两角和与差的正弦、余弦、正切公式教案新部编本
- 格式:doc
- 大小:260.50 KB
- 文档页数:4
《两角和与差的正弦、余弦、正切公式》教学设计一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、教学重、难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、教学用具三角板,彩色粉笔,幻灯片五、教学方法教法:引导探究,归纳总结=,(0,)=,(0,),[-((-=cos(-+sin(-sin=_____.)=)=,据角)=)=都不能等于+ktan( tan的值不存在,所以改用诱导公式tan(-)=来处理等=,sin(-),cos(+),tan(-=,=.∴tanα==.于是有sin(-α)=sin cosα-cos sinα=cos(+α)=cos cosα-sin sinα=tan(α-)===.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练11.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)= =-(2+).2.设α∈(0,),若sinα=,则2sin(α+)等于( )A. B. C. D. 4答案:A例2 已知sinα=,α∈(,π),cosβ=,β∈(π,),求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S(α-β)、C(α+β)、T(α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sinα=,α∈(,π),得cosα==-=,∴tanα=.又由cosβ=,β∈(π,).sinβ==,∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ=×()-(.∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()=∴tan(α+β)==.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练2引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x米,∠CAB=α,则sinα=,在Rt△ABD中,tan(45°+α)=tanα.于是x=,又∵sinα=,α∈(0,),∴cosα≈,tanα≈.tan(45°+α)==3,∴x=-30=150(米).答:这座电视发射塔的高度约为150米.例3 在△ABC中,sinA=(0°<A<45°),cosB=(45°<B<90°),求sinC与cosC的值.活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=且0°<A<45°,∴cosA=.又∵cosB=且45°<B<90°,∴sinB=.∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=,cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=×-×=.点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练3在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C七、课堂小结<,<<,cos(-)=,sin(+)=,。
第五章三角函数《5.5.1两角和与差的正弦、余弦和正切公式》教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1两角和与差的正弦、余弦和正切公式。
本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。
让学生感受数形结合及转化的思想方法。
发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
【教学目标与核心素养】【教学重难点】教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。
【教学过程】合,这一性质叫做圆的旋转对称性.连接A1P1,AP.若把扇形分别与点A1,P1重合.根据圆《5.5.1 两角和与差的正弦、余弦和正切公式》导学案【学习目标】1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等.4.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.【重点难点】重点:了解两角差的余弦公式的推导过程.难点:会用两角和与差的正弦、余弦、正切公式进行简单的三角函数的求值、化简、计算等【知识梳理】1两角和与差的余弦公式2 两角和与差的正弦公式3两角和与差的正切公式【学习过程】 问题探究1.两角差的余弦公式如果已知任意角α,β的正弦、余弦,能由此推出α+β,α-β的正弦、余弦吗?下面,我们来探究cos(α-β)与角α,β的正弦、 余弦之间的关系不妨令α≠2kπ+β,k ∈Z . 如图5.5.1,设单位圆与x 轴的正半轴相交于点A (1,0),以x 轴非负半轴为始边作角α,β,α—β, 它们的终边分别与单位圆相交于点A 1(cosα,sinα), P 1(cosβ,sinβ),P(cos(α-β),sin(α-β)).