选修2-1常用逻辑用语学案命题及其关系充分条件与必要条件简单的逻辑联结词全称量词与存在量词
- 格式:doc
- 大小:1.89 MB
- 文档页数:18
新课程标准数学选修2—1第一章课后习题解答第一章常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题. 练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题. 习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题. 逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题. 否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题. 逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题. 否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒;(2)⇒;(3)⇒;(4)⇒.2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p是q的充要条件;(2)原命题和它的逆命题都是真命题,p是q的充要条件;(3)原命题是假命题,逆命题是真命题,p是q的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;(3)p是q的充要条件;(4)p是q的充要条件.习题1.2 A组(P12)1、略.2、(1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是222+=.a b r习题 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:(1)充分性:如果222++=++,那么a b c ab ac bc2220a b c ab ac bc++---=.所以222-+-+-=a b a c b c()()()0所以,0b c-=.-=,0a b-=,0a c即a b c∆是等边三角形.==,所以,ABC(2)必要性:如果ABC==∆是等边三角形,那么a b c所以222-+-+-=()()()0a b a c b c所以2220++---=a b c ab ac bc所以222++=++a b c ab ac bc1.3简单的逻辑联结词练习(P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1)225x-=的根,假命题;+≠,真命题;(2)3不是方程290(31≠-,真命题.习题1.3 A组(P18)1、(1)4{2,3}∈或2{2,3}∈且2{2,3}∈,假命题;∈,真命题;(2)4{2,3}(3)2是偶数或3不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1不是有理数,真命题;(2)5是15的约数,真命题;(3)23+=,真命题;≥,假命题;(4)8715(5)空集不是任何集合的真子集,真命题.习题 B组(P18)(1)真命题. 因为p为真命题,q为真命题,所以p q∨为真命题;(2)真命题. 因为p为真命题,q为真命题,所以p q∧为真命题;(3)假命题. 因为p为假命题,q为假命题,所以p q∨为假命题;(4)假命题. 因为p为假命题,q为假命题,所以p q∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直. 习题 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==. 由2t x =得2t x =,代入42ty -=, 得422xy -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-. 所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y ==所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y ab+=. 因为直线l 经过点(3,4)P ,所以341ab+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF+=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF =.2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM yk x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y yx x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA 为半径画圆,圆与x 轴的两个交点分别为点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,222B F OA a ==,所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5,因为3>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=.2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=.3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分; (2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=.6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得x =所以,点P 的坐标是(1)2±±,共有4个7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+.把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=.这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……①当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12,所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆. 并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程.因为 26c =,212a =,所以3c =,6a =所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=.3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E - 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-; 直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717. 同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525. 由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=.把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=.