)2EG EC x =- ∠,1cos ACB=12CG EC x =- ∠,∴BG =2﹣CG =1+12x ,在Rt △BGE 中,∠EBC =45°,∴131)22x x +=-,解得4x =-.所以线段AE的长是4-.(2)①设∠ABD =α,则∠BDA =α,∠DAC =∠BAD ﹣∠BAC =120°﹣2α.∵AD =AC ,AH ⊥CD ,∴1CAF=DAC=60-2α ∠∠,又∵∠AEF =60°+α,∴∠AFE =60°,∴∠AFE =∠ACB ,又∵∠AEF =∠BEC ,∴△AEF ∽△BEC ,∴22BCE AEF S BE S AE∆∆=,由(1)得在Rt △CGE 中,BG =1+12x,EG )2x =-,∴BE 2=BG 2+EG 2=x 2﹣2x +4,∴2224x x y x-+=(0<x <2).②当∠CAD <120°时,y =7,则有7=2224x x x-+,整理得3x 2+x ﹣2=0,解得x =23或﹣1(舍弃),2AE=3.当120°<∠CAD <180°时,同法可得22+24x x y x +=当y=7时,7=22+24x xx,整理得3x2﹣x﹣2=0,解得x=﹣23(舍弃)或1,∴AE=1.【点评】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.2.(2019秋•松江区期末)已知tan∠MON=2,矩形ABCD的边AB在射线OM上,AD=2,AB=m,CF⊥ON,垂足为点F.(1)如图(1),作AE⊥ON,垂足为点E,当m=2时,求线段EF的长度.(2)如图(2),联结OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;(3)如图(3),当△AFD与△CDF相似时,求m的值.【考点】相似形综合题.【专题】分类讨论;图形的相似;推理能力.【分析】(1)如图1,延长FC交OM于点G,证∠BCG=∠MON,在Rt△AOE中,设OE=a,可求得OA,OG,OF的长,则EF=OF﹣OE=65 5;(2)如图2,延长FC交OM于点G,由(1)得CG=5,推出CO=CG=5,在Rt△COB中,由勾股定理求出a的值,得出OF的长,可求出cos∠COF的值,进一步推出sin∠COF的值;(3)需分情况讨论:当D在∠MON内部时,△FDA∽△FDC时,此时CD=AD=2,m=2;当△FDA∽△CDF 时,延长CD交ON于点Q,过F作FP⊥CQ于P,可利用三角函数求出m的值;当D在∠MON外部时,可利用相似的性质等求出m的值.【解答】解:(1)如图1,延长FC交OM于点G,∵∠BCG+∠CGB=90°,∠MON+∠CGB=90°,∴∠BCG=∠MON,则tan∠BCG=tan∠MON=2,∴BG=2BC=4,CG=,在Rt△AOE中,设OE=a,由tan∠MON=2,可得OA a,则OG+6,OF=OG=a+,∴EF=OF﹣OE=65 5;(2)如图2,延长FC交OM于点G,由(1)得CG=∵CD平分∠FCO,∴∠FCD=∠DCO,∵CD∥OM,∴∠FCD=∠CGO,∠DCO=∠COG,∴∠CGO=∠COG,∴CO=CG=在Rt△COB中,由BC2+BO2=OC2,得22++2)2=(2,解得a1=﹣655(舍去),a2=255,∴OF=a+5=5,cos∠COF=45 OFOC=,∴sin∠COF=3 5;(3)当D在∠MON内部时,①如图3﹣1,△FDA∽△FDC时,此时CD=AD=2,∴m=2;②当△FDA∽△CDF时,如图3﹣2,延长CD交ON于点Q,过F作FP⊥CQ于P,则∠FDC=∠FDA=135°,∴∠FDP=45°,∵PC=FP•tan∠PFC=FP•tan∠MON=2FP=2DP=CD+DP,∴FP=PD=CD=m,∴FD m,∵△FDA∽△CDF,∴FD CD DA FD=,∴FD==,∴m=1;当D在∠MON外部时,∠ADF>90°,∠DFC>90°,∴∠ADF =∠DFC ,∴∠DFI =∠FDI ,ID =IF ,①如图3﹣3,△FDA ∽△DFC 时,此时△FDA ≌△DFC ,∴CF =AD =2,∵∠DAF =∠FCD =∠FHD ,∴A 、O 重合,延长BC 交ON 于R ,∴FR =2CF =4,CR =BR =,∴m =CD =AB =12BR =;②如图3﹣4,△FDA ∽△CFD 时,设CF =(t >0),延长BC 交ON 于R ,过F 作FS ⊥CD 于S ,∵△DFC ≌△FDH ,∴DH =FC ,∴ID =IF =12CF ,∴IS =t ,FS =2t ,CS =4t ,DS )t ,DH =FC =,∵△FDA ∽△CFD ,∴AD DF DF FC=,∴DF 2=AD •FC =2DH =t ,∵DF 2=DS 2+FS 2,∴=4t 2+)2t 2,解得t 1=512-,t 2=0(舍去),∴DH =t =52=AD ,矛盾,综上所述:m =1或m =2,或m =【点评】本题考查了解直角三角形,等腰三角形的性质,相似三角形的判定与性质等,解题关键是注意分类讨论思想的运用.专题三动点函数背景下的等腰三角形【历年真题】1.(2019秋•浦东新区期末)在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB边上一动点(点D与点A、B不重合),联结CD,过点D作DE⊥DC交边BC于点E.(1)如图,当ED=EB时,求AD的长;(2)设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;(3)把△BCD沿直线CD翻折得△CDB',联结AB',当△CAB'是等腰三角形时,直接写出AD的长.【考点】几何变换综合题.【专题】几何综合题;应用意识.【分析】(1)证明∠ACD=∠EDB=∠B,推出tan∠ACD=tan∠B,可得AD ACAC AB=,由此构建方程即可解决问题.(2)如图1中,作EH⊥BD于H.证明△ACD∽△HDE,推出AC ADDH EH=,由此构建关系式即可解决问题.(3)分两种情形:①如图3﹣1中,设CB′交AB于K,作AE⊥CK于E,DM⊥CB′于M,DN⊥BC于N.利用角平分线的性质定理求出BD即可.②如图3﹣2中,当CB′交BA的延长线于K时,同法可得BD.【解答】解:(1)∵ED=EB,∴∠EDB=∠B,∵CD⊥DE,∴∠CDE=∠A=90°,∵∠ACD+∠ADC=90°,∠ADC+∠EDH=90°,∴∠ACD=∠EDB=∠B,∴tan∠ACD=tan∠B,∴AD ACAC AB=,∴334AD=,∴94AD=.(2)如图1中,作EH⊥BD于H.在Rt△ACB中,∵∠A=90°,AC=3,AB=4,∴BC=5,∵BE=y,∴EH=35y,BH=45y,DH=AB﹣AD﹣BH=4﹣x﹣45y,∵∠A=∠DHE=90°,∠ACD=∠EDH,∴△ACD∽△HDE,∴AC AD=DH EH,∴3x=434-x-55y y,∴220594x xyx-=+(0<x<4).(3)①如图3﹣1中,设CB′交AB于K,作AE⊥CK于E,DM⊥CB′于M,DN⊥BC于N∵AC =AB ′=3,AE ⊥CB ′,∴CE ='EB ='12CB =52,∴AE 22225113()22AC CE -=-,由△ACE ∽△KCA ,可得AK =3115,CK =185,∴BK =AB ﹣AK =4﹣3115,∵∠DCK =∠DCB ,DM ⊥CM ,DN ⊥CB ,∴DM =DN ,∴181185215252CDK CDB CK DM S DK CK S DB CB BC DN ∆∆===== ,∴BD =2543BK =10043151143,∴AD =AB ﹣BD =4﹣(10043151143)=7242151143.②如图3﹣2中,当CB ′交BA 的延长线于K 时,同法可得BD =2543BK =10043151143,∴AD =AB ﹣BD =7242﹣151143.【点评】本题属于几何变换综合题,考查了解直角三角形,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.2.(2019秋•青浦区期末)如图,在梯形ABCD 中,AD ∥BC ,BC =BD =10,CD =4,AD=6.点P 是线段BD 上的动点,点E 、Q 分别是线段DA 、BD 上的点,且DE =DQ =BP ,联结EP 、EQ .(1)求证:EQ ∥DC ;(2)当BP >BQ 时,如果△EPQ 是以EQ 为腰的等腰三角形,求线段BP 的长;(3)当BP =m (0<m <5)时,求∠PEQ 的正切值.(用含m 的式子表示)【考点】相似形综合题.【专题】综合题;运算能力;推理能力.【分析】(1)先利用两边对应成比例,夹角相等,判断出△DEQ ∽△BCD ,得出∠DQE =∠BDC ,即可得出结论;(2)先用△DEQ ∽△BCD ,得出比例式表示出EQ ,再分两种情况,建立方程求解,即可得出结论;(3)先判得出△PHQ ∽△BGD ,得出PH PQ HQ BG BD GD ==,进而表示出HQ =1025m -,PH =26(102)5m -,即可得出结论.【解答】解:(1)∵AD ∥BC ,∴∠EDQ =∠DBC ,∵DE =DQ ,BD =BC ,∴1DE DQ =,BD BC =1,∴DE BD DQ BC=,∴△DEQ ∽△BCD ,∴∠DQE =∠BDC ,∴EQ ∥CD ;(2)设BP =x ,则DQ =x ,QP =2x ﹣10,∵△DEQ∽△BCD,∴EQ QDDC BC=,∴410EQ x=,∴EQ=25x,∵△EPQ是以EQ为腰的等腰三角形,∴Ⅰ、当EQ=EP时,∴∠EQP=∠EPQ,∵DE=DQ,∴∠EQP=∠QED,∴∠EPQ=∠QED,∴△EQP∽△DEQ,∴,∴EQ2=DE•QP,∴(25x)2=(2x﹣10)•x,解得,x=0(舍)或x=12523<6,即:BP=12523,Ⅱ、当QE=QP时,25x=2x﹣10,解得,x=254>6,此种情况不存在,即:BP=125 23;(3)如图,过点P作PH⊥EQ,交EQ的延长线于点H,过点B作BG⊥DC,垂足为点G,∵BD=BC,BG⊥DC,∴DG=2,BG=,∵BP=DQ=m,∴PQ=10﹣2m,∵EQ∥DC,∴∠PQH=∠BDG,∵∠PHQ=∠BGD=90°,∴△PHQ∽△BGD,∴PH PQ HQBG BD GD==102102m HQ-==,∴HQ=1025m-,PH=2)5m-,∴EH=102255m m-+=2,∴tan∠PEQ=PHEH=2)5m-12⨯=﹣5m.【点评】此题是相似形综合题,主要考查了相似三角形的判定和性质,平行线的性质,锐角三角函数,用方程的思想解决问题是解本题的关键.3.(2019秋•闵行区期末)已知:如图,在Rt△ABC和Rt△ACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(点A、B分别在直线CD的左右两侧),射线CD交边AB于点E,点G是Rt△ABC的重心,射线CG交边AB于点F,AD=x,CE=y.(1)求证:∠DAB=∠DCF;(2)当点E在边CD上时,求y关于x的函数关系式,并写出x的取值范围;(3)如果△CDG是以CG为腰的等腰三角形,试求AD的长.【考点】相似形综合题.【专题】图形的相似;推理能力.【分析】(1)由点G是Rt△ABC的重心,证明CF⊥AB,即∠AFC=90°,利用外角的性质即可证明结论;(2)过点B作BH⊥CD于点H,先证△CAD≌△BCH,得出BH=CD=2,CH=AD=x,DH=2﹣x,再证△ADE ∽△BHE,利用合比性质即可求出结论;(3)分两种情况讨论,当GC=GD时,如图2﹣1,取AC的中点M,联结MD,可证AD=CH=12CD=1;当CG=CD时,如图2﹣2,可由重心分别求出CF,AC,CD的长,可由勾股定理求出AD的长.【解答】(1)证明:∵点G是Rt△ABC的重心,∴CF是Rt△ABC的中线,又∵在Rt△ABC中,AC=BC,∠ACB=90°,∴CF⊥AB,即∠AFC=90°,∵∠DEF=∠ADE+∠DAE=∠EFC+∠ECF,且∠ADE=∠EFC=90°,∴∠DAB=∠DCF;(2)解:如图1,过点B作BH⊥CD于点H,则∠CBH+∠BCH=90°,又∵∠BCH+∠ACD=90°,∴∠ACD=∠CBH,又∵∠ADC=∠CHB=90°,AC=CB,∴△CAD≌△BCH,∴BH=CD=2,CH=AD=x,DH=2﹣x,∵∠ADC=∠CHB=∠BHD=90°,∴AD∥BH,∴△ADE∽△BHE,∴AD DEBH EH=,∴2x DEEH=,∴22x DE EH DHEH EH++==,∴4-2xEH=x+2,∴2424(02)22x xy CE CH HE x xx x-+==+=+=<≤++;(3)解:当GC=GD时,如图2﹣1,取AC的中点M,联结MD,那么MD=MC,联结MG,MG⊥CD,且直线MG经过点B,那么BH与MG共线,又CH =AD ,那么AD =CH =12CD =1;当CG =CD 时,如图2﹣2,即CG =2,点G 为△ABC 的重心,∴332CF CG ==,∴AB =2CF =6,∴22AC AB ==,∴AD ==;综上所述,AD =1【点评】本题考查了函数,相似三角形的判定与性质,重心的性质等,解题关键是熟练掌握重心的性质.4.(2019秋•崇明区期末)如图,在△ABC 中,AB =AC =10,BC =16,点D 为BC 边上的一个动点(点D 不与点B 、点C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F .(1)求证:AB •CE =BD •CD ;(2)当DF 平分∠ADC 时,求AE 的长;(3)当△AEF 是等腰三角形时,求BD 的长.【考点】相似形综合题.【专题】几何综合题;图形的相似;推理能力.【分析】(1)根据等腰三角形的性质得到∠B =∠C ,根据三角形的外角性质得到∠BAD =∠CDE ,得到△BAD ∽△CDE ,根据相似三角形的性质证明结论;(2)证明DF ∥AB ,根据平行线的性质得到AE BD AC BC =,证明△BDA ∽△BAC ,根据相似三角形的性质列式计算,得到答案;(3)分点F 在DE 的延长线上、点F 在线段DE 上两种情况,根据等腰三角形的性质计算即可.【解答】(1)证明:∵AB =AC ,∴∠B =∠C ,∠ADC =∠BAD +∠B ,∠ADE =∠B ,∴∠BAD =∠CDE ,又∠B =∠C ,∴△BAD ∽△CDE ,∴AB BD CD CE=,即AB •CE =BD •CD ;(2)解:∵DF 平分∠ADC ,∴∠ADE =∠CDE ,∵∠CDE =∠BAD ,∴∠ADE =∠BAD ,∴DF ∥AB ,∴AE BD AC BC=,∵∠BAD =∠ADE =∠B ,∴∠BAD =∠C ,又∠B =∠B ,∴△BDA ∽△BAC ,∴BD BA BA BC =,即101016BD =解得,254BD =,∴2541016AE =,解得,AE =12532;(3)解:作AH ⊥BC 于H ,∵AB =AC ,AH ⊥BC ,∴BH =HC =12BC =8,由勾股定理得,AH 22221086AB BH -=-=,∴tan B =AH BH =34,∴tan ∠ADF =AF AD =34,设AF =3x ,则AD =4x ,由勾股定理得,DF 22AD AF +=5x ,∵△BAD ∽△CDE ,∴AD AB DE CD =,当点F在DE的延长线上,FA=FE时,DE=5x﹣3x=2x,∴1042xCD x=,解得,CD=5,∴BD=BC﹣CD=11,当EA=EF时,DE=EF=2.5x,∴1042.5xCD x=,解得,CD=254,∴BD=BC﹣CD=39 4;当AE=AF=3x时,DE=75x,∴10475xCD x=,解得,CD=72,∴BD=BC﹣CD=252;当点F在线段DE上时,∠AFE为钝角,∴只有FA=FE=3x,则DE=8x,∴1048x CD x=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或394或252.