任意一个圆绕着其圆心旋转任意角后都与原来的圆重合,这一性质叫做圆的旋转对称性.连接A 1P 1,AP .若把扇形OAP,绕着点O 旋转β角,则点A ,P 分别与点A 1,P 1重合.根据圆的旋转对称性可知,AP ̂与A 1P 1̂ 重合,从而, 所以AP =A 1P 1 根据两点间的距离公式,得[cos (α−β)−1]2+[s in (α−β)]2=(cosα−cosβ)2+(sinα−sinβ)2, 化简得:cos (α−β)=cosαcosβ+sinαsinβ当α=2kπ+β (k ∈Z )时,容易证明上式仍然成立. 所以,对于任意角α,β有cos (α−β)=cosαcosβ+sinαsinβ (C(α-β))此公式给出了任意角α,β的正弦、余弦与其差角α-β的余弦之间的关系,称为差角的余弦公式,简记作C(α-β).典例解析例1 利用公式cos (α−β)证明:(1)cos (π2-α)= sinα ; (2)cos (π-α)= cosα.例2 已知sinα=45,α∈(π2,π), cosβ=−513,β是第三象限角,求cos (α−β)的值.由公式cos (α−β)出发,你能推导出两角和与差的三角函数的其他公式吗? 下面以公式cos (α−β)为基础来推导其他公式. 例如,比较cos (α−β)与cos (α+β),并注意到α+β与 α−β之间的联系:α+β=α−(−β)则由公式cos (α−β), 有cos (α+β)=cos[α−(−β)]=cosαcos (−β)+sinαsin (−β)=cosαcosβ−sinαsinβ于是得到了两角和的余弦公式,简记作C (α+β). cos (α+β)=cosαcosβ−sinαsinβ. 问题探究上面得到了两角和与差的余弦公式.我们知道,用诱导公式五(或六)可以实现正弦、余弦的互化.你能根据C(α+β),C(α-β)及诱导公式五(或六),推导出用任意角α,β的正弦、余弦表示sin (α+β),sin (α-β)的公式吗?通过推导,可以得到:s in (α+β)=sinαcosβ+cosαsinβ,(S (α+β)) s in (α−β)=sinαcosβ−cosαsinβ;(S (α-β))你能根据正切函数与正弦函数、余弦函数的关系,从C(α±β),S(α±β)出发,推导出用任意角α,β的正切表示tan (α+β),tan (α−β)的公式吗?通过推导,可以得到: tan (α+β)=tan α+tanβ1−tan αtanβT(α+β) tan (α−β)=tan α−tanβ1+tan αtanβT(α−β)和(差)角公式中,α,β都是任意角.如果令α为某些特殊角,就能得到许多有用的公式.你能从和(差)角公式出发推导出诱导公式吗?你还能得到哪些等式公式S(α+β),C(α+β),T(α+β)给出了任意角α,β的三角函数值与其和角α+β的三角函数值之间的关系.为方便起见,我们把这三个公式都叫做和角公式.类似地,S(α-β),C(α-β),T(α-β)都叫做差角公式. 典例解析例3.已知sinα=−35,α是第四象限角,求sin (π4−α),cos (π4+α),tan (α−π4)的值.由以上解答可以看到,在本题条件下有sin (π4−α)=cos (π4+α).那么对于任意角α,此等式成立吗?若成立,你会用几种方法予以证明?例4 利用和(差)角公式计算下列各式的值: (1)sin72°cos42°-cos72°sin42°; ( 2 ) cos20°cos70°- sin20°sin70° ; ( 3 )1+tan 15°1−tan 15°;【达标检测】1. cos 65°cos 35°+sin 65°sin 35°等于( )A .cos 100°B .sin 100°C .32D .12 2.已知α是锐角,sin α=35,则cos ⎝ ⎛⎭⎪⎫π4+α等于( )A .-210B .210C .-25D .253.已知锐角α,β满足cos α=35,cos(α+β)=-513,则cos β等于( ) A .3365 B .-3365 C .5475 D .-5475 4.计算3-tan 15°1+3tan 15°=________.5.已知α,β均为锐角,sin α=55,cos β=1010,求α-β.参考答案: 知识梳理1.cos αcos β+sin αsin βcos αcos β-sin αsin β2.sin αcos β+cos αsin βsin αcos β-cos αsin β3.tan α+tan β1-tan αtan βtan α-tan β1+tan αtan β学习过程 典例解析例1证明: (1)cos (π2-α)= cos π2cos α+sin π2sinβsinα=0+1×sinα=sinα. (2)cos (π-α)== cosπcos α+sinπsinβsinα=(-1)×cosα+o .=- cosα. 例2解:由sinα=45,α∈(π2,π),得cosα=−√1−sinα2=−√1−(45)2=−35 又由cosβ=−513,β是第三象限角,得sinβ=−√1−cosβ2=−√1−(−513)2=−1213.所以cos (α−β)=cosαcosβ+sinαsinβ=(−35) ×(−513)+(45) ×(−1213)=−3365 例3.