(3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-=又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=.2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率e =(2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-; 焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-; 焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=.3、22135x y -=4、2211818x y -=,渐近线方程为y x =±.5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题 B 组(P62)1、221169x y -=2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy .设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……① 所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =.当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72) 1、(1)2165y x =; (2)220x y =; (3)216y x =-; (4)232x y =-. 2、图形见右,x3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得 1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y ,则AB ===.4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =± 因为 22AB y ==⨯== 所以,3a = 因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =; (3)焦点坐标1(,0)8F -,准线方程18x =; (4)焦点坐标3(,0)2F ,准线方程32x =-. 2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-.根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p. 4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒= 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,33-不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得3x =± 则321y =±=±因为OB k =,OA k所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y =8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =.这时水面宽为 m.习题 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p 的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x =由此可得12y y =,即线段AB 关于x 轴对称.因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠±第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b+=>>.则 22a c OA OF F A -=-=63714396810=+=22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以 b ==用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=.2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122cr r e aR r r -==++.3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆.(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线. (4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线.5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……①222420(1)2016k k k ∆=+-=-令 0∆<,解得k >,或k <因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )2p y x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =+,22)y p =-把12)y p =+代入)2p y x =-,得 17(2x p =+.把22)y p =代入)2p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =+,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 m =所以,直线l 的方程为2y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……① 所以,122(12)22x x k k x k+-==-由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠- 由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-;当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===.当2y =时,d. 此时1x =,点P 的坐标是(1,2).12顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a=-.由题意,得2b bac a=,所以,b c =,a =.由已知及1F A a c =+,得 a c +=所以 (1c += c =所以,a =,b =因此,椭圆的方程为221105x y +=.3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p =当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p =4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p =+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答 第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--.练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥. 所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=.2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面,于是c 与a ,b 共面,这与已知矛盾. 2、共面 2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,3DB CM DB CM DB CM-+⋅<>===⋅习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==. 