【点评】本题考查的是相似三角形的判定和性质、等腰三角形的性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.5.(2019秋•宝山区期末)如图,OC是△ABC中AB边的中线,∠ABC=36°,点D为OC上一点,如果OD=k⋅OC,过D作DE∥CA交于BA点E,点M是DE的中点,将△ODE绕点O顺时针旋转α度(其中0°<α<180°)后,射线OM交直线BC于点N.(1)如果△ABC的面积为26,求△ODE的面积(用k的代数式表示);(2)当N和B不重合时,请探究∠ONB的度数y与旋转角α的度数之间的函数关系式;(3)写出当△ONB为等腰三角形时,旋转角α的度数.【考点】几何变换综合题.【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;推理能力.【分析】(1)通过证明△ODE ∽△OCA ,可得2()DEO OAC S OD S OC∆∆=,即可求解;(2)通过证明△OEM ∽△BAC ,可得∠EOM =∠ABC =36°,分两种情况讨论可求解;(3)分四种情况讨论,由等腰三角形的性质可求解.【解答】解:(1)∵OC 是△ABC 中AB 边的中线,△ABC 的面积为26,∴S △OAC =13,∵DE ∥AC ,∴△ODE ∽△OCA ,∠OEM =∠OAC ,∴2()DEO OAC S OD S OC∆∆=,且OD =k ⋅OC ,∴S △ODE =13k 2,(2)∵△ODE ∽△OCA ,∴OE OD DE k OA OC AC ===,∵OC 是△ABC 中AB 边的中线,点M 是DE 的中点,∴AB =2AO ,EM =12DE ,∴2OE k EM AB AC==,且∠OEM =∠OAC ,∴△OEM ∽△BAC ,∴∠EOM =∠ABC =36°,如图2,当0<α<144°时,∵∠AON =∠B +∠ONB ,∴∠AOE +∠EOM =∠B +∠ONB ∴y =α如图3,当144°<α<180°时,∵∠BON =∠EOM ﹣∠BOE =36°﹣(180°﹣α)∴∠NOB =α﹣144°,∵∠BNO =∠ABC ﹣∠NOB =36°﹣(α﹣144°)=180°﹣α;(3)当0<α<144°时,若OB=ON,则∠ABC=∠BNO=36°=α,若OB=BN,则∠ONB=180362-=72°=α,若ON=BN,则∠ABC=∠BON=36°,∴∠ONB=180°﹣2×36°=108°=α,当144°<α<180°时,若OB=BN,则∠N=∠NOB=18°=180°﹣α,∴α=162°.【点评】本题是几何变换综合题,考查了相似三角形的判定和性质,旋转的性质,等腰三角形的性质等知识,证明△OEM∽△BAC是本题的关键.专题四动点函数背景下的线段问题【历年真题】1.(2019秋•虹口区期末)如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=3 5,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S△DAF=y,求y关于x的函数关系式(不需要写函数的定义域);(3)如果AG=8,求DE的长.【考点】三角形综合题.【专题】几何综合题;等腰三角形与直角三角形;解直角三角形及其应用;运算能力;推理能力;应用意识.【分析】(1)求出AC=3,可得∠DAC=∠FBC,则tan∠FBC=tan∠DAC=23 DCAC=;(2)由条件可得∠AGF=∠CBF,可得AF CFAG BC=,可用x表示CF和AF的长,求出CD,则S△DAF=12AF CD,可用x表示结果;(3)分两种情况,①当点D 在BC 的延长线上时,②当点D 在BC 的边上时,可求出AE 长AD 的长,则DE =AD ﹣AE 可求出.【解答】解:(1)∵∠ACB =90°,BC =4,sin ∠ABC =35,∴设AC =3x ,AB =5x ,∴(3x )2+16=(5x )2,∴x =1,即AC =3,∵BE ⊥AD ,∴∠AEF =90°,∵∠AFE =∠CFB ,∴∠DAC =∠FBC ,∴tan ∠FBC =tan ∠DAC =23DC AC =;(2)∵AG ∥BD ,∴∠AGF =∠CBF ,∴tan ∠AGF =tan ∠CBF ,∴AF CF AG BC =,AG AF BC CF =,∴34x CF CF-=,∴124CF x =+.∴12334AF CF x =-=-+=34x x+.∵∠EAF =∠CBF ,∴CD CF AC BC =,∴94CD x =+,∴S △DAF =12AF CD =2193272442(4)x x x x x ⨯⨯=+++;(3)①当点D 在BC 的延长线上时,如图1,∵AG =8,BC =4,AG ∥BD ,∴21AG AF BC CF ==,∴AF =2CF ,∵AC =3,∴AF =2,CF =1,∴CF 1tan AGE=tan CBF==BC 4∠∠,∴AE 1=GE 4,设AE =x ,GE =4x ,∴x 2+16x 2=82,解得x =,即AE .同理tan ∠DAC =tan ∠CBF ,∴DC 1=AC 4,∴DC =34,∴AD∴DE AD AE=-=②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴8241AG AFBC CF===.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴654AE=,∴245AE=,同理AC BCAD AB=,∴345AD=,∴154AD=.∴DE=AE﹣AD=241521 5420-=.综合以上可得DE的长为191768或2120.【点评】本题是三角形综合题,考查了勾股定理,平行线的性质,三角形的面积,锐角三角函数等知识,熟练掌握锐角三角函数的定义是解题的关键.2.(2019秋•静安区期末)已知:如图1,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE•DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图2,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.【考点】相似三角形的判定与性质;等腰三角形的判定与性质.【专题】等腰三角形与直角三角形;图形的相似;推理能力.【分析】(1)根据相似三角形的判定定理进行判定即可;(2)由相似三角形的性质即可得出答案;(3)由等腰直角三角形的性质、相似三角形的判定与性质即可得出答案.【解答】解:(1)与△ACD 相似的三角形有:△ABE 、△ADE ,理由如下:∵AB 2=BE •DC ,∴BE AB AB DC=,∵AB =AC ,∴∠B =∠C ,BE AC AB DC =,∴△ABE ∽△DCA .∵△ABE ∽△DCA ,∴∠AED =∠DAC .∵∠AED =∠C +∠EAC ,∠DAC =∠DAE +∠EAC ,∴∠DAE =∠C .∴△ADE ∽△CDA ;(2)∵△ADE ∽△CDA ,又∵DF 平分∠ADC ,∴DG DE AD DF AD CD==,设CE =a ,则DE =3CE =3a ,CD =4a ,∴34a AD AD a=,解得:AD =23a ,∴23342DG AD a DF CD a ===;(3)∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°,∴∠DAE =∠C =45°∵DG ⊥AE ,∴∠DAG =∠ADF =45°,∴AG =DG =22AD =22×236a ,∴EG 2222(3)(6)3DE DG a a -=-a ,∴AE =AG +EG =(63)a ,∵∠AED =∠DAC ,∴△ADE ∽△DFA ,∴AD AE DF AD=,∴22AD AE ==a ,∴24DG DF +==.【点评】本题考查了相似三角形的判定与性质、等腰直角三角形的性质、勾股定理等知识;熟记相似三角形的判定定理是解题的关键.专题四动点函数背景下四边形【历年真题】1.(2019秋•长宁、金山区期末)如图,已知在Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 、Q 分别在边AC 、射线CB 上,且AP =CQ ,过点P 作PM ⊥AB ,垂足为点M ,联结PQ ,以PM 、PQ 为邻边作平行四边形PQNM ,设AP =x ,平行四边形PQNM 的面积为y .(1)当平行四边形PQNM 为矩形时,求∠PQM 的正切值;(2)当点N 在△ABC 内,求y 关于x 的函数解析式,并写出它的定义域;(3)当过点P 且平行于BC 的直线经过平行四边形PQNM 一边的中点时,直接写出x 的值.【考点】四边形综合题.【专题】几何综合题;应用意识.【分析】(1)当四边形PQMN 是矩形时,PQ ∥AB .根据tan ∠PQM =PM PQ求解即可.(2)如图1中,延长QN 交AB 于K .求出MK ,PM ,根据y =PM •MK 求解即可.(3)分两种情形:①如图3﹣1中,当平分MN 时,D 为MN 的中点,作NE ∥BC 交PQ 于E ,作NH ⊥CB 交CB 的延长线于H ,EG ⊥BC 于G .根据EG =12PC 构建方程求解.②如图3﹣2中,当平分NQ 时,D 是NQ 的中点,作DH ⊥CB 交CB 的延长线于H .根据PC =GH 构建方程求解即可.【解答】解:(1)在Rt △ACB 中,∵∠C =90°,AC =8,BC =6,∴AB ==10,当四边形PQMN是矩形时,PQ∥AB.∴tan∠PQM=PMPQ=3955253PACQ=.(2)如图1中,延长QN交AB于K.由题意BQ=6﹣x,QN=PM=35x,AM=45x,KQ=45BQ=2445x-,BK=35BQ=1835x-,∴MK=AB﹣AM﹣BK=325x-,∵QN<QK,∴35x<2445x-,∴x<247,∴y=PM•MK=296325x x-(0<x<247).(3)①如图3﹣1中,当平分MN时,D为MN的中点,作NE∥BC交PQ于E,作NH⊥CB交CB的延长线于H,EG⊥BC于G.∵PD∥BC,EN∥BC,∴PD∥NE,∵PE∥DN,∴四边形PDNE是平行四边形,∴PE=DN,∵DN=DM,PQ=MN,∴PE=EQ,∵EG∥PC,∴CG=GQ,∴EG=12PC,∵四边形EGHN是矩形,∴NH=EG=35NQ=35PM=925x,PC=8﹣x,∴925x=12•(8﹣x),解得x=20043.②如图3﹣2中,当平分NQ时,D是NQ的中点,作DH⊥CB交CB的延长线于H.∵DH=PC,∴8﹣x=12•925x,解得x=40059,综上所述,满足条件x的值为20043或40059.【点评】本题属于四边形综合题,考查了平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.2.(2019秋•嘉定区期末)已知:点P在△ABC内,且满足∠APB=∠APC(如图),∠APB+∠BAC=180°.(1)求证:△PAB∽△PCA;(2)如果∠APB=120°,∠ABC=90°,求PCPB的值;(3)如果∠BAC=45°,且△ABC是等腰三角形,试求tan∠PBC的值.【考点】相似三角形的判定与性质;解直角三角形;等腰三角形的性质.【专题】图形的相似;应用意识.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)证明△PAB∽△PCA,利用相似三角形的性质解决问题即可.(3)分三种情形:AB=AC,AB=BC,AC=BC分别求解即可解决问题.【解答】证明:(1)∵∠ABP +∠BAP +∠APB =180°,∠APB +∠BAC =180°,∴∠ABP +∠BAP +∠APB =∠APB +∠BAC ,即∠ABP +∠BAP +∠APB =∠APB +∠BAP +∠CAP ,∴∠ABP =∠CAP ,又∵∠APB =∠APC ,∴△PAB ∽△PCA .(2)如图1中,∵∠APB +∠BAC =180°,∠APB =120°,∴∠BAC =60°,在△ABC 中,∵∠ABC =90°,∠BAC =60°,∴,又∵△PAB ∽△PCA ,∴12PB PA AB PA PC AC ===,∴14PB PB PA PC PA PC == ,即4PC PB =.(3)∵∠BAC =45°,∠APB +∠BAC =180°,∠APB =∠APC ,∴∠APB =∠APC =135°.∴∠BPC =360°﹣∠APB ﹣∠APC =360°﹣135°﹣135°=90°,∵△PCA ∽△PAB ,∴PA PC AC PB PA AB==,∴163.①如图2中,当△ABC 是等腰三角形,且AB =AC 时,2tan PBC=()=1PC AC PB AB =∠.②如图3中,当△ABC 是等腰三角形,且AB =BC 时,∠ACB =∠BAC =45°,∠ABC =90°,易得2AC AB ,∴2tan PBC=()=2PC AC PB AB=∠.③如图10﹣4,当△ABC 是等腰三角形,且AC =BC 时,∠ABC =∠BAC =45°,∠ACB =90°,易得2=2AC AB ,∴21tan PBC=()=2PC AC PB AB =∠.【点评】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.3.(2019秋•徐汇区期末)如图,在△ABC 中,AB =AC =5,BC =6,点D 是边AB 上的动点(点D 不与点AB 重合),点G 在边AB 的延长线上,∠CDE =∠A ,∠GBE =∠ABC ,DE 与边BC 交于点F .(1)求cos A 的值;(2)当∠A =2∠ACD 时,求AD 的长;(3)点D 在边AB 上运动的过程中,AD :BE 的值是否会发生变化?如果不变化,请求AD :BE 的值;如果变化,请说明理由.【考点】三角形综合题.。