解 : 由 sinα=−35,α是第四象限角, 得cosα=√1−sinα2=√1−(−35)2=45 所以 tanα=sin αcosα=−3545= - 34于是有sin (π4−α)=sin π4cos α−cos π4sin α=√22×45−√22×(−35)=7√210;cos (π4+α)=cos π4cos α−sin π4sin α=√22×45−√22×(−35)=7√210;tan (α−π4)=tan α−tanπ41+ tan αtanπ4= tan α−11+ tan α=−34−11+(−34)=−7例 4 分析 : 和 、 差角公式把 α ± β 的三角函数式转化成了 α , β 的三角函数式 .如果反过来 , 从右到左使用公式 , 就可以将上述三角函数式化简 . 解 :( 1 ) 由公式 S (α - β ) , 得 sin72°cos42°- cos72°sin42°=Sin(72°- 42°)=sin30°=12(2) 由公式 C (α +β ) , 得cos20°cos70°- sin20°sin70°= cos(20°+70°)=cos90°=0 (3) 由公式 T (α +β )及tan 45°=1, 得1+tan 15°1−tan 15°=tan 45°+tan 15°tan 45°−tan 15°=tan (45°+15°)=tan 60°=√3三、达标检测1. 【解析】 原式=cos(65°-35°)=cos 30°=32. 【答案】 C2.【解析】 因为α是锐角,sin α=35,所以cos α=45,所以cos ⎝ ⎛⎭⎪⎫π4+α=22×45-22×35=210.故选B . 【答案】 B3.【解析】 因为α,β为锐角,cos α=35,cos(α+β)=-513, 所以sin α=45,sin(α+β)=1213.所以cos β=cos[(α+β)-α]=cos(α+β)·cos α+sin(α+β)·sin α=-513×35+1213×45=3365.故选A .【答案】 A 4.【解析】 3-tan 15°1+3tan 15°=tan 60°-tan 15°1+tan 60°tan 15°=tan 45°=1.【答案】 15.【解】 ∵α,β均为锐角,sin α=55,cos β=1010, ∴sin β=31010,cos α=255.∵sin α<sin β,∴α<β,∴-π2<α-β<0,∴sin(α-β)=sin αcos β-cos αsin β=55×1010-255×31010=-22,∴α-β=-π4.《5.5.1 两角和与差的正弦、余弦和正切公式》同步练习一基础巩固1.的值是( ) A .B .C .D .2.已知为锐角,为第三象限角,且,,则的值为( ) A . B . C .D .3.已知,则为第三象限角,则的值等于( ) A .B .C .D . 4.若,,且,均为钝角,则的值为( ) A .B .C .D .5.已知,则的值为( )ABC .D .6.计算:______________7.,且是第四象限角,则______. 8.不用计算器,求值:。
两角和与差的正弦、余弦公式的教学设计(第一课时)1 内容分析1.1课标要求《普通高中数学课程标准》(2017年版)“内容要求”部分对两角和与差的正弦、余弦和正切公式要求是经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
1.2教材分析本节是人教A版(2019年)高中数学必修第一册第五章第五节第一部分的内容,主要是两角和与差的正弦、余弦和正切公式。
此前已学习了诱导公式,利用它们对三角函数式进行恒等变形,可以达到化简、求值或证明的目的。
1.3学情分析学生已经学习了诱导公式,可以对三角函数式进行恒等变形,但这只是针对特殊角,但是由于学生对这部分内容接收起来比较困难,所以要争取对已学过的内容循序渐进,比较自然地得到所要研究的新知识。
通过类比让学生进行模仿,引导利用单位圆,推导出两角差的余弦公式。
1.4核心素养及蕴含的数学思想方法数学抽象:主要是两角差的余弦公式的推导。
逻辑推理:两角差的余弦公式与两角和的余弦公式之间的联系。
数学运算:在推导出公式之后,运用公式进行解题。
1.5教学目标(1)了解两角差的余弦公式的推导过程.(2)掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.(3)熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.(4)通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。
1.6教学重点与难点教学重点:掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式 教学难点:两角和与差的正弦、余弦、正切公式的灵活运用。
2.教学过程重合.根据圆的旋转对称性可知, (或说明AOP ∆≌11OP A ∆)。
两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=⨯--= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭ 两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、sin 72cos 42cos72sin 42-;(2)、cos 20cos70sin 20sin 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. (1)、()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)、()cos 20cos70sin 20sin 70cos 2070cos900-=+==;(3)、()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.例3x x -解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 3022x x x x x x x ⎫-=-=-=-⎪⎪⎭思考:是怎么得到的?=分别等于12和2的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.。