向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-; (3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==; (4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==; (5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==; (6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-=10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =-所以2312CM ==,21312D N ==111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22- 习题 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅ ∵ OA OB =,CA CB =(已知),OC OC =.∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点. ∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β;(3)2247u v u v⋅=-α与β.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥.因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD=+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '==.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111) 1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,21MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,21MN AD ⋅==1cos 22θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3ACDB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-=所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos2θ===sin 3θ=点O 到平面ABC的距离sin 1OH OA θ=== 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)O ,D ,1(0,,0)2B ,3(0,,0)2C ,A .∴3((4DO DA ⋅=-⋅=,18DODA ⋅=,cos 2θ=. ∴ AD 与平面BCD所成角等于45︒.(2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,。
简单的逻辑联结词知识集结知识元逻辑联结词或、且、非知识讲解1.逻辑联结词“或”、“且”、“非”【或】一般地,用连接词“或”把命题和命题连接起来,就得到一个新命题,记作pⅤq,读作“p 或q”.规定:当p,q两个命题中有一个命题是真命题时,pⅤq是真命题;当p,q两个命题都是假命题时,pⅤq是假命题.例如:“2≤2”、“27是7或9的倍数”等命题都是pⅤq的命题.解题方法点拨:三个逻辑连接词“或”、“且”、“非”中,对于“或”的理解是难点.p或q表示两个简单命题至少有一个成立,它包括①p真q假②q真p假③p真q真,这一点可以结合两个集合的并集来理解.类似地,p或q或r表示三个简单命题至少有一个成立,同样我们可以结合三个集合的并集来理解.“正难则反”的转化思想在解题中的效果往往好于直接解答,有时起到比繁就简的作用.正确理解“或”,特别是与日常生活中的“或”的区别.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,小题为主.【且】一般地,用连接词“且”把命题p和命题q连接起来,就得到一个新命题,记作p∧q读作“p且q”.规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.“且”作为逻辑连接词,与生活用语中“既…”相同,表示两者都要满足的意思,在日常生活中经常用“和”,“与”代替.例1:将下列命题用“且”连接成新命题,并判断它们的真假:(1)p:正方形的四条边相等,q:正方形的四个角相等;(2)p:35是15的倍数,q:35是7的倍数;(3)p:三角形两条边的和大于第三边,q:三角形两条边的差小于第三边.解题方法点拨::逻辑连接词“且”,p且q表示两个简单命题两个都成立,就是p真并且q 真.一般解题中,注意两个命题必须去交集,不可以偏概全解答.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,充要条件相结合,小题为主.【非】一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定.规定:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题.“非p”形式复合命题的真假与p的真假相反;“非p”形式复合命题的真假可以用下表表示:p¬p真假假真解题方法点拨:注意逻辑连接词的理解及“¬p“新命题的正确表述和应用,“非”是否定的意思,必须是只否定结论.“p或q”、“p且q”的否定分别是“非p且非q”和“非p或非q”,“都”的否定是“不都”而不是“都不”.另外还有“等于”的否定是“不等于”,“大(小)于”的否定是“不大(小)于”,“所有”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”等等.必须注意与否命题的区别.命题方向:理解逻辑连接词“或”“且”“非”的含义,平时学习中,同学往往把非p与否命题混为一谈,因此,高考或会考中,常常出现,但是多以小题的形式.例题精讲逻辑联结词或、且、非例1.已知p:x∈{x|-4<x-a<4},q:x∈{x|(x-2)(3-x)>0},若¬p是¬q的充分条件,则实数a的取值范围为_________。
高二数学知识点总结选修2中学生数学学习的心理障碍是多方面的,其消极作用是显而易见的,产生的原因也是复杂的。
今天小编在这给大家整理了高二数学知识点总结,接下来随着小编一起来看看吧!高二数学知识点总结(一)选修2-1一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高二数学知识点总结(二)选修2-1第一章常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若,则”,则它的否命题为“若,则”.6、四种命题的真假性:原命题逆命题否命题逆否命题种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若,则是的充分条件,是的必要条件.若,则是的充要条件(充分必要条件).8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作 .当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.用联结词“或”把命题和命题联结起来,得到一个新命题,记作 .当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.对一个命题全盘否定,得到一个新命题,记作 .若是真命题,则必是假命题;若是假命题,则必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个,有成立”,记作“ ,”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个,使成立”,记作“ ,”.10、全称命题:,,它的否定:, .全称命题的否定是特称命题.高二数学知识点总结(三)第二章圆锥曲线与方程11、平面内与两个定点,的距离之和等于常数(大于 )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点轴长短轴的长长轴的长焦点焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则 .14、平面内与两个定点,的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点轴长虚轴的长实轴的长焦点焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程。