例 2022年上海市宝山区第25题如图1,已知正方形ABCD,将边AD绕点A逆时针旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为E、F.(1)求证:CE=EF;(2)联结CF,如果13DPCF=,求∠ABP的正切值;(3)联结AF,如果22AF AB=,求n的值.图1满分解答(1)如图2,过点F作DC的平行线交EC于点M,所以∠FME=∠DCE.已知CE⊥BP,DF⊥BP,所以CE//DF.所以四边形CDFM是平行四边形.所以FM=DC=CB.根据同角的余角相等,得∠DCE=∠CBE.所以∠FME=∠CBE.于是根据“AAS”,可证得△FME≌△CBE.所以EF=EC.图2 图3 图4 (2)如图3,设BP与AD交于点G.设∠ABP=α.在等腰三角形ABP中,AB=AP,所以∠APB=α.在Rt△ABG和Rt△DFG中,根据内角和相等,得∠ADF=α.在等腰三角形ADP中,∠ADP=∠APD.所以∠ADP-α=∠APD-α.所以∠FDP=∠FPD.所以FD=FP.所以△FDP和△ECF都是等腰直角三角形,DP//CE(如图4所示).如图4,延长CD交BP的延长线于点N.那么∠N=α.如果13DPCF=,那么1236PF mFE m==,13NPNF=.所以122NP mPF m==.在Rt△NEC中,tan∠N=62623CE mNE m m m==++.所以tan∠ABP=23.(3)第一步,点F是一个关键点.如图5,根据“边边边”,可以证得△AFD≌△AFP.所以AF平分∠DAP,∠AFD=∠AFP=135°.所以∠AFB=45°.所以∠AFC=90°,△AFC始终是直角三角形(如图6所示).第二步,计算说理.如图6,因为22AB AC=,如果22AF AB=,那么12AF AC=.所以∠ACF=30°,∠F AC=60°.所以∠F AD=60°-45°=15°.所以n°=2∠F AD=30°,n=30.图5 图6例 2022年上海市崇明区第25题如图1,正方形ABCD 的边长为1,在射线AB 上取一点E ,联结DE ,将△ADE 绕点D 逆时针旋转90°,点E 落在点F 处,联结EF ,直线EF 与对角线BD 所在直线交于点M ,与射线DC 交于点N .(1)当13AE =时,求tan ∠EDB 的值; (2)当点E 在线段AB 上,如果AE =x ,FM =y ,求y 关于x 的函数解析式,并写出定义域;(3)联结AM ,直线AM 与直线BC 交于点G ,当13BG =时,求AE 的值.图1满分解答(1)如图2,作EH ⊥BD 于H .在Rt △ABD 中,AB =AD =1,所以BD =2,∠ABD =45°. 在等腰直角三角形△BEH 中,BE =AB -AE =23,所以BH =EH =23. 在Rt △DEH 中,DH =BD -BH =223-=223,所以tan ∠EDB =EH DH =12.图2 图3 (2)如图3,在Rt △BEF 中,BE =1-x ,BF =1+x ,由勾股定理,得222EF x =+ 过点F 作BF 的垂线交BD 的延长线于点Q ,那么△BFQ 是等腰直角三角形.由QF //BE ,得11FM QF x EM BE x+==-.所以11(1)(1)2FM x x EF x x ++==++-. 21222x x +=+.所以2(1)22x x y ++.定义域是0≤x ≤1. (3)按照点G 的位置,分两种情况讨论:①如图4,点G 在BC 上.由13BM BG DM AD ==,得43BD DM =.所以33244DM BD =如图5,由∠DEF=∠DBA=45°,∠BDE是公共角,得△DEM∽△DBE.所以DE DBDM DE=.所以2332242DE DB DM=⋅=⨯=.在Rt△AED中,AE2=DE2-AD2=31122-=.所以AE=22.图4 图5 ②如图6,点G在CB的延长线上.由13BM BGDM AD==,得23BDDM=.所以33222DM BD==.如图7,由∠DEF=∠DBA=45°,根据等角的补角相等,得∠DEM=∠DBE.又因为∠BDE是公共角,得△DEM∽△DBE.所以DE DBDM DE=.所以232232DE DB DM=⋅=⨯=.在Rt△AED中,AE2=DE2-AD2=3-1=2.所以AE=2.图6 图7例 2022年上海市奉贤区第25题如图1,已知锐角△ABC 的高AD 、BE 相交于点F ,延长AD 至G ,使DG =FD ,联结BG 、CG .(1)求证:BD ∙AC =AD ∙BG ;(2)如果BC =10,设tan ∠ABC =m .①如图2,当∠ABG =90°时,用含m 的代数式表示△BFG 的面积;②当AB =8,且四边形BGCE 是梯形时,求m 的值.图1 图2满分解答(1)如图3, 在Rt △ADC 和Rt △BEC 中,根据同角的余角相等,得∠1=∠2. 因为BD 垂直平分FG ,所以BF =BG .根据等腰三角形的“三线合一”,得∠2=∠3.所以∠1=∠3.由cos ∠1=cos ∠3,得AD BD AC BG=.所以BD ∙AC =AD ∙BG .图3 图4(2)①如图4,如果∠ABG =90°,那么∠3=∠4.所以∠1=∠2=∠3=∠4..根据“ASA ”,可证△ADB ≌△ADC .所以BD =CD =5.由△ABC ∽△BFG ,根据相似三角形的面积比等于对应高的比的平方,得()222tan ABC BFG S AD ABC m S BD ⎛⎫==∠= ⎪⎝⎭△△.所以S △BFG =21m S △ABC . 而S △ABC =225AD BC AD BC m BC⋅=⋅=,所以S △BFG =21m S △ABC =25m . ②分两种情况讨论梯形BGCE .情况一:如图5,当CG ∥BE 时,∠2=∠5.又因为∠2=∠3,所以∠3=∠5.所以GB =GC .根据等腰三角形的“三线合一”,可知GD 垂直平分BC .所以BD =CD =5.在Rt△ABD中,AB=8,BD=5,所以AD=39,m=tan∠ABC=395ADBD=.情况二:如图6,当BG∥CE时,∠3=∠6.又因为∠1=∠3,所以∠1=∠6,△ADC是等腰直角三角形.设BD=x,那么AD=DC=10-x.由BD2+AD2=AB2,得(10-x)2+x2=82.解得x1=57-,x2=57+(此时△ABC是钝角三角形,舍去).当x=57-,m=tan∠ABC=10571657957AD xBD x-++===-.图5 图6例 2022年上海市虹口区第25题如图1,在△ABC 中,∠ACB =90°,AB =10,tan B =34,点D 是边BC 延长线上的一点,在射线AB 上取一点E ,使得∠ADE =∠ABC .过点A 作AF ⊥DE 于点F .(1)当点E 在线段AB 上时,求证:AF DE AC BD=; (2)在(1)题的条件下,设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)记DE 交射线AC 于点G ,当△AEF 与△AGF 相似时,求CD 的长.图1满分解答(1)如图2,已知∠ADE =∠ABC ,∠BAD 是公共角,所以△ADE ∽△ABD .如图3,根据相似三角形对应高的比等于对应边的比,得AF DE AC BD=.图2 图3 图4(2)在Rt △ABC 中,由AB =10,tan B =34,可得AC =6,BC =8. 如图4,在Rt △ACD 中,CD =x ,AC =6,所以AD =236x +.在Rt △ADF 中,sin ∠ADF =sin ∠B =35,所以AF =35AD =23365x +. 由(1),得AF DE AC BD=.所以2336568x y x +=+. 整理,得21(8)3610y x x =++.x 的取值范围是0<x ≤8.当x =8时,E 、B 两点重合. (3)△AEF 和△AGF 有公共的直角边AF ,分两种情况讨论相似.①如图5,AE 和AG 在AF 的两侧.此时AF 垂直平分EG ,∠GDC =∠GAF =∠EAF =α.设AF 的延长线与BC 交于点M ,那么点M 到∠BAC 两边的距离相等,等于MC .由S △ABC =12BC AC ⋅=1()2MC AB AC ⋅+, 得863106BC AC MC AB AC ⋅⨯===++. 图5 再由∠AMD =∠ABC +α,∠ADM =∠ADE +α,∠ABC =∠ADE ,得∠AMD =∠ADM .所以AM =AD .根据等腰三角形的“三线合一”,得CD =MC =3.②如图6,AE 和AG 在AF 的同侧.此时∠GDC =∠GAF =∠E =α.所以BE =BD =8+x .如图7,由△ABD ∽△ADE ,得AB AD AD AE=.所以AD 2=AB ·AE . 所以x 2+36=10×(10+8+x ).整理,得x 2-10x -144=0.解得x =18,或x =-8(舍去).图6 图7例 2022年上海市黄浦区第25题如图1,在Rt △ABC 和Rt △ABD 中,∠ACB =∠DAB =90°,AB 2=BC ∙BD ,AB =3,过点A 作AE ⊥BD ,垂足为点E ,延长AE 、CB 交于点F ,联结DF .(1)求证:AE =AC ;(2)设BC =x ,=AE y EF,求y 关于x 的函数关系式及定义域; (3)当△ABC 和△DEF 相似时,求边BC 的长.图1满分解答(1)如图2,因为AB 2=BC ∙BD ,所以=AB BD BC AB. 所以Rt △ACB ∽Rt △DAB .所以∠4=∠2.因为AE ⊥BD ,所以∠4+∠3=90°.又因为∠1+∠3=90°,所以∠4=∠1.所以∠1=∠2.根据“AAS ”,可证得△AEB ≌△ACB .所以AE =AC .图2 图3(2)已知AB 2=BC ∙BD ,AB =3,BC =BE =x ,所以9BD x=. 设M 为Rt △ABD 的斜边BD 的中点,那么MB =MA =MD .所以∠MAB =∠MBA .又因为∠MBA =∠CBA ,所以∠MAB =∠CBA .所以MA //FC .所以229192222x BD BE AE ME x x y EF BE BE x x ---=====. 定义域是0<x 32 (3)如图4,因为△ABC ∽△ABE ≌△DAE ,若△ABC 与△DEF 相似,我们灵活运用相似三角形的传递性,分两种情况讨论.①如图4,当∠1=∠5时,AB //DF .所以BE AEyED EF==.所以229292x xxxx-=-.整理,得x2=3.解得x=±3.所以BC=3.②如图5,当∠1=∠6时,等量代换,得∠4=∠6.此时AE=EF.所以229212-==xyx.整理,得x2=94.解得x=±32.所以BC=32.图4 图5例 2022年上海市嘉定区第25题在平行四边形ABCD中,对角线AC与边CD 垂直,34ABAC=,四边形ABCD的周长是16,点E是AD延长线上的一点,点F是射线AB上的一点,∠CED=∠CDF.(1)如图1,如果点F与点B重合,求∠AFD的余切值;(2)如图2,点F是在边AB上一点,设AE=x,BF=y,求y关于x的函数关系式,并写出它的定义域;(3)如果BF∶FA=1∶2,求△CDE的面积.图1 图2 备用图满分解答(1)如图3,过点D向直线AB作垂线,垂足为H,那么四边形ACDH是矩形.由AB=DC,DC=HA,得HA=AB.所以BH=2AB.在Rt△DBH中,cot∠AFD=233242 BH ABDH AC==⨯=.图3 图4(2)如图3,在Rt△ABC中,34ABAC=,设AB=3m,AC=4m,那么BC=5m.已知平行四边形ABCD的周长为16,所以2(3m+5m)=16.解得m=1.所以AB=3,AC=4,BC=5.如图4,由DC//AB,得∠EDC=∠F AD,∠CDF=∠DF A=α.又已知∠CDF=∠CED=α,所以∠CED=∠DF A=α.所以△EDC∽△F AD.所以35 DE DCAF AD==.所以5335xy-=-.整理,得53433y x=-+.定义域是5<x≤345.当E、D两点重合时,x=5.当F、B两点重合时,53435y x=-+=,解得x=345.(3)如图5,由△CDE∽△DAF,得2239525 CDEDAFS CDS DA⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△.而S△DAF=12AF DH⋅=142AF⨯=2AF,所以S△CDE=925S△DAF=9225AF⨯=1825AF.分两种情况讨论BF∶FA=1∶2.①如图5,当点F在AB上时,AF=23AB=2.此时S△CDE=1825AF=18225⨯=3625.②如图6,当点F在AB的延长线上时,AF=2AB=6.此时S△CDE=1825AF=18625⨯=10825.图5 图6例 2022年上海市金山区第25题如图1,AD ⊥直线MN ,垂足为D ,AD =8,点B 是射线DM 上的一个动点,∠BAC =90°,边AC 交射线DN 于点C ,∠ABC 的平分线分别与AD 、AC 相交于点E 、F .(1)求证:△ABE ∽△CBF ;(2)如果AE =x ,FC =y ,求y 关于x 的函数解析式;(3)联结DF ,如果以点D 、E 、F 为顶点的三角形与△BCF 相似,求AE 的长.图1满分解答(1)如图2,∠ACD 和∠BAD 都是∠ABC 的余角,所以∠ACD =∠BAD .又因为BF 平分∠ABC ,所以∠1=∠2.所以△ABE ∽△CBF .(2)如图3,由∠1=∠2,∠BAF =∠BDE ,得△BAF ∽△BDE . 所以=AF BF DE BE . 所以∠AFB =∠BED =∠AEF .所以AF =AE .已知AE =x ,所以AF =x ,ED =AD -AE =8-x .由(1),得△ABE ∽△CBF .所以=CF BF AE BE. 等量代换,得=CF AF AE DE .所以8=-y x x x.整理,得28=-x y x .图2 图3 (3)如图4,因为△ABE ∽△CBF ,如果△DEF 与△BCF 相似,那么△DEF 与 △ABE 也相似.因为∠AEB =∠DEF ,分两种情况讨论.①如图4,如果∠3=∠4,那么△AEB ∽△FED .所以EA EB EF ED=. 又因为∠AEF =∠BED ,所以△AEF ∽△AED .所以∠AFE =∠BDE =90°,不符合题意,舍去.②如图5,若∠3=∠1,那么DF //AB .所以=FD DE AB AE ,=FD CF AB CA .等量代换,得=CF DE CA AE. 所以8-=+y x y x x .代入28=-x y x,整理,得x 2+8x -64=0. 解得x 1=445-+x 2=445--.所以AE =445-+图4 图5例 2022年上海市静安区第25题如图1,四边形ABCD 中,∠BAD 的平分线AE 交边BC 于点E ,已知AB =9,AE =6,AE 2=AB ∙AD ,且DC //AE .(1)求证:DE 2=AE ∙DC ;(2)如果BE =9,求四边形ABCD 的面积;(3)如图2,延长AD 、BC 交于点F ,设BE =x ,EF =y ,求y 关于x 的函数解析式,并写出定义域.图1 图2满分解答(1)如图3,如图4,因为AE 平分∠BAD ,所以∠1=∠2=α.因为AE 2=AB ∙AD ,所以=AB AE AE AB.所以△ABE ∽△AED . 所以∠3=∠4=β,∠5=∠6=θ.因为DC //AE ,所以∠4=∠7=β,∠9=∠5=θ.所以∠9=∠6=θ.所以△AED ∽△EDC .所以=AE DE DE DC.所以DE 2=AE ∙DC .图3 图4(2)如图5所示,如果BE =BA =9,那么α=θ.此时△ABE 、△AED 、△DEC 是两两相似的等腰三角形.所以AE =ED =DC =6.因为AD //BC ,所以四边形ABCD 是梯形,四边形AECD 是平行四边形.由966AD=,得EC =AD =4. 如图6,作DH ⊥EC 于H ,那么EH =HC =2.在Rt △DHC 中,DC =6,HC =2,由勾股定理,得364DH -42所以S 梯形ABCD =1()2+⋅AD BC DH =1(494)422++⋅=342图5 图6(3)如图,由△ADE ∽△AEB ,得AE DE AB BE =.所以69DE x =. 解得DE =23x . 由△EDC ∽△ABE ,得DE DC EC AB BE AE==.所以2396x DC EC x ==. 解得DC =2227x ,EC =49x ,则CF =49y x -. 由DC //AE ,得DC CF AE EF=.所以2242796x y x y -=. 整理,得23681x y x=-.定义域为0<x <9.。