3.1.2两角和与差的正弦、余弦和正切公式(名师:余枝)一、教学目标:(一)核心素养本节课是三角恒等变形的基础,是正弦线、余弦线、诱导公式的延伸,通过本节课的学习,了解两角和与差的正弦、余弦和正切公式的重要性,通过公式的推导,培养学生探索精神,进一步提高学生的推理能力和运算能力,使学生体会一般与特殊,换元等数学思想在三角恒等变换中的作用.(二)教学目标1.两角和的余弦公式的推导及应用;2.两角和与差的正弦公式的推导及应用;3.两角和与差的正切公式的推导及应用;4.运用公式进行化简、求值、证明.(三)学习重点1.两角和与差的正弦、余弦、正切公式的推导;2.熟练掌握公式的应用.(四)学习难点公式的推导及综合运用,合理选取公式,熟练掌握公式的逆用.二、教学过程(一)课前设计1.预习任务(1)读一读:阅读教材第128页至第131页.(2)想一想:利用两角差的余弦公式如何推导两角和的余弦公式?如何熟记和角公式与差角公式?2.预习自测(1)sin(3045)________+=..解析:【知识点】两角和的正弦公式的应用【数学思想】逻辑推理【解题过程】12sin(3045)sin 30cos 45cos30sin 452+=+=⨯=点拨:熟记公式(2)cos55cos5sin 55sin 5________-=. 答案:12. 解析:【知识点】两角差的余弦公式 【数学思想】逻辑推理【解题过程】1cos55cos5sin 55sin 5cos(555)cos 602-=+== 点拨:熟记公式(3)若tan()24a π-=,则tan _______a =.答案:3-.解析:【知识点】两角差的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tantan 14tan()241tan 11tan tan 4παπααπαα---===+⨯+,所以tan 3α=- 点拨:注意公式的逆用(4)已知3sin 5α=-a 是第四象限角,求sin(),cos(),tan()444πππααα-+-的值.;7- 解析:【知识点】两角和与差的弦、切公式的应用 【数学思想】逻辑推理【解题过程】因为3sin 5α=- a 是第四象限角,所以43cos ,tan 54αα==-,利用公式可得:sin()4πα-=cos()4πα+=tan()74πα-=-点拨:熟记公式.(二)课堂设计 1.知识回顾(1)两角差的余弦公式:βαβαβαsin sin cos cos )cos(+=-的推导; (2)公式()C αβ-的应用. 2.问题探究探究一 从公式()C αβ-出发,如何探求两角和的余弦公式()C αβ+? ●活动 从公式()C αβ-出发,引导学生推导余弦公式()C αβ+我们已经知道两角差的余弦公式βαβαβαsin sin cos cos )cos(+=-,其中αβ、是任意角.大胆猜想两角和的余弦公式呢?从角αβ+与αβ-的关系进行联想,我们容易知道()+=αβαβ--,再根据诱导公式,所以[]cos()cos ()cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ+=--=-+-=- 于是我们得到了两角和的余弦公式,简记作()C αβ+:cos()cos cos sin sin αβαβαβ+=-【设计意图】引导学生发现和探究新知,培养学生探索知识的能力. 探究二 如何用αβ、的正、余弦来表示()sin αβ± ●活动① 回顾两角和与差的余弦公式和诱导公式()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-sin()cos ,cos()sin 22ππαααα-=-=【设计意图】引导学生思维上的转变.●活动② 利用两角和与差的余弦公式推导两角和与差的正弦公式sin()cos ()cos ()cos()cos sin()sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤+=-+=--=-+-⎢⎥⎢⎥⎣⎦⎣⎦sin cos cos sin αβαβ=+()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦得到两角和与差的正弦公式,简记作()S αβ+;()S αβ-.()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=-【设计意图】让学生掌握公式的推导过程. 探究三 探究如何推导两角和与差的正切公式 ●活动① 怎样用αβ、的正切表示()tan αβ±()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-当cos cos 0αβ≠时,分子和分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 我们得到两角和与差的正切公式,简记作()T αβ+;()T αβ-.