高中选修数学知识点由于您没有给出具体的高中选修数学的板块内容(例如选修1 - 1、选修2 - 2等),以下为人教版高中数学选修2 - 1知识点整理:一、常用逻辑用语。
1. 命题及其关系。
- 命题:可以判断真假的陈述句叫做命题。
- 四种命题:原命题“若p,则q”;逆命题“若q,则p”;否命题“若¬p,则¬q”;逆否命题“若¬q,则¬p”。
原命题与逆否命题同真同假,逆命题与否命题同真同假。
2. 充分条件与必要条件。
- 充分条件:如果p⇒q,则p是q的充分条件。
- 必要条件:如果q⇒p,则p是q的必要条件。
- 充要条件:如果p⇒q且q⇒p,则p是q的充要条件,记作p⇔q。
3. 简单的逻辑联结词。
- “且”:命题p∧q,当p、q都为真时,p∧q为真,否则为假。
- “或”:命题p∨q,当p、q至少有一个为真时,p∨q为真,当p、q都为假时,p∨q为假。
- “非”:命题¬p,p为真时,¬p为假;p为假时,¬p为真。
4. 全称量词与存在量词。
- 全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示。
含有全称量词的命题叫做全称命题,例如∀x∈M,p(x)。
- 存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃”表示。
含有存在量词的命题叫做特称命题,例如∃x∈M,p(x)。
- 全称命题的否定是特称命题,特称命题的否定是全称命题。
二、圆锥曲线与方程。
1. 椭圆。
- 定义:平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
- 标准方程:- 当焦点在x轴上时,frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),其中c^2=a^2-b^2,焦点坐标为(± c,0)。
- 当焦点在y轴上时,frac{y^2}{a^2}+frac{x^2}{b^2}=1(a > b>0),焦点坐标为(0,± c)。
1.2简单的逻辑联结词及全称量词与存在量词【知识要点】1、常用的逻辑联结词:且,或,非(1)且,定义:用联结词“且” 把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”。
判断命题p q ∧的真假:当p ,q 都为真命题时,p q ∧就为真命题;当p ,q 中只要有一个是假命题,p q ∧就是假命题。
(2)或,定义:用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”。
判断命题p q ∨的真假:当p ,q 两个命题中,只要有一个命题是真命题,p q ∨就为真命题;当p ,q 两个命题都是假命题,p q ∨就是假命题。
(3)非,定义:对命题p 加以否定,就得到一个新命题,记作p ⌝,读作“非p ”或者“p的否定”。
判断命题p ⌝的真假:p ⌝与p 不能同真假,若p 为真,则p ⌝为假;反之,若p 为假,则p ⌝为真。
且()p p ⌝⌝=,简单的说,p ⌝相当于否定了命题p 的结论。
2、全称量词与存在量词:(1)全称量词的定义:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题叫做全称命题,全称命题符号简记为:,()x M p x ∀∈,读作“对于任意x 属于M ,有p (x )成立”。
(2)存在量词的定义:短语“存在一个”“至少一个”在逻辑中通常叫做存在变量,用符号“∃”,含有存在量词的命题叫做特称命题,特称命题符号简记为:00, (x )x M p ∃∈,读作“存在一个0x 属于M ,使p(0x )成立”。
3、含有一个量词的命题的否定:含有一个量词的全称命题的否定,有下面的结论:全称命题:, (x)p x M p ∀∈,它的否定00:, (x )p x M p ⌝∃∈⌝,全称命题的否定是特称命题。
特称命题00:, (x )p x M p ∃∈,它的否定:, (x)p x M p ⌝∀∈⌝,特称命题的否定是全称命题。
常用逻辑用语(讲义)知识点睛一、命题及其关系、充分条件与必要条件1.命题的概念在数学中用语言、符号或式子表达的,可以___________的陈述句叫做命题.其中________的语句叫做真命题,______的语句叫做假命题.2.命题及其关系(1)四种命题原命题:若p,则q(命题中的p叫做命题的条件,q叫做命题的结论)逆命题:_________________;否命题:_________________;逆否命题:_______________.(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有________的真假性;②两个命题互为逆命题或互为否命题,它们的真假性______.3.充分条件与必要条件(1)相关概念(2)集合与充要条件二、简单的逻辑联结词、全称量词与存在量词1.命题中的“______(∧)”“______(∨)”“______(⌝)”叫做逻辑联结词.2.简单复合命题的真假关系3.全称量词与存在量词(1)全称量词:所有、一切、任意、全部、每一个等.符号:∀存在量词:存在一个、至少一个、有些、某些等.符号:∃(2)全称命题与特称命题1.把下列命题改写为“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假.(1)两条异面直线没有公共点;(2)四边相等的四边形是正方形.2.命题“若x 2+y 2=0,则x =y =0”的否命题是( )A .若x 2+y 2=0,则x ,y 中至少有一个不为0B .若x 2+y 2≠0,则x ,y 中至少有一个不为0C .若x 2+y 2≠0,则x ,y 都不为0D .若x 2+y 2=0,则x ,y 都不为03.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=4.下列命题中为真命题的是( )A .命题“若x >1,则x 2>1”的否命题B .命题“若x >y ,则x >|y|”的逆命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题5.已知集合A ={1,a },B ={1,2,3},则“a=3”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.设R ∈ϕ,则“0ϕ=”是“()cos(+)()f x x x R =∈ϕ为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.在p ⌝,p q ∧,p q ∨形式的命题中,p q ∨为真,p q ∧为假,p ⌝为真,那么p ,q 的真假为( ) A .p 真q 真 B .p 真q 假 C .p 假q 真D .p 假q 假8.已知命题p :“x >2是x 2>4的充要条件”,命题q :“若22a bc c >,则a b >”,则( ) A .“p 或q ”为真 B .“p 且q ”为真 C .p 真q 假D .p ,q 均为假9.下列命题中是假命题是( )A .1 20x x R -∀∈>,B .