图11上海市2024届初三一模数学分类汇编—25题解答压轴题【2024届·宝山区·初三一模·第25题】1.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知ABC 中,1AB AC ,D 是边AC 上一点,且BD AD ,过点C 作//CE AB ,并截取CE AD ,射线AE 与BD 的延长线交于点F .(1)求证:2AF DF BF ;(2)设AD x ,DF y ,求y 与x 的函数关系式;(3)如果ADF 是直角三角形,求DF 的长.第25题图2备用图第25题图12.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知Rt ABC 中,90ACB ,3AC ,5AB ,点D 是AB 边上的一个动点(不与点A 、B 重合),点F 是边BC 上的一点,且满足CDF A ,过点C 作CE CD 交DF 的延长线于E .(1)如图1,当//CE AB 时,求AD 的长;(2)如图2,联结BE ,设AD x ,BE y ,求y 关于x 的函数解析式并写出定义域;(3)过点C 作射线BE 的垂线,垂足为H ,射线CH 与射线DE 交于点Q ,当CQE 是等腰三角形时,求AD 的长.图122图121 3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在直角梯形ABCD 中,//AD BC ,90B ,6AD ,4AB ,BC AD ,ADC 的平分线交边BC 于点E ,点F 在线段DE 上,射线CF 与梯形ABCD 的边相交于点G .(1)如图121 ,当4tan 3BCD 时,求BE 的长;(2)如图122 ,如果点G 在边AD 上,联结BG ,当4DG ,且CGB BAG ∽时,求sin BCD的值;(3)当F 是DE 中点,且1AG 时,求CD 的长.图14①图14②备用图4.(本题满分14分,第(1)小题满分4分,第(2)①小题满分5分,第(2)②小题满分5分)如图14①,在Rt ABC 中,90ACB ,4tan 3ABC,点D 在边BC 的延长线上,联结AD ,点E 在线段AD 上,EBD DAC .(1)求证:DBA DEC ∽;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图14②).①如果2AC AF ,且DEC 是以DC 为腰的等腰三角形,求tan FDC的值;②如果2DE CD,3EM ,:5:3FM DM ,求AF 的长.第25题图(本题满分4分)5.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,O 是Rt ABC 斜边AB 的中点,BH CO 交AC 于D ,垂足为H ,联结OD .(1)求证:2BC AC CD ;(2)如果ODH 与ABC 相似,求其相似比;(3)如果:4:1BH DH ,求ADO 的大小.图11图12备用图6.(本题满分14分,第(1)小题3分,第(2)①小题5分,第(2)②小题6分)如图11,在ABC 和ACD 中,90ACB CAD ,16BC ,15CD ,9DA .(1)求证:B ACD ;(2)已知点M 为边BC 上一点(与点B 不重合),且MAN BAC ,AN 交CD 于点N ,交BC 的延长线于点E .①如图12,设BM x ,CE y ,求y 关于x 的函数关系式,并写出定义域;②当CEN 是等腰三角形时,求BM 的长.第25题图7.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:如图,在ABC 中,AB AC ,CAD ABC ,DC AC ,AD 与边BC 相交于点P .(1)求证:212AB AD BC;(2)如果4sin 5ABC ,求:BP PC 的值;(3)如果BCD 是直角三角形,求ABC 的正切值.第25题图1第25题图2备用图8.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知梯形ABCD 中,//AD BC ,2AB ,4AD ,3DC ,7BC .点P 在射线BA 上,点Q 在射线BC 上(点P 、点Q 均不与点B 重合),且PQ BQ ,联结DQ ,设BP x ,DQC 的面积为y .(1)如图1所示,求sin B 的值;(2)如图2所示,点Q 在线段BC 上,求y 关于x 的函数解析式,并写出定义域;(3)当DQC 是等腰三角形时,求BP 的长.第25题图1第25题图2备用图9.(本题满分14分,第(1)小题4分,第(2)①小题5分,第(2)②小题5分)如图,在Rt ABC 中,90ACB ,以AC 、BC 为边在ABC 外部作等边三角形ACE 和等边三角形BCF ,且联结EF .(1)如图1,联结AF 、EB ,求证:ECB ACF ≌;(2)如图2,延长AC 交线段EF 于点M .①当点M 为线段EF 中点时,求ACBC的值;②请用直尺和圆规在直线AB 上方作等边三角形ABD (不要求写作法,保留作图痕迹,并写明结论),当点M 在ABD 的内部时,求ACBC的取值范围.第25题图备用图备用图10.(本题满分14分,第(1)小题5分,第(2)小题5分,第(2)小题4分)如图,已知正方形ABCD 的边长为6,点E 是射线BC 上一点(点E 不与点B 、C 重合),过点A 作AF AE ,交边CD 的延长线于点F ,直线EF 分别交射线AC 、射线AD 于点M 、N .(1)当点E 在边BC 上时,如果15ND AN ,求BAE 的余切值;(2)当点E 在边BC 延长线上时,设线段BE x ,y EN MF ,求y 关于x 的函数解析式,并写出函数定义域;(3)当3CE 时,求EMC 的面积.图1311.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)如图13,在矩形ABCD 中,2AB ,4BC ,E 是边BC 延长线上一点,过点B 作BM DE ,垂足为点M ,联结CM ,设CE a (01a ).(1)求证:DCE BME ∽;(2)CME 的大小是否是一个确定的值?如果是,求出CME 的正切值;如果不是,那么用含字母a的代数式表示CME 的正切值;(3)P 是边AD 上一动点(不与点A 、D 重合),联结PB 、PM .随着点P 位置的变化,在PBM中除BPM 外的两个内角是否会有与CME 相等的角?如果有,请用含字母a 的代数式表示此时线段AP 的长;如果没有,请说明理由.第25题(1)图第25题(2)图第25题(3)图12.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在ABC 中,90ACB ,6AC ,8BC .点D 、E 分别在边AB 、BC 上,联结ED ,将线段ED ,绕点E 按顺时针方向旋转90 得到线段EF .(1)如图,当点E 与点C 重合,ED AB 时,AF 与ED 相交于点O ,求:AO OF 的值;(2)如果5AB BD (如图),当点A 、E 、F 在一条直线上时,求BE 的长;(3)如图,当DA DB ,2CE 时,联结AF ,求AFE 的正切值.第25题图第25题备用图13.(本题满分14分,第(1)①小题4分,第(1)②小题5分,第(2)小题5分)在ABC 中,AC BC .点D 是射线AC 上一点(不与A 、C 重合),点F 在线段BC 上,直线DF 交直线AB 于点E ,2CD CF CB .(1)如图,如果点D 在AC 的延长线上.①求证:DE BD ;②联结CE ,如果//CE BD ,2CE ,求EF 的长.(2)如果:1:2DF DE ,求:AE EB 的值.第25题图备用图14.(本题满分14分)如图,在Rt ABC 中,90BAC,AB AC ,点D 是边AB 上的动点(点D 不与点B 重合),以CD 为斜边在直线BC 上方作等腰直角三角形DEC .(1)当点D 是边AB 的中点时,求sin DCB 的值;(2)联结AE ,点D 在边AB 上运动的过程中,EAC 的大小是否变化?如果变化,请说明理由;如果不变,请求出EAC 的大小;(3)设DE 与AC 的交点为G ,点P 是边BC 上的一点,且CPD CGD ,如果点P 到直线CD 的距离等于线段GE 的长度,求CDE 的面积.第25题图备用图15.(本题满分14分,第(1)小题4分,第(2)小题10分)如图,已知正方形ABCD ,点P 是边BC 上的一个动点(不与点B 、C 重合),点E 在DP 上,满足AE AB ,延长BE 交CD 于点F .(1)求证:135BED ;(2)联结CE .①当CE BF 时,求BP PC的值;②如果CEF 是以CE 为腰的等腰三角形,求FBC 的正切值.第25题图1备用图备用图16.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知ABC 中,2ABC C ,BG 平分ABC ,8AB ,163AG,点D 、E 分别是边BC 、AC 上的点(点D 不与点B 、C 重合),且ADE ABC ,AD 、BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE ,求:BF GF 的值;(3)如果ADE 是以AD 为腰的等腰三角形,求BD 的长.。
崇明23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅;(2)联结CF ,求证:45CFB ∠=︒.崇明24.(本题满分12分,每小题各4分) 如图,抛物线24yx bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点N . (((△ B DEC G F (第24题图)(备用图)崇明25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.金山23. (本题满分12分,每小题6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC的中点,ED 的延长线与CB 的延长线相交于点F . (1)求证:DF 是BF 和CF 的比例中项;(2)在AB 上取一点G ,如果AE :AC=AG :AD ,求证:EG :CF=ED :DF .金山24. (本题满分12分,每小题4分) 平面直角坐标系xOy 中(如图),已知抛物线23y ax bx 与y 轴相交于点C ,与x 轴正半轴相交于点A ,OAOC ,与x 轴的另一个交点为B ,对称轴是直线1x ,顶点为P . (1)求这条抛物线的表达式和顶点P 的坐标;(2)抛物线的对称轴与x 轴相交于点M ,求∠PMC 的正切值;(3)点Q 在y 轴上,且△BCQ 与△CMP 相似,求点Q 的坐标. 金山25. (本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC 中,45,cos 5AB AC B ,P 是边AB 一点,以P 为圆心,PB 为半径的P 与边BC 的另一个交点为D ,联结PD 、AD .(1)求△ABC 的面积; (2)设PB =x ,△APD 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果△APD 是直角三角形,求PB 的长.青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD CA CE CB ⋅=⋅.(1)求证:∠CAE =∠CBD ;(2)若BE AB EC AC=,求证:AB AD AF AE ⋅=⋅. 青浦24.(本题满分12分,第(1)小题3分,第(2)小题43)小题5 如图9,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点 A (-1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A(第25题图1)A BC D F E B DF E C A (第25题图2)B D F EC A (第25题图3) A BDEF 图8关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.图9青浦25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ .(1)当QD =QC 时,求∠ABP 的正切值;(2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.黄浦23、(本题满分12分) 如图,BD 是ABC △的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项. (1)求证:12CDE ABC ∠=∠ (2)求证:AD CD AB CE ⋅=⋅ 黄浦24、(本题满分12分) 在平面直角坐标系xOy 中,对称轴为直线1x =的抛物线28y ax bx =++过点()2,0-.(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过点B 作x 轴的平行线交所得抛物线于点C ,若AC BD ∥,试求平移后所得抛物线的表达式.黄浦25、(本题满分14分)如图,线段5AB =,4AD =,90A ∠=︒,DP AB ∥,点C 为射线DP 上一点,BE 平分ABC ∠交线段AD 于点E (不与端点A 、D 重合).(1)当ABC ∠为锐角,且tan 2ABC ∠=时,求四边形ABCD 的面积;(2)当ABE △与BCE △相似时,求线段CD 的长;(3)设DC x =,DE y =,求y 关于x 的函数关系式,并写出定义域.松江23.(本题满分12分,每小题6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅.(1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.松江24.(本题满分12分,每小题4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的对称轴为直线x =1,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是抛物线上位于第一象限的点,直线AP 与y 轴交于点D ,与对称轴交于点E ,设点P 的横坐标为t .(1)求点A 的坐标和抛物线的表达式;(2)当AE :EP =1:2时,求点E 的坐标;(3)记抛物线的顶点为M ,与y 轴的交点为C ,当四边形CDEM图10 Q P D C B A 备用图 A B C D E DCB A是等腰梯形时,求t 的值.松江25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知△ABC 中,∠ACB =90°,AC =1,BC =2,CD 平分∠ACB 交边AB 与点D ,P 是射线CD 上一点,联结AP .(1)求线段CD 的长;(2)当点P 在CD 的延长线上,且∠P AB =45°时,求CP 的长;(3)记点M 为边AB 的中点,联结CM 、PM ,若△CMP 是等腰三角形,求CP 的长. 闵行23.(本题共2小题,每小题6分,满分12分)如图,已知在△ABC 中,∠BAC =2∠B ,AD 平分∠BAC ,DF //BE ,点E 在线段BA 的延长线上,联结DE ,交AC 于点G ,且∠E=∠C .(1)求证:2AD AF AB =⋅;(2)求证:AD BE DE AB ⋅=⋅.闵行24.(本题共3题,每小题4分,满分12分)抛物线23(0)y ax bx a =++≠经过点A (1-,0),B (32且与y 轴相交于点C .(1)求这条抛物线的表达式;(2)求∠ACB 的度数;(3)设点D 是所求抛物线第一象限上一点,且在对称轴的右侧,点E 在线段AC 上,且DE ⊥AC ,当△DCE 与△AOC 相似时,求点D 的坐标. 闵行25.