()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+注意:)(2,2,2z ∈+≠+≠+≠+k k k a k ππβππππβα【设计意图】引导学生探究:化切为弦,化未知为已知,再化弦为切,利用单角的正切来表示和差的正切.●活动② 理解6个和、差角公式的内在联系【设计意图】借助对公式的更深入的理解,是学生能更加灵活运用公式.●活动③ 巩固基础,检查反馈例1 ①已知3cos ,(,)52πθθπ=-∈,求sin()3πθ+的值②已知12sin ,13θθ=-是第三象限角,求cos()6πθ+的值【知识点】和角公式的正确使用 【数学思想】逻辑推理【解题过程】①4sin 25πθπθ∈∴==(,)413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=②θ是第三象限角,5cos 13θ∴==-5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=【思路点拨】熟记公式 【答案】①sin()3πθ+=;②cos()6πθ+= 同类训练 已知tan 3α=,求tan()4πα+的值.【知识点】两角和的正切公式的应用 【数学思想】逻辑推理【解题过程】tan tan314tan()241311tan tan 4παπαπα+++===--⨯- 点拨:熟记公式答案:tan()24πα+=-例2 求下列各式的值:(1)sin 72cos 42cos 72sin 42- (2)cos 20cos 70sin 20sin 70-(3)1tan151tan15+-【知识点】公式的逆用 【数学思想】归纳推理【解题过程】(1)sin 72cos 42cos 72sin 42-=1sin(7242)sin 302-== (2)cos 20cos 70sin 20sin 70-=cos(2070)cos900+==(3)1tan151tan15+-=tan 45tan15tan(4515)tan 6031tan 45tan15+=+==-【思路点拨】正确认识公式的正用和逆用 【答案】12,0 同类训练 计算:(1)sin 7cos37sin 83sin 37︒︒-︒︒(2)21tan 75tan 75 -︒︒答案:12-;-解析:【知识点】和、差角公式 【数学思想】归纳推理 【解题过程】(1)sin 7cos37sin 83sin 37︒︒-︒︒=1sin 7cos37cos 7sin 37sin(737)sin(30)2︒︒-︒︒=︒-︒=-=-(2)tan 75tan(4530)2=+==原式=-点拨:利用公式可求特殊角的三角函数值 例3 化简:(1)1cos 2x x(2cos x x +【知识点】和、差角公式的逆用 【数学思想】转化思想【解题过程】1cos cos cos sin sin cos()2333x x x x x πππ-=-=+1cos cos )2(cos sin sin cos )2sin()2666x x x x x x x πππ+=+=+=+ 点拨:从题目所给是结构可以看出,它们呈现和(差)角公式的部分形态,所以可以考虑对公式进行变形使用,事实上,此处只需要进行逆用公式即可.答案:cos()3x π+;2sin()6x π+同类训练 化简(1cos )x x -(2x x -【知识点】公式的逆用 【数学思想】转化思想cos )2sin()4x x x π-=-)3x x x π-=+点拨:对和(差)角公式进行正确地逆用.事实上,对公式正确逆用,这是学好任何一个数学公式的必经之路.答案:2sin()4x π-;)3x π+●活动5 强化提升、灵活应用 例4 已知3123,cos(),sin()24135πβαπαβαβ<<<-=+=-,求cos 2α的值 答案:3365-解析:【知识点】使用和差角公式时,利用角的关系化异角为同角 【数学思想】化归思想【解题过程】33,2442ππβαππβ<<<∴-<-<- 30,42ππαβπαβ∴<-<<+<5sin()134cos()5αβαβ∴-==+= 33cos 2cos[()()]cos()cos()sin()sin()65ααβαβαβαβαβαβ∴=-++=-+--+=-点拨:常见角的变换:2()()ααβαβ=++- ()ααββ=+-2(),2()αβαβααβαβα+=++-=-+()(),()()222222αββααββααβαβ+-=---=+-+同类训练 已知αβ、是锐角,且11sin )14ααβ=+=-,求sin β解析:【知识点】合理使用和差角公式 【数学思想】转化思想【解题过程】α是锐角,且sin α=1cos 7α∴== 又11cos(),014αβαβπ+=-<+<,sin()αβ∴+==sin sin()sin()cos cos()sin βαβααβααβα∴=+-=+-+=点拨:善于抓住角的关系进行角的转化 3.课堂总结 知识梳理两角和与差的正弦、余弦、正切公式及推导()C αβ-:βαβαβαsin sin cos cos )cos(+=- ()C αβ+:cos()cos cos sin sin αβαβαβ+=-()S αβ+:βαβαβαsin cos cos sin )sin(+=+ ()S αβ-:βαβαβαsin cos cos sin )sin(-=- ()T αβ+:()tan tan tan 1tan tan αβαβαβ++=-()T αβ-:tan tan tan()1tan tan αβαβαβ--=+重难点归纳(1)利用和差角公式求一些特殊角的三角函数值; (2)利用角的变换求值;(3)能解决形如:sin cos y a x b x =+的函数问题;(4)利用两角和与差的正弦、余弦和正切公式进行三角恒等变换 (三)课后作业 基础型 自主突破1.sin(17)cos(28)sin(28)cos(17)x x x x +-+-+的值是( )A .12 B .12-C .D .