*2 (1)0x x N ∀∈->,C . lg 1x x ∃∈<R ,D . tan 2x x ∃∈=R ,10.命题“300x x R Q Q ∃∈∈,”的否定是( ) A .300x x R Q Q ∃∉∈, B .300x x R Q Q ∃∈∉, C .3x x ∀∉∈R Q Q ,D .3x x ∀∈∉R Q Q ,11.已知命题p :122121[()()]()0x x f x f x x x ∀∈--R ,,≥, 则p ⌝是( )A .122121[()()]()0x x f x f x x x ∃∈--R ,,≤ B .122121[()()]()0x x f x f x x x ∀∈--R ,,≤ C .122121 [()()]()0x x f x f x x x ∃∈--<R ,,D .122121 [()()]()0x x f x f x x x ∀∈--<R ,,12.已知命题p : sin 2R x x ∃∈=,; 命题q :x R ∀∈,都有x 2+x +1>0.给出下列结论:①命题p q ∧是真命题;②命题p q ∨⌝是假命题;③命题p q ⌝∧是真命题;④命题p q ⌝∨⌝是假命题, 其中正确的是( ) A .②④B .②③C .③④D .①②③13.给出下列三个结论:(1)若命题p 为真命题,命题q ⌝为真命题,则命题p q ∧为真命题; (2)命题“若xy =0,则x =0或y =0”的否命题为“若xy ≠0,则x ≠0或y ≠0”;(3)命题“0R x ∃∈,020x >”的否定为“ 20≤x x R ∀∈,”, 则结论正确的个数为( ) A .3B .2C .1D .014.设命题p :2(43)1≤x -;命题q :2(21)(1)0≤x a x a a -+++,若⌝p 是⌝q 的必要不充分条件,求实数a 的取值范围.回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】精讲精练一、1.判断真假判断为真判断为假2.(1)若q,则p若⌝p,则⌝q若⌝q,则⌝p (2)否命题逆命题逆否命题(3)相同没有关系3.(1)充分必要充分不必要必要不充分充分必要(充要)既不充分也不必要(2)真子集真子集A=B包含二、1.且或非2.真真假假真假假真真假假真精讲精练1.略2.B 3.C 4.B 5.A6.A 7.B8.A 9.B 10.D 11.C 12.B13.C 14.1 02a≤≤。
§1.1 命题及四种命题1. 掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题..复习2:什么是定理?什么是公理?.二、新课导学※学习探究1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题练习:下列语句中:(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.其中真命题有,假命题有2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的. ※典型例题例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52=;(6)15x>.命题有,真命题有假命题有. 例2 指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:(2)条件p:结论q:变式:将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.※动手试试1.判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于45︒的三角形是等腰直角三角形.2.把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行.小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可以判断真假.3.四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,则q”,则逆命题为:“”.(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”练习:下列四个命题:(1)若()f x是正弦函数,则()f x是周期函数;(2)若()f x是周期函数,则()f x是正弦函数;(3)若()f x不是正弦函数,则()f x不是周期函数;(4)若()f x不是周期函数,则()f x不是正弦函数.(1)(2)互为(1)(3)互为(1)(4)互为(2)(3)互为例3 命题:“已知a、b、c、d是实数,若子,a b c d==,则a c b d+=+”.写出逆命题、否命题、逆否命题.变式:设原命题为“已知a、b是实数,若a b+是无理数,则a、b都是无理数”,写出它的逆命题、否命题、逆否命题.※动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称. 三、总结提升:※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.下列语名中不是命题的是().A.20x> B.正弦函数是周期函数C.{1,2,3,4,5}x∈ D.125>2.设M、N是两个集合,则下列命题是真命题的是().A.如果M N⊆,那么M N M⋂=B.如果M N N⋂=,那么M N⊆C.如果M N⊆,那么M N M⋃=D.M N N⋃=,那么N M⊆3.下面命题已写成“若p,则q”的形式的是().A.能被5整除的数的末位是5B.到线段两个端点距离相等的点在线段的垂直平分线上C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径4.下列语句中:(1)22)1002是个大数(3)好人一生平安(4)968能被11整除,其中是命题的序号是5.将“偶函数的图象关于y轴对称”写成“若p,则q”的形式,则p:,q:1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若,a b都是偶数,则a b+是偶数;(2)若0m>,则方程20x x m+-=有实数根.2.把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等.§1.1 四种命题间的相互关系1.掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关系转化.复习2:判断命题“若0a ≥,则20x x a +-=有实根”的逆命题的真假.二、新课导学 ※ 学习探究1:分析下列四个命题之间的关系(1)若()f x 是正弦函数,则()f x 是周期函数; (2)若()f x 是周期函数,则()f x 是正弦函数; (3)若()f x 不是正弦函数,则()f x 不是周期函数; (4)若()fx 不是周期函数,则()f x 不是正弦函数. (1)(2)互为 (1)(3)互为 (1)(4)互为 (2)(3)互为通过上例分析我们可以得出四种命题之间有如下关系:2、四种命题的真假性例1 以“若2320x x -+=,则2x =”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假并总结其规律性.(1) . (2) . 练习:判断下列命题的真假.(1)命题“在ABC ∆中,若AB AC >,则C B ∠>∠”的逆命题; (2)命题“若0ab ≠,则0a ≠且0b ≠”的否命题; (3)命题“若0a ≠且0b ≠,则0ab ≠”的逆否命题; (4)命题“若0a ≠且0b ≠,则220a b +>”的逆命题.反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断. ※ 典型例题例1 证明:若220x y +=,则0x y ==.变式:判断命题“若220x y +=,则0x y ==”是真命题还是假命题?