(共3小题,第(1)小题4分,第(2)小题6分)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,CD 点F 在边BC 上,且∠EDA =∠FDB ,联结EF 、DC 交于点G .(1)当∠EDF =90°时,求AE 的长;(2)CE = x ,CF = y ,求y 关于x 的函数关系式,并指出x 的取值范围;(3)如果△CFG 是等腰三角形,求CF 与CE 的比值.浦东23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC 上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ; (2)联结AF ,求证:AF BE BC EF ⋅=⋅.浦东24.(本题满分12分,每小题4分) 已知抛物线y =ax 2+bx +5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C 在x 轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D .(1)求抛物线的表达式;(2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CPA 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB .若存在,求出点E浦东25.(本题满分14分,其中第(1)小题4 A C E F G (备用图) A B D C (第25题图) A B D C E F G (第24题图) A (第23题图) D E F B C题5分,第(3)小题5分)如图,已知在△ABC 中,∠ACB=90°,BC =2,AC =4,点D 在射线BC 上,以点D 为圆心,BD 为半径画弧交边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:△EFG ∽△AEG ;(2)设FG =x ,△EFG 的面积为y ,求y 关于x 的函数解析式并写出定义域;(3)联结DF ,当△EFD 是等腰三角形时,请直接..写出FG 的长度.虹口1、E 、F ,且EF⋅(1;(2=8 虹口1)小题满分4分,第(2)小题满分4分,第(3)小题满分4xOy 中,抛物线与x 轴相交于点A (-2,0)、B (4,0),与y 轴交于点C (0,-4),BC 与抛物线的对称轴相交于点D .(1)求该抛物线的表达式,并直接写出点D 的坐标;(2)过点A 作AE ⊥AC 交抛物线于点E ,求点E 的坐标;(3)在(2)的条件下,点F 在射线AE 上,若△ADF ∽△ABC ,求点F 的坐标.虹口25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B 重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AF y AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.普陀23. (本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,2,AD DC DC DE DB ==⋅.求证:(1)BCE ADE ∽;(2)··AB BC BD BE =. 普陀24.(本题满分12分,每小题满分各4分) 如图10,在平面直角坐标系中,已知抛物线22y ax ax c +=+(其中a c 、为常数,且0a <)与x 轴交于点A ,它的坐标是()3, 0-,图9AB与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4.(1)求该抛物线的表达式;(2)求CAB ∠的正切值;(3)如果点P 是抛物线上的一点,且ABP CAO ∠=∠,试直接写出点P 的坐标. 普陀25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,BAC ∠的余切值为2,AB =D 是线段AB 上的一动点(点D 不与点A B 、重合),以点D 为顶点的正方形DEFG 的另两个顶点E F 、都在射线AC 上,且点F 在点E 的右侧.联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF ; ②FP ; ③BP ; ④BDG ∠; ⑤GAC ∠; ⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)如果PFG 与AFG 相似,但面积不相等,求此时正方形的边长.嘉定23.(本题满分12分,每小题6分)如图6,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.(1)求证:BC DE AE CD ⋅=⋅;(2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF . 求证:CA CE AF ⋅=2.嘉定24.(本题满分12分,每小题4分)已知在平面直角坐标系xOy (如图7)中,已知抛物线c bx x y ++=232点经过)0,1(A 、)2,0(B .(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x 轴的交点为C ,第四象限内的点D 在该抛物线的对称轴上,如果以点A 、C 、D 所组成的三角形与△AOB 相似,求点D 的坐标;(3)设点E 在该抛物线的对称轴上,它的纵坐标是1,联结AE 、BE ,求ABE ∠sin .嘉定25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)图6在正方形ABCD中,8=AB,点P在边CD上,43tan=∠PBC,点Q是在射线BP 上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图8,当点R与点D重合时,求PQ的长;(2)如图9,试探索:MQRM的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图10,若点Q在线段BP上,设xPQ=,yRM=,求y关于x的函数关系式,并写出它的定义域.静安6中,⊥作∠,交DB(1ABE;(2)如果56BCBD=,求BCEBDASS的值.静安24.(本题满分12分,第1小题4分,第2小题8分)在平面直角坐标系xOy中(如图),已知抛物线253y ax bx=+-经过点(1,0)A-、(5,0)B.(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH BD⊥,垂足为点H,抛物线对称轴交x轴于点G,联结HG,求HG的长.静安25.(本题满分14分,第1小题4分,第2小题6分,第3小题4分)已知:如图,四边形ABCD中,090,,,BAD AD DC AB BC AC<∠≤==平分BAD∠.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),AFB ACB∠=∠,设AB长度是a(a实常数,且0a>),,AC x AF y==,求y关于x的函数解析式,并写出定义域;(3)在第(2)小题的条件下,当CGE是等腰三角形时,求AC的长.(计算结果用含a 的代数式表示)长宁23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,AC图8A图9A图10FEADE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆;(2)求证:AD AB DE BF ⋅=⋅.长宁24.(本题满分12分,每小题4分) 在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.长宁25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分) 已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E .设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.徐汇23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD 于点G .(1)求证:AE =AF ; (2)若DF CF DE AE =,求证:四边形EBDF 是平行四边形. 徐汇24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,在平面直角坐标系xOy 中,直线y =kx (k ≠0)沿着y 轴向上平移3个单位长度后,与x 轴交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B 、C 且与x轴的另一个交点为A .(1)求直线BC 及该抛物线的表达式;(2)设该抛物线的顶点为D ,求△DBC 的面积;备用图第24题图 备用图备用图 图1 D CB A DC B A F E PD C B A 第25题图(3)如果点F 在y 轴上,且∠CDF =45°,求点F 的坐标.徐汇25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分)已知,在梯形ABCD 中,AD ∥BC ,∠A =90°,AD =2,AB =4,BC =5,在射线BC 任取一点M ,联结DM ,作∠MDN =∠BDC ,∠MDN 的另一边DN 交直线BC 于点N (点N 在点M 的左侧).(1)当BM 的长为10时,求证:BD ⊥DM ;(2)如图(1),当点N 在线段BC 上时,设BN =x ,BM =y ,求y 关于x 的函数关系式,并写出它的定义域;(3)如果△DMN 是等腰三角形,求BN 的长.杨浦23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF =∠BAC . (1)求证:△AED ∽△CFE ;(2)当EF //DC 时,求证:AE =DE .杨浦24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H . (1)求顶点D 的坐标(用含m 的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D 在第二象限时,如果∠ADH =∠AHO ,求m 的值.杨浦25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分) 已知:矩形ABCD 中,AB =4,BC =3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上. (1)如图1,当EP ⊥BC 时,求CN 的长; (2)如图2,当EP ⊥AC 时,求AM 的长;(3)请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.奉贤23.(本题满分 12 分,每小题满分各 6 分) 已知:如图 8,四边形90ABCD DCB ∠=︒,,对角线 BD ⊥AD ,点 E 是边 AB 的中点, CE 与 BD 相交于点 F ,2·BD AB BC =. (1) 求证:BD 平分⊥ABC ;(2) 求证:··BE CF BC EF =.O x y 1 2 3 4 1 23 4 5 -1-2 -3-1 -2 -3 (第24题图) (备用图) (图1) A B C D N P M E (图2) A B C D NP M E (第25题图)A B CD (第23题图)A B C D F E奉贤24. (本题满分 12 分,每小题满分各 4 分)如图9,在平面直角坐标系xOy 中,抛物线238y x bx c =++与x 轴相交于点(2,0)A -和点B ,与y 轴相交于点(0,3)C -,经过点A 的射线AM 与y 轴相交于点E ,与抛物线的另一个交点为点F ,且13AE EF =. (1)求这条抛物线的表达式,并写出它的对称轴;(2)求FAB ∠的余切值;(3)点D 是点C 关于抛物线对称轴的对称点,点 P 是 y 轴上一点,且AFP DAB ∠=∠,求点 P 的坐标.奉贤25.(本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分)已知:如图10,在梯形ABCD 中,//,90,2AB CD D AD CD ∠===,点E 在边AD上(不与点A 、D 重合),45,CEB EB ∠=与对角线AC 相交于点F ,设DE x =.(1)用含x 的代数式表示线段CF 的长;(2)如果把CAE 的周长记作CAE C,BAF 的周长记作BAF C ,设CAEBAF Cy C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当ABE ∠的正切值是35时,求AB 的长. 宝山23、(满分12分,每小题各6分)如图,ABC 中,AB AC =,过点C 作//CF AB 交ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:AE EG AC CG=; (2)若AH 平分BAC ∠,交BF 于H ,求证:BH 是HG 和HF的比例中项.宝山24、(满分12分,每小题各4分)设,a b 是任意两个不等实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b ,对于一个函数,如果它的自变量x 与函数值y 满足:当m x n ≤≤时,有m y n ≤≤,我们就此称此函数是闭区间[],m n 上的“闭函数”。