答案:D解析:【知识点】公式的简单应用【解题过程】原式=2sin(1728)sin 45x x ++-== 点拨:熟记公式2.已知123cos ,(,2)132πααπ=∈,则cos()4πα+等于( )ABCD .答案:B解析:【知识点】公式的正用【解题过程】5sin 13α==-,cos()cos cos sin sin 444πππααα+=-=点拨:计算角的三角函数值时需注意角的范围3.在△ABC 中,sin sin cos cos A B A B <,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形 答案:B解析:【知识点】公式的灵活运用 【数学思想】逻辑推理【解题过程】cos cos sin sin 0A B A B -> cos()0A B ∴+>cos()0C π∴->,即cos 0,cos 0C C -><,2C ππ∴<<点拨:利用三角形内角和定理进行角的转换 4.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( )A .最大值为1,最小值为1-B .最大值为1,最小值为21- C .最大值为2,最小值为2-D .最大值为2,最小值为1-【知识点】公式的逆用【数学思想】归纳推理【解题过程】1()2(sin )2sin()23f x x x x π==+,[,]22x ππ∈-,则5[,]366x πππ+∈- ()f x ∴最大值为2,最小值为1-点拨:先转化成sin()y x ωϕ=+的形式答案:D5.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值( ) A .21 B .22 C .22- D .22±【知识点】公式的灵活运用【数学思想】转化的思想【解题过程】因为2tan()7,tan tan 3αβαβ+=⋅=所以tan tan tan(),1tan tan αβαβαβ++=-⋅ 7tan tan 3αβ+= 所以1tan 2,tan 3αβ==或1tan ,tan 23αβ==;所以tan()αβ-等于1或1-则cos()αβ-=点拨:利用切化弦解决问题答案:D6.已知tan()2,4πα+=则212sin cos cos ααα+的值为________. 答案:23解析:【知识点】三角函数中“1”的替换【数学思想】转化思想 【解题过程】1tan tan()241tan πααα++==- 1tan 3α∴= 222221sin cos tan 122sin cos cos 2sin cos cos 2tan 13αααααααααα++∴===+++ 点拨:熟悉齐次分式的切化弦能力型 师生共研7.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B =______. 答案:3π解析:【知识点】公式的灵活运用【数学思想】逻辑推理【解题过程】tan tan tan tan()(1tan tan )tan A B C A B AB C ++=+⨯-+ tan (1tan tan )tan tan tan tan tan tan tan tan tan C A B CC A B C C A B C =-⨯-+=-++==2tan tan tan B A C ==tan 60B B ∴=∴=点拨:熟悉公式的变形8.若13cos cos sin sin ,cos(),55αβαβαβ-=-=则tan tan _______αβ=. 答案:12解析:【知识点】利用公式进行和差化积【数学思想】转化思想【解题过程】13cos cos sin sin ,cos cos sin sin ,55αβαβαβαβ-=+= 两式相加得:2cos cos 5αβ=,两式相减得:1sin sin 5αβ=,sin sin 1tan tan cos cos 2αβαβαβ== 点拨:找到角的关系,进行恒等变换探究型 多维突破9.已知(0,)αβπ∈、且71tan ,21)tan(-==-ββα,求βα-2的值 答案:34π- 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】()1tan tan 3ααββ=-+=⎡⎤⎣⎦()tan(2)tan 1αβαβα∴-=-+=⎡⎤⎣⎦11tan tan (0,)37αβαβπ=<=->∈、 50,6622ππαβπππαβ∴<<<<∴-<-<-324παβ∴-=- 点拨:求三角函数值时要确定角的范围10.已知向量a =(cos ,sin )αα,b= (cos ,sin )ββ,|a -b |= (1)求cos()αβ-的值(2)若0,022ππαβ<<-<<,且5sin 13β=-,求sin α的值 答案:35;3365 解析:【知识点】灵活运用公式【数学思想】归纳推理思想【解题过程】由|a -b|==,即4322cos(),cos()55αβαβ--=-= 由0,022ππαβ<<-<<,得0αβπ<-<,又35cos(),sin ,513αββ-==- 所以412sin(),cos ,513αββ-==[]33sin sin ()sin()cos cos()sin 65ααββαββαββ=-+=-+-= 点拨:三角恒等变形与向量的紧密联系自助餐1.