练习:证明:若222430a b a b -+--≠,则1a b -≠.例 2 已知函数()f x 在(,)-∞+∞上是增函数,,a b R ∈,对于命题“若0a b +≥,则()()()(f a f b f a f b+≥-+-.” (1) 写出逆命题,判断其真假,并证明你的结论. (2) 写出其逆否命题,并证明你的结论.※ 动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等.2.命题“如果22x a b ≥+,那么2x ab ≥”的逆否命题是( ) A.如果22x a b <+,那么2x ab < B.如果2x ab ≥,那么22x a b ≥+ C.如果2x ab <,那么22x a b <+ D.如果22x a b ≥+,那么2x ab <三、总结提升: ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“若0x >且0y >,则0xy >”的否命题是( ). A.若0,0x y ≤≤,则0xy ≤ B.若0,0x y >>,则0xy ≤C.若,x y 至少有一个不大于0,则0xy <D.若,x y 至少有一个小于0,或等于0,则0xy ≤2. 命题“正数a 的平方根不等于0”是命题“若a 不是正数,则它的平方根等于0”的( ). A.逆命题 B.否命题 C.逆否命题 D.等价命题3.). A.B.C.D.+4. 若1x >,则21x >的逆命题是 否命题是5.命题“若a b >,则221a b ≥-”的否命题为1. 已知,a b 是实数,若20x ax b ++≤有非空解集,则240a b -≥,写出该命题的逆命题、否命题、逆否命题并判断其真假.2.证明:在四边形ABCD 中,若AB CD AC CD +<+,则AB AC <.§1.2.1 充分条件与必要条件1. 理解必要条件和充分条件的意义;2. 能判断两个命题之间的关系..复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假.二、新课导学※学习探究探究任务:充分条件和必要条件的概念问题:1. 命题“若22x a b>+,则2x ab>”(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:2. 1.命题“若0ab=,则0a=”(1)判断该命题的真假;(2)改写成“若p,则q”的形式,则P:q:(3)如果该命题是真命题,则该命题可记为:读着:新知:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.我们就说,由p推出q,记作p q⇒,并且说p是q的,q是p的试试:用符号“⇒”与“”填空:(1)22x y=x y=;(2)内错角相等两直线平行;(3)整数a能被6整除a的个位数字为偶数;(4)ac bc=a b=.※典型例题例1 下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?(1)若1x=,则2430x x-+=;(2)若()f x x=,则()f x在(,)-∞+∞上为增函数;(3)若x为无理数,则2x为无理数.练习:下列“若P,则q”的形式的命题中,哪些命题中的p是q的充分条件?(1)若两条直线的斜率相等,则这两条直线平行;(2)若5x>,则10x>例2 下列“若p,则q”形式的命题中哪些命题中的q是p必要条件?(1)若x y=,则22x y=;(2)若两个三角形全等,则这两个三角形面积相等;(3)若a b>,则ac bc>练习:下列“若p,则q”形式的命题中哪些命题中的q是p必要条件?(1)若5a+是无理数,则a是无理数;(2)若()()0x a x b--=,则x a=.小结:判断命题的真假是解题的关键.※ 动手试试练1. 判断下列命题的真假.(1)2x =是2440x x -+=的必要条件;(2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件; (3)sin sin αβ=是αβ=的充分条件; (4)0ab ≠是0a ≠的充分条件.练2. 下列各题中,p 是q 的什么条件?(1)p :1x =,q:1x - (2)p :|2|3x -≤,q :15x -≤≤;(3)p :2x =,q:3x -;(4)p :三角形是等边三角形,q :三角形是等腰三角形.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展设,A B 为两个集合,集合A B ⊆,那么x A ∈是x B ∈的 条件,x B ∈是x A ∈的 条※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在平面内,下列哪个是“四边形是矩形”的充分条件?( ). A.平行四边形对角线相等 B.四边形两组对边相等 C.四边形的对角线互相平分 D.四边形的对角线垂直2.,x y R ∈,下列各式中哪个是“0xy ≠”的必要条件?( ).A.0x y +=B.220x y +>C.0x y -=D.330x y +≠3.平面//α平面β的一个充分条件是( ). A.存在一条直线,//,//a a a αβ B.存在一条直线,,//a a a αβ⊂C.存在两条平行直线,,,,//,//a b a b a b αββα⊂⊂D.存在两条异面直线,,,,//,//a b a b a b αββα⊂⊂ 4.p :20x -=,q :(2)(3)0x x --=,p 是q 的 条件.5. p :两个三角形相似;q :两个三角形全等,p 是q 的条件. 1. 判断下列命题的真假 (1)“a b >”是“22a b >”的充分条件; (2)“||||a b >”是“22a b >”的必要条件.2. 已知{|A x x =满足条件}p ,{|B x x =满足条件}q . (1)如果A B ⊆,那么p 是q 的什么条件? (2)如果B A ⊆,那么p 是q 的什么条件?§1.2.2 充要条件1. 理解充要条件的概念;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性.1112复习1:什么是充分条件和必要条件?复习2:p:一个四边形是矩形q:四边形的对角线相等.p是q的什么条件?二、新课导学※学习探究探究任务一:充要条件概念问题:已知p:整数a是6的倍数,q:整数a是2 和3的倍数.那么p是q的什么条件?q又是p 的什么条件?新知:如果p q⇔,那么p与q互为试试:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?p是q的什么条件?(1)若平面α外一条直线a与平面α内一条直线平行,则直线a与平面α平行;(2)若直线a与平面α内两条直线垂直,则直线a与平面α垂直.反思:充要条件的实质是原命题和逆命题均为真命题. ※典型例题例1 下列各题中,哪些p是q的充要条件?(1) p: 0b=,q:函数2()f x ax bx c=++是偶函数;(2) p: 0,0,x y>>q:0xy>(3) p: a b>,q:a c b c+>+变式:下列形如“若p,则q”的命题是真命题吗?它的逆命题是真命题吗?哪些p是q的充要条件?(1) p: 0b=,q:函数2()f x ax bx c=++是偶函数;(2) p: 0,0,x y>>q:0xy>(3) p: a b>,q:a c b c+>+小结:判断是否充要条件两种方法(1)p q⇒且q p⇒;(2)原命题、逆命题均为真命题;(3) 用逆否命题转化.练习:在下列各题中, p是q的充要条件?(1) p:234x x=+, q:x=(2) p: 30x-=, q:(3)(4)0x x--=(3) p: 240(0)b ac a-≥≠,q:20(0)ax bx c a++=≠(4) p: 1x=是方程20ax bx c++=的根q:0a b c++=例2 已知:O的半径为r,圆心O到直线的距离为d.求证:d r=是直线l与O相切的充要条件.变式:已知:O的半径为r,圆心O到直线的距离为d,证明: (1)若d r=,则直线l与O相切.