BB2019届一模提升题汇编第25题(压轴题)【2019届一模徐汇】25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长;(2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域; (3)当△DFC 是等腰三角形时,求AD 的长.【25.解:(1)过A 作AH ⊥BC ,垂足为H ,∵222AHC AH CH AC ∆+=在Rt 中,,∴6AH = ……………………………(1分)(第25题图1)(第25题图)∴90AHF HFD DFH ∠=∠=∠=︒,∴四边形AHFD 是矩形,∴6DF AH ==(2)∵AD ∥BC ,∴DAC ACB ∠=∠. ∵EDC ACB ∠=∠,∴EDC DAC ∠=∠.∵ACD ACD ∠=∠,∴CAD V ∽CDE V ………………………………………(1分)∵10,AC EC y ==,∴210CD CA CE y =⋅= …………………………………(1分)∵222226(8)DFC CD DF FC x ∆=+=+-在Rt 中,(3)由EDC ACB ∠=∠,EFC EFC ∠=∠得:FCE ∆∽FDC ∆, 又AD ∥BC 有FCE ∆∽DAE ∆,∴DAE ∆∽FDC ∆∴当FDC ∆是等腰三角形时,DAE ∆也是等腰三角形 ………………………(1分) ∴1,DA DE ︒=当时不存在; ………………………………………………………(1分)2,10AD AE x y︒==-当时得:120(),6x x ==解得:舍……………………………………………………………(2分)【2019届一模浦东】25. (本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D 、E 分别在大三角尺的直角边AC 、BC 上, 此时小三角尺的斜边DE 恰好经过大三角尺的重心G . 已知∠A =∠CDE =30°,AB =12. (1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D 第一次落在大三角尺的边AB 上时(如图10-2),求点B 、E 之间的距离;(3)在小三角尺绕点C 旋转的过程中,当直线DE 经过点A 时,求∠BAE 的正弦值.(图10-1)(图10-2)DCABBAE【2019届一模杨浦】25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F .(1)当点E 为边AB 的中点时(如图1),求BC 的长;(2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域; (3)当△AEF 的面积为3时,求△DCE 的面积.【 25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分) 解:(1)∵AD //BC ,∴DE AE ADEF EB BF==.∵E 为AB 中点,∴AE =BE . ∴AD = BF ,DE = EF . ∵AD =3,AB =6,∴BF =3,BE =3. ∴BF =BE .∵AB ⊥BC ,∴∠F =45°且EF =32. ··················· (1分) ∴DF =2EF =62. ···························· (1分) ∵DF ⊥DC ,∠F =45°,∴CF =12. ···················· (1分) ∴BC = 1239CF BF -=-=. ······················ (1分)A BCD E F(图1)(第25题图)A BCDEF (图2)(2)∠DCE的大小确定,1tan2DCE?. ·················(1分)作CH ⊥AD交AD的延长线于点H,∴∠HCD+∠HDC=90°.∵DF⊥DC,∴∠ADE+∠HDC=90°. ∴∠HCD=∠ADE.又∵AB⊥AD,∴∠A=∠CHD. ∴△AED∽△HDC. ·············(2分)∴DE ADDC CH=. ·····························(1分)∵AB⊥AD,CH⊥AD,AD//BC,∴CH=AB=6.∵AD=3,CH=6,∴12DEDC=.即1tan2DCE?. ··············(1分)(3)当点E在边AB上,设AE=x,∵AD//BC,∴AD AEBF EB=,即36xBF x=-.∴183xBFx-=.∵△AEF的面积为3,∴11833 2xxx-鬃=.∴4x=. ·······························(1分)∵AD=3,AB⊥AD,∴DE=5. ∵12DEDC=,∴DC=10.∵DF⊥DC,∴1510252DCES=创=V. ··················(1分)当点E在边AB延长线上,设AE=y,∵AD//BC,∴AD AEBF EB=,即36yBF y=-.∴318yBFy-=.∵△AEF的面积为3,∴131832yyy-鬃=.∴8y=. ·············(1分)∵AD=3,AB⊥AD,∴DE=73.联结CE,作CH⊥AD交AD的延长线于点H,同(1)可得12DEDC=. ·····(1分)AB CDF∴DC =273∵DF ⊥DC ,∴173273732DCE S =创=V .················(1分) 综上,当△AEF 的面积为3时,△DCE 的面积为25或73.】【2019届一模普陀】25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.【 25.解:ABCPO ABCPO图11①图11②(1)过点C 作CH AB ⊥,H 为垂足. ·················· (1分)∴90CHO CHB ∠=∠=o .在Rt △COH 中,60COB ∠=o ,2OC =.∵22AO OB a ==, ∴21AH a =+,1BH a =-.∵90ACB ∠=o ,∴90ACH HCB ∠+∠=o . ∵CH AB ⊥,∴90ACH A ∠+∠=o . ∴A HCB ∠=∠.∵90CHA BHC ∠=∠=︒,∴△ACH ∽△CBH . ······················· (1分)∴2CH AH BH =⋅.(2)过点C 作CH AB ⊥,H 为垂足.设OC m =. 在Rt △COH 中,60COB ∠=o ,OC m =.在Rt △ACH 中,90CHA ∠=︒, ∴222AC AH CH =+.(3)延长QA 、CO 交于点E .∵AQ //BC ,∴E OCB ∠=∠.∵COA AOQ QOC ∠=∠+∠,COA OCB B ∠=∠+∠,QOC B ∠=∠, ∴AOQ OCB ∠=∠. ∵QOA E ∠=∠.又∵Q Q ∠=∠,∴△QOA ∽△QEO . ················ (1分)【2019届一模奉贤】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.【25.解:(1)∵CD ∥EF ,DF ∥CE ,∴四边形DFEC 是平行四边形. ····················· (1分) ∴EF =DC . ······························ (1分) ∵26AB CD ==,∴3CD EF ==.∵AB ∥CD ,∴AB ∥EF .∵点G 与点C 重合,∴12EF CE AB BC ==.∴:1CE BE =.··········· (2分) (2)过点C 作CQ ∥AG ,交AB 于点Q ,交EF 于点P . 过点C 作CM ⊥AB ,交AB 于点M ,交EF 于点N . 在Rt △BCM 中, 90CMB??,4CM AD ==,3BM AB CD =-=,∴5BC =.∵AB ∥EF ∥CD ,∴GC =PF =AQ . ∴EP CEBQ BC=. 图11ABCDFEG备用图ABCD(3)当AFD ∆∽ADG ∆时,∵∠DAB =90°,∴ADG ∆是直角三角形,∴AFD ∆也是直角三角形. ∵90DAF 泄?,90FDA 泄?,∴90DFA??. ············(1分) ∵90FADADF???,90FDC ADF???,∴FAD FDC ??.∵AB ∥EF ,∴BCEF ??.∵四边形DFEC 是平行四边形,∴FDC CEF ??.∴BFDC FAD ???. ·······················(1分) 在Rt △BCM 中, 90CMB ??,3BM AB CD =-=,5BC =,【2019届一模松江】25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD =,且CE =2,ED =3,求线段PD 的长.【25.解:(1)∵P 为AC 的中点,AC =8,∴CP =4……………………………(1分) ∵∠ACB =90°,BC =6,∴BP =213……………………………………………(1分) ∵D 是边AB 的中点,P 为AC 的中点,∴点E 是△ABC 的重心……………(1分) ∴241333BE BP ==…………………………………………………………(1分) (2)过点B 作BF ∥CA 交CD 的延长线于点F ………………………………(1分)(备用图2)ABCD(备用图1)ABCD(第25题图)ABPCDE∴CABFDC FD DA BD ==………………………………(1分) ∵BD =DA ,∴FD =DC ,BF =AC …………………(1分) ∵CE =2,ED =3,则CD =5,∴EF =8 ∴4182===EF CE BF CP …………………………(1分) ∴41=CA CP ,∴13CP PA =,设CP =k ,则P A =3k ,∵PD ⊥AB ,D 是边AB 的中点,∴P A =PB =3k∴k BC 22=,∴k AB 62=,∵k AC 4=,∴6cos 3A =…………(1分)(3)∵∠ACB =90°,D 是边AB 的中点,∴12CD BD AB ==∵222BP CD =,∴22BP CD CD BD AB =⋅=⋅……………(1分) ∵∠PBD =∠ABP ,∴△PBD ∽△ABP …………………………(1分) ∴∠BPD =∠A ……………………………………………………(1分) ∵∠A =∠DCA ,∴∠DPE =∠DCP ,∵∠PDE =∠CDP ,△DPE ∽△DCP ,∴DC DE PD ⋅=2…………………………(1分)∵DE =3,DC =5,∴15=PD …………………………………………………(1分)】【2019届一模嘉定】25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)(备用图2)ABC DPE PE (备用图1)AB C DF在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.【25.(1)证明:∵AE 是AM 和AN 的比例中项∴ANAE AE AM = ……………………1分 ∵A A ∠=∠∴△AME ∽△AEN ∴ANE AEM ∠=∠……………………1分 ∵︒=∠90D ∴︒=∠+∠90DEC DCE ∵EC EM ⊥∴︒=∠+∠90DEC AEM ∴DCE AEM ∠=∠……………………1分 ∴DCE ANE ∠=∠ ………1分A备用图 BDCA备用图BDCA 图8B MEDCNA 备用图BDCM ENA 图9BDCA图8 BM ED C N(2)解:∵AC 与NE 互相垂直∴︒=∠+∠90AEN EAC∵︒=∠90BAC ∴︒=∠+∠90AEN ANE ∴EAC ANE ∠=∠ 由(1)得DCE ANE ∠=∠ ∴EAC DCE ∠=∠ ∴DAC DCE ∠=∠tan tan ∴ADDCDC DE =……………………1分 ∵6==AB DC , 8=AD , ∴29=DE ∴27298=-=AE ……………………1分 由(1)得DCE AEM ∠=∠ ∴DCE AEM ∠=∠tan tan ∴DCDEAE AM =∴821=AM ……………………1分 ∵AN AE AE AM =∴314=AN ……………………1分 ∴2449=MN ……………………1分 (3)∵AEM MAE NME ∠+∠=∠,DCE D AEC ∠+∠=∠ 又︒=∠=∠90D MAE ,由(1)得DCE AEM ∠=∠∴ NME AEC ∠=∠ …………………………1分 当△AEC 与以点E 、M 、N 为顶点所组成的三角形相似时 1)EAC ENM ∠=∠,如图9 ∴EAC ANE ∠=∠由(2)得:29=DE ……………………2分2)ECA ENM ∠=∠,如图10 过点E 作AC EH ⊥,垂足为点H由(1)得DCE ANE ∠=∠ ∴DCE ECA ∠=∠M EN A 图9 BDCA 图10B MEDCNH设x DE 3=,则x HE 3=,x AH 4=,x AE 5= 又AD DE AE =+ ∴835=+x x ,解得1=x∴33==x DE……………………2分 【2019届一模青浦】25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.【25.解:(1)∵AD //BC ,∵DB =DC =15,DE =DF =5,∴BG =CH . ························· (1分)NHG FED C AB(第25题图)(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.··········(1分)∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC =∠FGH,∴BD∥FG,·························(1分)(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND =∠FGH,∴△ADN∽△FCG.·····················(1分)图11ABCPQM【2019届一模静安】25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan ABC ∠=B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.【 25.解:(1)过点A 作AH ⊥BC ,交BC 于点H . ··············· (1分)∴279BC BH HC =+=+=, ··················· (1分) ∴1194218222ABC S BC AH ∆=⋅=⨯⨯=.…………………(1分) (2) 过点A 作AG ⊥BM ,交BM 于点G . ∵AC BC =, ∴CAB CBA ∠=∠ ∵BM //AC , ∴ABP CAB ∠=∠ ∴ABP CBA ∠=∠∴42AG AH ==,即2BG BH ==………(1分) ∴2PG x =- 在Rt AGP ∆中,22222(42)(2)436AP AG PG x x x =+=+-=-+ (1分)∵BAQ BAC CAQ ∠=∠+∠,BAQ ABP APB ∠=∠+∠,∴APB CAQ ∠=∠又AQC ABP ∠=∠ ················· (1分) ∴ABP ∆∽CQA ∆ ∴AP BPAC AQ= ∴24369x x x y-+=, 即29(0)436x y x x x =>-+ ·········· (2分)(3) 由题意得PQ AP AQ =+=22229536436436436x x x x x x x x x ++-++=-+-+由ABP ∆∽CQA ∆得AB APCQ AC= 得 254436CQ x x =-+ ········ (1分)如果PCQ ∆是直角三角形,又90AQC ABP ∠=∠≠o ,故只有两种可能:……(1分)①90PCQ ∠=o ,则1cos 3CQ AQC PQ ∠==,即3PQ CQ =, 222536543436436x x x x x x ++=⨯-+-+,解得129,14x x ==-(舍); (2分)②90CPQ ∠=o ,则1cos 3PQ AQC CQ ∠==,即3CQ PQ =, 第25题ABPQMG222536543436436x x x x x x ++⨯=-+-+,该方程无解; (1分)综上所述,如果PCQ ∆是直角三角形,BP 的长为9.】【2019届一模宝山】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若,求DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.