若sin()cos cos()sin ,m αβααβα---=且β为第三象限角,则cos β的值为( )AB.CD.答案:B解析:【知识点】公式的简单应用【数学思想】【解题过程】由题知:sin()sin ,cos mm αβαββ--=∴=-==点拨:正确使用诱导公式2.αβγ、、都是锐角,γβαγβα++===则,81tan ,51tan ,21tan ( ) A .3π B .4πC .π65 D .π45 答案:B解析:【知识点】两角和的正切公式【数学思想】整体代换 【解题过程】11tan ,tan 25αβ==7tan()1904αβπαβ∴+=<∴<+<tan()tan 3tan()1,(0,)1tan()tan 4αβγπαβγαβγαβγ++∴++==++∈-+ 4παβγ∴++=点拨:角的合理转化3.若A 、B 是△ABC 的内角,且(1tan )(1tan )2+A B +=,则A B +等于_____. 答案:4π解析:【知识点】两角和与差的正切公式的逆用【数学思想】转化思想【解题过程】由题知1tan tan tan tan 2+A B A B ++=,则tan tan 1tan tan A B A B +=- tan tan tan()11tan tan A B A B A B +∴+==-且A 、B 是 △ABC 的内角,故4A B π+=点拨:求角的大小可以先求这个角的某个三角函数值4.已知cos()sin 6παα-+=则7sin()________6πα+=. 答案:45- 解析:【知识点】和角公式的逆用【数学思想】建模思想【解题过程】13cos()sin sin sin sin 622πααααααα-+=++=+=14cos )sin()sin()266574sin()sin()sin()6665ππααααπππαπαα+=+=∴+=∴+=++=-+=- 点拨:学会处理sin cos y a x b x =+型的函数问题5.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π解析:【知识点】两角和与差的正弦、余弦、正切公式的灵活运用【数学思想】转化思想【解题过程】原式=sin[(3)]cos[(3)]cos(3)sin(3)242664cos(3)sin(3)cos(3)sin(3)46641sin[(3)(3)]sin()64642x x x x x x x x x x ππππππππππππππ-+⋅-+-++=++-++=+-+=-== 点拨:解题时诱导公式可帮助三角函数名的转化6.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.答案:2解析:【知识点】求根公式【数学思想】化归思想 【解题过程】设22150(2sin 50)4(sin 50)2sin(5045)x ±---==± 12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ点拨:利用本章的公式进行恒等变形.。
3.1.2 两角和与差的正弦、余弦、正切公式说课稿一.教材分析:两角和与差的正弦、余弦、正切公式是三角恒等变换的基础,同时,它又是后面学习倍角、半角等公式的“源头”. 它对于三角变换、三角恒等式的证明和三角函数式的化简,求值等三角问题的解决有着重要的支撑作用。
本课时主要以两角差的余弦公式为基础,结合诱导公式推导两角和与差的正、余弦及正切公式以及它们的简单应用。
二.教学目标:1.知识与技能:① 让学生学会用代换法,转化法推导公式 ;② 让学生初步学会公式的简单应用和公式的逆用等基本技能。
2.过程与方法:① 通过公式的推导,着重培养学生获取数学知识的能力和数学交流的能力;② 通过公式的灵活运用,培养学生的转化思想和变换能力。
3.情感、态度与价值观:课堂中,通过对问题的自主探究,培养学生的独立思考能力;小组交流中,培养合作意识;在解决问题时,培养学生解决问题抓主要矛盾的思想。
并唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
三.教学重难点:教学重点:两角和与差的正弦、正切公式的推导过程及运用;教学难点:灵活运用所学公式进行求值、化简。
四.教学方法:由于新课程教学内容增多,传统教学已经不能满足教学需要,根据新课程教学理念,“将课堂还给学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,基于本节课的特点,利用导学案和多媒体相结合让学生自主探究的模式实现学生从被动学习到主动学习的一个转变从而创造高效课堂。
五.教学过程:一、复习准备,提出问题:1.诱导公式:奇变偶不变,符号看象限。
如:cos(2) k πα+=, cos(90) oα-=, cos() α-=, sin() α-=2. 差角的余弦公式:cos()cos cos sin sin αβαβαβ-=+3.差角的余弦公式的应用:例如:求cos15o 的值,分析:15o = 30o-, 解:cos15cos( 30) o o =-=问题提出:如何求cos()αβ+的值呢?(设计目的:唤起学生已有的知识和解题技巧。