(2)若直线l与O相切,则d r=小结:证明充要条件既要证明充分性又要证明必要性.※动手试试练1. 下列各题中p是q的什么条件?(1)p:1x=,q:1x-(2)p:|2|3x-=,q:15x-≤≤;(3)p:2x=,q:3x-;(4)p:三角形是等边三角形,q:三角形是等腰三角形. 练2. 求圆222()()x a y b r-+-=经过原点的充要条件.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展设A、B为两个集合,集合A B=是指x A x B∈⇔∈,则“x A∈”与“x B∈”互为※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列命题为真命题的是().A.a b>是22a b>的充分条件B.||||a b>是22a b>的充要条件C.21x=是1x=的充分条件D.αβ=是tan tanαβ=的充要条件2.“x M N∈ ”是“x M N∈ ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p:240(0)b ac a->≠,q:关于x的方程20(0)ax bx c a++=≠有实根,则p是q的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.22530x x--<的一个必要不充分条件是().A.132x-<< B.12x-<<C.132x-<< D.16x-<<5. 用充分条件、必要条件、充要条件填空.(1).3x>是5x>的(2).3x=是2230x x--=的( 3).两个三角形全等是两个三角形相似的1. 证明:20a b+=是直线230ax y++=和直线20x by++=垂直的充要条件.2.求证:ABC∆是等边三角形的充要条件是222a b c ab ac bc++=++,这里,,a b c是ABC∆的三边.§1.3简单的逻辑联结词1. 了解“或”“且”“非”逻辑联结词的含义;2. 掌握,,p q p q p∧∨⌝的真假性的判断;3. 正确理解p⌝的意义,区别p⌝与p的否命题;4. 掌握,,p q p q p∧∨⌝的真假性的判断,关键在于p与q的真假的判断.1416复习1:什么是充要条件?复习2:已知{|A x x=满足条件}p,{|B x x=满足条件}q(1)如果A B⊆,那么p是q的什么条件;(2) 如果B A⊆,那么p是q的什么条件;(3) 如果A B=,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.试试:判断下列命题的真假:(1)12是48且是36的约数;(2)矩形的对角线互相垂直且平分.反思:p q∧的真假性的判断,关键在于p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系?(1) 27是7的倍数;(2)27是9的倍数;(3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.(1)47是7的倍数或49是7的倍数;(2)等腰梯形的对角线互相平分或互相垂直.反思:p q∨的真假性的判断,关键在于p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系?(1) 35能被5整除;(2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“”,读作“”或“”.试试:写出下列命题的否定并判断他们的真假:(1)2+2=5;(2)3是方程290x-=的根;(31-反思:p⌝的真假性的判断,关键在于p的真假的判断.※典型例题例1 将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:(1)1既是奇数,又是素数;(2)2和3都是素数.小结:p q∧的真假性的判断,关键在于p与q的真假的判断.例2 判断下列命题的真假(1) 22≤;(2) 集合A是A B的子集或是A B的子集;(3) 周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果p q∧为真命题,那么p q∨一定是真命题吗?反之,p q∨为真命题,那么p q∧一定是真命题吗?小结:p q∨的真假性的判断,关键在于p与q的真假的判断.例3 写出下列命题的否定,并判断他们的真假:(1)p:siny x=是周期函数;(2)p:32<(3)空集是集合A的子集.小结:p⌝的真假性的判断,关键在于p的真假的判断. 三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展理解逻辑联结词“且”“或”“非”与集合运算“交”“并”“补”的关系.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. “p或q为真命题”是“p且q为真命题”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题P:在ABC∆中,C B∠>∠是sin sinC B>的充要条件;命题q:a b>是22ac bc>的充分不必要条件,则().A.p真q假B.p假q假C.“p或q”为假D.“p且q”为真3.命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60︒;(4)对角线相等的菱形为正方形.其中真命题有().A.1B.2C.3D.44.命题p:0不是自然数,命题q:π是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5. 已知p:2||6x x-≥,q:,,x Z p q q∈∧⌝都是假命题,则x的值组成的集合为1. 写出下列命题,并判断他们的真假:(1)p q∨,这里p:4{2,3}∈,q:2{2,3}∈;(2)p q∧,这里p:4{2,3}∈,q:2{2,3}∈;(3) p q∨,这里p:2是偶数,q:3不是素数;(4) p q∧,这里p:2是偶数,q:3不是素数.2.判断下列命题的真假:(1)52>且73>(2)78≥(3)34>或34<§1.4 全称量词与存在量词1. 掌握全称量词与存在量词的的意义;2. 掌握含有量词的命题:全称命题和特称命题真假的判断.2123复习1:写出下列命题的否定,并判断他们的真假:(1(2)5不是15的约数(3)8715+≠ (4)空集是任何集合的真子集复习2:判断下列命题的真假,并说明理由:(1)p q ∨,这里p :π是无理数,q :π是实数; (2)p q ∧,这里p :π是无理数,q :π是实数; (3) p q ∨,这里p :23>,q :8715+≠; (4) p q ∧,这里p :23>,q :8715+≠.二、新课导学 ※ 学习探究探究任务一:全称量词的意义问题:1.下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系? (1)3x >;(2)21x +是整数;(3)对所有的,3x R x ∈>;(4)对任意一个x Z ∈,21x +是整数.2. 下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)213x +=;(2)x 能被2和3整除;(3)存在一个0x R ∈,使0213x +=;(4)至少有一个0x Z ∈,0x 能被2和3整除. 新知:1.短语“ ”“ ”在逻辑中通常叫做全称量词,并用符号“ ”表示,含有 的命题,叫做全称命题.其基本形式为:,()x M p x ∀∈,读作:2. 短语“ ”“ ”在逻辑中通常叫做存在量词,并用符号“ ”表示,含有 的命题,叫做特称称命题. 其基本形式00,()x M p x ∃∈,读作:试试:判断下列命题是不是全称命题或者存在命题,如果是,用量词符号表示出来. (1)中国所有的江河都流入大海; (2)0不能作为除数;(3)任何一个实数除以1,仍等于这个实数; (4)每一个非零向量都有方向.