【25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 解:(1)过点A 作AG ⊥CD 交CD 的延长线于点M ……………………… … …1分梯形ABCD 中,∠ABC =90°,∠A =45°∴∠DAM =45°13AP =备用图A BCD PEABCDF(图10)∵AB //CD ,AM =CD 且∠ADM =∠DAM =45°,DM =AM =2……… … …1分 ∴Rt △AEM 中,AE =AP =√13,ME =√AE 2−AG 2=3…………… ……1分 ∴DE =1 ……………………………………………………………… ……1分 (2)过点P 作PH ⊥CD ,垂足是点H∵CP =EP ∴EC =2CH ……………………………………… …… 1分 设AE =AP =x ,PB =5-x ,EC =10-2x , BC =2∴Rt △PBC 中,PE =PC =√PB 2+BC 2=√(5−x )2+22=√x 2−10x +29 …… 1分由题意可知AE =AP ,∴∠AEP =∠APE ,∵CP =EP ,∴∠PEC =∠PCE …… …1分∵AB //CD ∴∠PEC =∠APE ,∴∠PEC =∠APE 且∠PCE =∠AEP ∴△APE ∽△PCE …………………………………………………………1分化简得(3)∵△ADE 是钝角三角形,当点G 在CF 上时,∠GEF 、∠F 必是锐角,∴若△ADE ∽△FGE ,只能∠ADE =∠FGE =135°…………………………… ……1分 ∵Rt △PBF 中,∠F +∠FPB =90° 又∵∠EAP +∠APE +∠AEP =180° ∵∠FPB =∠APE ,∠APE =∠AEP ∴∠EAP =2∠F ∵AB //CD ∴∠DEA =∠EAP ∴∠DEA =2∠F∴必有∠DAE =∠F …………………………………………………………… …… …1分0292032=+-x x∴∠EAP =2∠DAE ∴∠EAP =30°,∠F =∠DAE =15°∴AE =AP =2AM =4,PB =1,EM =,CG =CE =……………… ………1分 ∴EG =∵△ADE ∽△FGE ∴∴FG =………………………………1分 ∴当FG =时,△ADE ∽△FGE .】【2019届一模长宁】25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.3232-56225-FGADEG DE =133-133-如图2BF EC ND AMB FC E N ADM如图1备用图BC NAM【25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)∵在 BAC Rt ∆中 ︒=∠90BAC∵25=BC ∴15=AC (1分)∵BC AF ⊥ ∴︒=∠90AFC∴16=EF (1分)(2)过点A 作EF AH ⊥于点H ∴ ︒=∠90AHB∵x BF =,x FH -=16,x FC -=25∴ 40032)16(122222+-=-+=x x x AF (1分) ∵ BCA MBN ∠=∠,EAF MBN ∠=∠∴BCA EAF ∠=∠ 又∵CFA AFE ∠=∠ ∴AFE ∆∽CFA∆ ∴EF FC AF ⋅=2第25题图∴EF x x x ⋅-=+-)25(400322(1分)∴xx x EF -+-=25400322,xxx x x x BF EF BE --=+-+-=+=25740025400322 (1分)∵ ACB MBN ∠=∠,FAC AEF ∠=∠,∴BDE ∆∽CFA ∆ ∴ACBEFC BD =(1分) ∴1525740025x xx y--=- ∴157400x y -=(2250≤<x ) (1分+1分) (3)596或 1172000(2分+2分)】 【2019届一模金山】25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r . (1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()ο900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).AB CDEFG OHM第25题备用图 ABCD EFO【25.(1)证明:∵多边形ABCDEF 是⊙O 的内接正六边形,∴BCA BAC ∠=∠,∵ο180=∠+∠+∠ABC BCA BAC ,∴ο30=∠BAC ,得ο90=∠CAF , (1分)同理ο90=∠ACD ,ο90=∠AFD ,(1分) ∴四边形ACDF 是矩形. (1分)∴OCD ∆为等边三角形,∴r OC CD ==,ο60=∠OCD , 作CD ON ⊥垂足为N ,即ON 为CD 弦的弦心距,作AC OP ⊥垂足为P ,即OP 为AC 弦的弦心距,当CH 经过点E 时,可知ο30=∠ECD , ∵四边形ACDF 是矩形,∴CD AF //,∴ο30=∠=∠ECD AHC ,∵CH MH ⊥,∵⊙M 与⊙O 外切,(3)作CM HQ ⊥垂足为Q ,由α=∠HCD ,CH MH ⊥可得α=∠QHM , ∵CD AF //,CD AC ⊥①当ο600<<α时,点H 在边AF 的延长线上,此时点C 、M 、H 、F 构成的四边形为梯形,②当ο60=α时,点H 与点F 重合,此时点C 、M 、H 、F 构成三角形,非四边形,所以舍去. (1分)③当οο9060<<α时,点H 在边AF 上,此时点C 、M 、H 、F 构成的四边形为梯形,∴()()2tan 3322r HQ CM FH S ⋅+=⋅+=α. (1分)综上所述,当()ο900<<=∠ααHCD 时,点C 、M 、H 、F 构成的四边形的面积为()23tan 3cot 62r S ⋅-+=αα或()2tan 332r S ⋅+=α.(备注:若求出ααcos sin 3⋅=r CM ,可得当ο600<<α2cos sin 2323cot 23r S ⋅⎪⎪⎭⎫ ⎝⎛⋅+-=ααα, 当οο9060<<α时2cos sin 23cot 2323r S ⋅⎪⎪⎭⎫⎝⎛⋅+-=ααα.】【2019届一模闵行】25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=.(1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.F【25.解:(1)分别过点A、D作AM⊥BC、DN⊥BC,垂足为点M、N.∵AD // BC,AB = CD,AD = 5,BC = 15,在Rt△ABM中,∠AMB = 90°,∴AB = 13.……………………………………………………………(2分)∵∠AFD=∠BEC,∠ADF=∠C.∴△ADF∽△BCE.过点E 作EH ⊥BC ,垂足为点H . 由题意,本题有两种情况:(ⅰ)如果点G 在边AD 上,则 840ABCD ABEF S S S -==四边形四边形.∴ S = 5.∴945BEC S S ==V . ∴ 6EH =.由 DN ⊥BC ,EH ⊥BC ,易得 EH // DN .(ⅱ)如果点G 在边DA 的延长线上,则 9ADF ABCD ABEF S S S S ++=V 四边形四边形.∴ 8200S =.解得 25S =. ∴9225BEC S S ==V .∴305122CE EH CD DN ===.∴ 652CE =.……………………………(2分) ∴ 136522CE =或.】【2019届一模虹口】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F . (1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEF S y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.第25题备用图ABC第25题图EABCFDG【25.(1)根据题意得△ABE≌△GBE∴BG=AB=6由△ABE≌△GBE得∠AEB=∠BEG∵AD∥BC∴∠AEB=∠EBF∴∠BEF=∠EBF∴FE=FB=9………………………………………………………………………(2分)(2)∵AD∥BC∴∠ADB=∠GBF又∵∠A=∠BGF=90°∴△ABD∽△GFB∵AD∥BC∠A=90°∴∠ABF=90°∴∠ABG+∠GBF=90°又∵∠GBF+∠EFB =90°∴∠ABG =∠EFB根据题意得AB=BG又∵FE=FB∴△ABG∽△EFB…………………………………………………………………(1分)上海市2019届初三数学一模提升题汇编第25题(压轴题)(word 版包含答案) 31 / 31(3)①点F 在BC 上∵∠GFC =∠AEG >90°∵△FCG 是等腰三角形 ∴FG =FC设FG =FC =a ,则BF =10-a∵∠ADB =∠GBF ∴tan ∠ADB =tan ∠GBF②点F 在BC 的延长线上∵∠GCF >∠DCF >90°∵△FCG 是等腰三角形 ∴CG =CF∵∠ADB =∠GBF ∴tan ∠ADB = tan ∠GBF。
崇明23.(本题满分12分,每小题各6分)如图,点E 是正方形ABC D的边B C延长线上一点,联结D E,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G . (1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒. ﻬ崇明24.(本题满分12分,每小题各4分)如图,抛物线243y x bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA上一个动点(点M与点A 不重合),过点M 作垂直于x轴的直线与直线AB 和抛物线分别交于点P 、N .(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点的坐标;(3)如果以B ,P,N为顶点的三角形与APM 相似,求点M 的坐标.(第23题图)A BD ECGF(第24题图) AMPNBOxyBOxy(备用图)A崇明25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求E F的长;(2)如图2,当点E 在A C边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....B F的长.ﻬ金山23.ﻩ(本题满分12分,每小题6分) ﻩ如图,已知在Rt△ABC 中,∠ACB=90°,A C>BC ,CD 是R t△ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F . (1)求证:DF 是BF 和CF 的比例中项;(2)在AB 上取一点G ,如果AE :AC=AG:AD ,求证:EG:CF=E D:DF .(第25题图1) ABCD FE BD FE CA(第25题图2)B DFECA(第25题图3)金山24.(本题满分12分,每小题4分)y ax bx与y轴相交于点C,与x轴正ﻩ平面直角坐标系xOy中(如图),已知抛物线23x,顶点为P.半轴相交于点A,OA OC,与x轴的另一个交点为B,对称轴是直线1(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.金山25.ﻩ(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC中,4 5,cos5AB AC B,P是边AB一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB =x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.ﻬ青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD CA CE CB⋅=⋅.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC=,求证:AB AD AF AE⋅=⋅.AB CDEF图8青浦24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系x Oy 中,抛物线()20y axbx c a =++>与x 轴相交于点A (-1,0)和点B ,与y轴交于点C,对称轴为直线1x =.(1)求点C的坐标(用含a 的代数式表示);(2)联结AC、BC,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CG F为直角三角形时,求点Q的坐标. ﻬ青浦25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图10,在边长为2的正方形A BCD 中,点P 是边A D上的动点(点P 不与点A 、点 D 重合),点Q是边C D上一点,联结P B、PQ ,且∠PBC =∠BP Q. (1)当Q D=QC 时,求∠ABP 的正切值; (2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.ﻬ黄浦23、(本题满分12分)如图,BD 是ABC △的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:12CDE ABC ∠=∠(2)求证:AD CD AB CE ⋅=⋅图10 QPD C B A备用图A B CD图9CBA O yxED CB A在平面直角坐标系xOy 中,对称轴为直线1x =的抛物线28y ax bx =++过点()2,0-. (1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过点B 作x 轴的平行线交所得抛物线于点C ,若AC BD ∥,试求平移后所得抛物线的表达式.如图,线段5AB =,4AD =,90A ∠=︒,DP AB ∥,点C 为射线DP 上一点,BE 平分ABC ∠交线段AD 于点E (不与端点A 、D 重合).(1)当ABC ∠为锐角,且tan 2ABC ∠=时,求四边形ABCD 的面积; (2)当ABE △与BCE △相似时,求线段CD 的长;(3)设DC x =,DE y =,求y 关于x 的函数关系式,并写出定义域.PDBA P EDC BA松江23.(本题满分12分,每小题6分)已知四边形ABCD中,∠BAD=∠BDC=90°,2=⋅.BD AD BC(1)求证:AD∥BC;(2)过点A作AE∥CD交BC于点E.请完善图形并求证:2=⋅.CD BE BC松江24.(本题满分12分,每小题4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++的对称轴为直线x =1,抛物线与x轴交于A 、B 两点(点A在点B的左侧),且AB =4,又P 是抛物线上位于第一象限的点,直线AP 与y轴交于点D,与对称轴交于点E ,设点P 的横坐标为t . (1)求点A 的坐标和抛物线的表达式; (2)当AE :EP =1:2时,求点E 的坐标;(3)记抛物线的顶点为M,与y 轴的交点为C ,当四边形CD EM 是等腰梯形时,求t 的值.松江25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知△ABC中,∠ACB=90°,AC=1,BC=2,CD平分∠ACB交边AB与点D,P 是射线CD上一点,联结AP.(1)求线段CD的长;(2)当点P在CD的延长线上,且∠PAB=45°时,求CP的长;(3)记点M为边AB的中点,联结CM、PM,若△CMP是等腰三角形,求CP的长.闵行23.(本题共2小题,每小题6分,满分12分)如图,已知在△A BC中,∠BAC =2∠B ,AD 平分∠BAC , DF //BE ,点E在线段BA 的延长线上,联结DE ,交AC 于点G ,且∠E =∠C .(1)求证:2AD AF AB =⋅; (2)求证:AD BE DE AB ⋅=⋅.(第23题图)ABDCEFG闵行24.(本题共3题,每小题4分,满分12分)抛物线23(0)y ax bx a =++≠经过点A (1-,0),B(32,0), 且与y 轴相交于点C .(1)求这条抛物线的表达式; (2)求∠ACB 的度数;(3)设点D 是所求抛物线第一象限上一点,且在对称轴的右侧,点E 在线段AC 上,且DE ⊥A C, 当△D CE 与△AOC 相似时,求点D 的坐标.(第24题图)y xO CB A闵行25.(共3小题,第(1)小题4分,第(2)小题6分,第(3)小题4分,满分14分)如图,在Rt△ABC 中,∠ACB =90°,AC =4,BC=3,CD 是斜边上中线,点E 在边AC 上,点F 在边BC 上,且∠EDA =∠FDB ,联结EF 、D C交于点G . (1)当∠EDF =90°时,求AE 的长;(2)CE = x,C F = y,求y 关于x 的函数关系式,并指出x 的取值范围; (3)如果△CFG 是等腰三角形,求CF 与CE 的比值.(备用图)ABDC(第25题图)AB DCEFG浦东23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,C E⊥A B于点E ,点D 在边A C上, 联结BD 交C E于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.ﻬ浦东24.(本题满分12分,每小题4分)已知抛物线y =ax 2+bx +5与x轴交于点A(1,0)和点B (5,0),顶点为M .点C 在x轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l 在第三象限上的点,联结A P,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CP A的值;(3)在(2)的条件下,联结A M、B M,在直线PM上是否存在点E ,使得∠AEM =∠AMB .若存在,求出点E的坐标;若不存在,请说明理由.ﻬ浦东25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△A BC 中,∠A CB=90°,BC =2,AC =4,点D 在射线BC 上,以点D 为圆心,B D为半径画弧交边AB 于点E ,过点E 作EF ⊥AB 交边AC 于点F,射线ED 交射线AC于点G.A (第23题图)DEFBC(第24题图)y x 12 34 5–1–2–3–4–51 2 3 4 5 –1 –2 –3 –4 –5 O(1)求证:△EFG∽△AEG;(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接..写出FG的长度.ﻬ虹口23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF DF BF CF⋅=⋅.(1)求证AD AB AE AC⋅=⋅;(2)当AB=12,AC=9,AE=8时,求BD的长与△△ADEECFSS的值.C(第25题图)ABGFDE(第25题备用图)AB C(第25题备用图)AB C虹口24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy中,抛物线与x轴相交于点A(-2,0)、B(4,0),与y轴交于点C (0,-4),BC与抛物线的对称轴相交于点D.(1)求该抛物线的表达式,并直接写出点D的坐标;(2)过点A作AE⊥AC交抛物线于点E,求点E的坐标;(3)在(2)的条件下,点F在射线AE上,若△ADF∽△ABC,求点F的坐标.虹口25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB=5,AD=4,AD∥BM,3cos5B=(如图),点C、E分别为射线BM上的动点(点C、E都不与点B重合),联结AC、AE,使得∠DAE=∠BAC,射线EA交射线CD于点F.设BC=x,AFy AC=.(1)如图1,当x=4时,求AF的长;(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域; (3)联结BD交AE于点P,若△ADP是等腰三角形,直接写出x的值.x普陀23.ﻬ(本题满分12分)ﻬ已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,2,AD DC DC DE DB ==⋅.求证:(1)BCE ADE ∽;(2)··AB BC BD BE =.ﻬ普陀24.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系中,已知抛物线22y ax ax c +=+(其中a c 、为常数,且0a <)与x 轴交于点A ,它的坐标是()3, 0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4.(1)求该抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是抛物线上的一点,且ABP CAO ∠=∠,试直接写出点P 的坐标.图9B普陀25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,BAC ∠的余切值为2, 25AB =,点D 是线段AB 上的一动点(点D 不与点A B 、重合),以点D 为顶点的正方形DEFG 的另两个顶点E F 、都在射线AC 上,且点F 在点E 的右侧.联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF ; ②FP ; ③BP ; ④BDG ∠; ⑤GAC ∠; ⑥BPA ∠; (2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域; (3)如果PFG 与AFG 相似,但面积不相等,求此时正方形的边长.ﻬ嘉定23.(本题满分12分,每小题6分)如图6,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.(1)求证:BC DE AE CD ⋅=⋅;(2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF . 求证:CA CE AF ⋅=2.备用图图11BP BACC DE GF ABCD EF 图6嘉定24.(本题满分12分,每小题4分)已知在平面直角坐标系xOy (如图7)中,已知抛物线c bx x y ++=232点经过)0,1(A 、)2,0(B .(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x 轴的交点为C , 第四象限内的点D 在该抛物线的对称轴上,如果 以点A 、C 、D 所组成的三角形与△AOB 相似, 求点D 的坐标;(3)设点E 在该抛物线的对称轴上,它的纵坐标是1, 联结AE 、BE ,求ABE ∠sin .O 11 A B嘉定25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在正方形ABCD 中,8=AB ,点P 在边CD 上,43tan =∠PBC ,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直.(1)如图8,当点R 与点D 重合时,求PQ 的长; (2)如图9,试探索:MQRM的比值是否随点Q 的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图10,若点Q 在线段BP 上,设x PQ =,y RM =,求y 关于x 的函数关系式,并写出它的定义域.D (R ) QM ABCP 图8ABCD P QM R 图9ACD PQM R图10静安23.ﻬ(本题满分12分,其中第1小题6分,第2小题6分)已知:如图,梯形ABCD 中,//,,DC AB AD BD AD DB =⊥,点E 是腰AD 上一点,作45EBC ∠=,联结CE ,交DB 于点F . (1)求证:ABE ∽DBC ; (2)如果56BC BD =,求BCE BDAS S 的值.ﻬ静安24.ﻬ(本题满分12分,第1小题4分,第2小题8分) ﻬ在平面直角坐标系xOy 中(如图),已知抛物线253y ax bx =+-经过点(1,0)A -、(5,0)B . (1)求此抛物线顶点C 的坐标;(2)联结AC 交y 轴于点D ,联结BD 、BC ,过点C 作CH BD ⊥,垂足为点H ,抛物线对称轴交x 轴于点G ,联结HG ,求HG 的长.ﻬ静安25.ﻬ(本题满分14分,第1小题4分,第2小题6分,第3小题4分)ﻬ已知:如图,四边形ABCD 中,090,,,BAD AD DC AB BC AC <∠≤==平分BAD∠.(1)求证:四边形ABCD 是菱形;(2)如果点E 在对角线AC 上,联结BE 并延长,交边DC 于点G ,交线段AD 的延长线于 点F (点F 可与点D 重合),AFB ACB ∠=∠,设AB 长度是a (a 实常数,且0a >),,AC x AF y ==,求y 关于x 的函数解析式,并写出定义域;(3)在第(2)小题的条件下,当CGE 是等腰三角形时,求AC 的长.(计算结果用含a 的代数式表示)ﻬ长宁23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆A BC中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边A C于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅. ﻬ长宁24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆A BE 的面积与∆ABC 的面积之比为4:5,求∠D BA 的余切值;(3)过点D作DF ⊥AC ,垂足为点F,联结CD . 若∆CFD 与∆A OC 相似,求点D的坐标.F EDABC第23题图ﻬ长宁25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线B D上的一个动点(点P 不与点B、D 重合),过点P作PF ⊥BD ,交射线BC于点F. 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F在边BC 上时,求y关于x的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠B PE ,请直接写出PD 的长.ﻬ 徐汇23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 如图在△A BC 中,AB =AC ,点D 、E 、F 分别在边B C、AB 、AC 上,且∠AD E=∠B ,∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE=AF ; (2)若DF CFDE AE=,求证:四边形EBD F是平行四边形. ﻬ徐汇24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图,在平面直角坐标系xOy 中,直线y=kx (k≠0)沿着y轴向上平移3个单位长度后,与x 轴交于点B (3,0),与y 轴交于点C ,抛物线2y x bx c =++过点B 、C 且与x 轴的另一个交点为A.(1)求直线BC 及该抛物线的表达式; (2)设该抛物线的顶点为D ,求△DBC 的面积;备用图 备用图图1 DCBA D CB A F E P D CB A 第25题图(3)如果点F在y轴上,且∠CDF=45°,求点F的坐标.ﻬ徐汇25.(本题满分14分,第(1)小题3分,第(2)小题7分,第(3)小题4分)已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.杨浦23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABC D中,AD //B C,AD =AB ,对角线A C、BD 交于点E ,点F在边BC 上,且∠BEF =∠BAC.(1)求证:△AED ∽△CFE;(2)当EF //DC 时,求证:AE=DE .(第23题图)A B CDE杨浦24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xO y中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H.(1)求顶点D 的坐标(用含m的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D 在第二象限时,如果∠A DH=∠AHO ,求m 的值. ﻬ杨浦25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)已知:矩形AB CD 中,AB =4,BC =3,点M、N 分别在边AB 、C D上,直线MN 交矩形对角线AC 于点E,将△AME 沿直线M N翻折,点A 落在点P 处,且点P在射线CB 上.(1)如图1,当EP ⊥BC 时,求C N的长; (2)如图2,当EP ⊥AC 时,求AM 的长;(3)请写出线段CP的长的取值范围,及当CP 的长最大时MN 的长.ﻬ 奉贤23.(本题满分 12 分,每小题满分各 3 分)已知:如图 8,四边形90ABCD DCB ∠=︒,,对角线 BD ﻬAD,点 D 是边 AB 的中点, CE 与 DD 相交于点 D,2·BD AB BC =. (1) 求证:BD 平分ﻬADD;ﻩ(2) 求证:··BE CF BC EF =.ﻬ奉贤24.ﻬ(本题满分 12 分,每小题满分各 4 分)Oxy 1 2 3 412 3 4 5-1 -2 -3-1 -2 -3 (第24题图)(备用图) (图1) A B C D NP ME(图2) A B C D N P M E (第25题图)A B C Dﻬ如图9,在平面直角坐标系xOy 中,抛物线238y x bx c =++与x 轴相交于点(2,0)A -和点B ,与y 轴相交于点(0,3)C -,经过点A 的射线AM 与y 轴相交于点E ,与抛物线的另一个交点为点F ,且13AE EF =. (1)求这条抛物线的表达式,并写出它的对称轴; (2)求FAB ∠的余切值;(3)点D 是点C 关于抛物线对称轴的对称点,点 P 是 y 轴上一点,且AFP DAB ∠=∠,求点 D 的坐标.奉贤25.(本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分)已知:如图10,在梯形ABCD 中,//,90,2AB CD D AD CD ∠===,点E 在边AD 上(不与点A 、D 重合),45,CEB EB ∠=与对角线AC 相交于点F ,设DE x =. (1)用含x 的代数式表示线段CF 的长; (2)如果把CAE 的周长记作CAE C,BAF 的周长记作BAF C,设CAE BAFCy C=,求y 关于x 的函数关系式,并写出它的定义域; (3)当ABE ∠的正切值是35时,求AB 的长.宝山23、(满分12分,每小题各6分)如图,ABC 中,AB AC =,过点C 作//CF AB 交ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:AE EG AC CG=; (2)若AH 平分BAC ∠,交BF 于H ,求证:BH 是HG 和HF 的比例中项.ﻬ宝山24、(满分12分,每小题各4分)设,a b 是任意两个不等实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b ,对于一个函数,如果它的自变量x 与函数值y 满足:当m x n ≤≤时,有m y n ≤≤,我们就此称此函数是闭区间[],m n 上的“闭函数”。