反思:注意哪些词是量词是解决本题的关键,还应注意全称命题和存在命题的结构形式. ※ 典型例题例1 判断下列全称命题的真假: (1)所有的素数都是奇数; (2)2,11x R x ∀∈+≥;(3)对每一个无理数x ,2x 也是无理数.变式:判断下列命题的真假:(1)2(5,8),()420x f x x x ∀∈=--> (2)2(3,),()420x f x x x ∀∈+∞=-->小结:要判定一个全称命题是真命题,必须对限定集合M 中每一个元素x 验证()p x 成立;但要判定全称命题是假命题,却只要能举出集合M 中的一个0x x =,使得0()p x 不成立即可. 例2 判断下列特称命题的真假:(1) 有一个实数0x ,使200230x x ++=; (2) 存在两个相交平面垂直于同一条直线; (3) 有些整数只有两个正因数.变式:判断下列命题的真假: (1)2,32a Z a a ∃∈=-(2)23,32a a a ∃≥=-小结:要判定特称命题“00,()x M p x ∃∈” 是真命题只要在集合M 中找一个元素0x ,使0()p x 成立即可;如果集合M 中,使()P x 成立的元素x 不存在,那么这个特称命题是假命题.※ 动手试试练1. 判断下列全称命题的真假: (1)每个指数都是单调函数; (2)任何实数都有算术平方根;(3){|x x x ∀∈是无理数},2x 是无理数.练2. 判定下列特称命题的真假: (1)00,0x R x ∃∈≤;(2)至少有一个整数,它既不是合数,也不是素数; (3)0{|x x x ∃∈是无理数},20x 是无理数.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展数理逻辑又称符号逻辑,是用数学的方法研究推理过程的一门学问. 德国启蒙思想家 莱布尼※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列命题为特称命题的是( ). A.偶函数的图像关于y 轴对称 B.正四棱柱都是平行六面体 C.不相交的两条直线都是平行线 D.存在实数大于等于32.下列特称命题中真命题的个数是( ). (1),0x R x ∃∈≤;(2)至少有一个整数它既不是合数也不是素数;(3){|x x x ∃∈是无理数},2x 是无理数.A.0个B.1个C.2个D.4个 3.下列命题中假命题的个数( ). (1)2,11x R x ∀∈+≥;(2),213x R x ∃∈+=; (3),x Z ∃∈x 能被2和3整除; (4)2,230x R x x ∃∈++=A.0个B.1个C.2个D.4个 4.下列命题中(1)有的质数是偶数;(2)与同一个平面所成的角相等的两条直线平行;(3)有的三角形三个内角成等差数列;(4)与圆只有一个公共点的直线是圆的切线,其中全称命题是 特称命题是 .5. 用符号“∀”与“∃”表示下列含有量词的命题. (1)实数的平方大于等于0: (2)存在一对实数使2330x y ++<成立:1. 判断下列全称命题的真假:(1)末位是0的整数可以被子5整除;(2)线段的垂直平分线上的点到这条线段两端点距离相等; (3)负数的平方是正数; (4)梯形的对角线相等.2. 判断下列全称命题的真假: (1)有些实数是无限不循环小数; (2)有些三角形不是等腰三角形; (3)有的菱形是正方形.§1.4.3含一个量词的命题的否定1. 掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;2. 明确全称命题的否定是存在命题,存在命题的否定是全称命题.2425 复习1:判断下列命题是否为全称命题: (1)有一个实数α,tan α无意义; (2)任何一条直线都有斜率;复习2:判断以下命题的真假:(1)21,04x R x x ∀∈-+≥(2)2,3x Q x ∃∈=二、新课导学 ※ 学习探究探究任务一:含有一个量词的命题的否定 问题:1.写出下列命题的否定: (1)所有的矩形都是平行四边形; (2)每一个素数都是奇数; (3)2,210x R x x ∀∈-+≥.这些命题和它们的否定在形式上有什么变化? 2.写出下列命题的否定: (1)有些实数的绝对值是正数; (2)某些平行四边形是菱形; (3)200,10x R x ∃∈+<.这些命题和它们的否定在形式上有什么变化?新知:1.一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题p :,()x p p x ∀∈,它的否定p ⌝:00,()x M p x ∃∈⌝2. 一般地,对于一个含有一个量词的特称命题的否定有下面的结论: 特称命题p :00,()x M p x ∃∈, 它的否定p ⌝:,()x M p x ∀∈.试试:1.写出下列命题的否定: (1),n Z n Q ∀∈∈; (2)任意素数都是奇数; (3)每个指数函数都是奇数.2. 写出下列命题的否定:(1) 有些三角形是直角三角形; (2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题.※ 典型例题例1 写出下列全称命题的否定:(1)p :所有能被3整除的数都是奇数; (2)p :每一个平行四边形的四个顶点共圆; (3)p :对任意x Z ∈,2x 的个位数字不等于3.变式:写出下列全称命题的否定,并判断真假.(1) p :21,04x R x x ∀∈-+≥(2) p :所有的正方形都是矩形.例2 写出下列特称命题的否定: (1) p :2000,220x R x x ∃∈++≤; (2) p :有的三角形是等边三角形; (3) p :有一个素数含有三个正因数.变式:写出下列特称命题的否定,并判断真假. (1) p :2,220x R x x ∃∈++≤;(2) p :至少有一个实数x ,使310x +=.小结:全称命题的否定变成特称命题.※ 动手试试练1. 写出下列命题的否定: (1) 32,x N x x ∀∈>;(2) 所有可以被5整除的整数,末位数字都是0; (3) 2000,10x R x x ∃∈-+≤;(4) 存在一个四边形,它的对角线是否垂直.练2. 判断下列命题的真假,写出下列命题的否定: (1)每条直线在y 轴上都有截矩; (2)每个二次函数都与x 轴相交;(3)存在一个三角形,它的内角和小于180︒; (4)存在一个四边形没有外接圆.三、总结提升 ※ 学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※ 知识拓展英国数学家布尔(G .BOOL)建立了布尔代数,并创造了一套符号系统,利用符号来表示逻辑中的各种概念.他不建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 命题“原函数与反函数的图象关于y x =对称”的否定是( ). A. 原函数与反函数的图象关于y x =-对称 B. 原函数不与反函数的图象关于y x =对称C.存在一个原函数与反函数的图象不关于y x = 对称D. 存在原函数与反函数的图象关于y x =对称 2.对下列命题的否定说法错误的是( ).A. p :能被3整除的数是奇数;p ⌝:存在一个能被3整除的数不是奇数B. p :每个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形不都是正三角形D. p :2,220x R x x ∃∈++≤;p ⌝:2,220x R x x ∀∈++>3.命题“对任意的32,10x R x x ∈-+≤”的否定是( ). A. 不存在32,10x R x x ∈-+≤ B. 存在32,10x R x x ∈-+≤ C. 存在32,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>4. 平行四边形对边相等的否定是5. 命题“存在一个三角形没有外接圆”的否定是. 1. 写出下列命题的否定: (1)若24x >,则2x >;(2)若0,m ≥则20x x m +-=有实数根; (3)可以被5整除的整数,末位是0; (4)被8整除的数能被4整除;(5)若一个四边形是正方形,则它的四条边相等.2. 把下列命题写成含有量词的命题: (1)余弦定理;(2)正弦定理.。