第三章三角恒等变换一、课标要求:本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.1. 了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;2. 理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;3. 运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.二、编写意图与特色1.本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”,在学习本章之前我们学习了向量的相关知识,因此作者的意图是选择两角差的余弦公式作为基础,运用向量的知识来予以证明,降低了难度,使学生容易接受;2.本章是以两角差的余弦公式作为基础来推导其它的公式;3.本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,强化运用数学思想方法指导设计变换思路的意识;4.本章在内容的安排上贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末叶的内容”的理念,严格控制了三角恒等变换及其应用的繁、难程度,尤其注意不以半角公式、积化和差、和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.三、教学内容及课时安排建议本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式约3课时3.2简单的恒等变换约3课时复习约2课时§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.三、教学重点与难点1.重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2.难点:两角差的余弦公式的探索与证明.两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=⨯-=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯= 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -。
3.1.2 两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-.通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-.注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--= ⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值: (1)、si n 72c o s 42c o s 72s i n 42-;(2)、c o s 20c o s 70s i n 20s i n 70-;(3)、1t a n 151t a n 15+-.解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1 s i n72c o s42c o s72s i n42s i n7242s i n302-=-==;(2)、()c o s20c o s70s i n20s i n70c o s2070c o s900-=+==;(3)、()1t a n15t a n45t a n15t a n4515t a n6031t a n151t a n45t a n15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin30cos cos30sin22sin302x x x x x x x⎫==-=-⎪⎪⎭思考:=别等于12和的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.作业:1、已知()21tan,tan,544παββ⎛⎫+=-=⎪⎝⎭求tan4πα⎛⎫+⎪⎝⎭的值.(322)2、已知()33350,cos,sin4445413ππππβααβ⎛⎫⎛⎫<<<<-=+=⎪ ⎪⎝⎭⎝⎭,求()sinαβ+的值.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。
2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。
2024年3月上半月㊀教学导航㊀㊀㊀㊀公式延续,思维拓展两角和与差的正弦㊁余弦㊁正切公式 教学设计◉江苏省宿迁中学㊀王嘉琨1教材分析两角和与差的正弦㊁余弦㊁正切公式 是高中数学新教材(人教A版)必修第一册5.5.1的第2课时,是在第1课时 两角差的余弦公式 基础上的延续与拓展,也为后续三角恒等变换公式体系奠定基础.2学情分析学生在前面已经学习了诱导公式㊁两角差的余弦公式等,初步具备了三角函数式中 变角 与 变名 思维,这都为本节课研究两角和与差的正弦㊁余弦㊁正切公式提供了知识㊁方法和思想上的准备.3教学目标(1)以两角差的余弦公式作为基础,自主发现推导两角和与差的正弦.余弦㊁正切公式,并理解这些公式之间的内在联系.(2)通过例题的训练,加深对公式的理解和应用.4重点㊁难点(1)教学重点:两角和与差的正弦㊁余弦㊁正切公式的推导及其应用.(2)教学难点:灵活运用公式进行三角函数式的化简㊁求值等.5教学过程(1)复习回顾,问题引入问题1㊀上一节课我们学习了两角差的余弦公式C(α-β),你能说出这个公式以及它的推导过程吗?利用圆的旋转不变性来推导的,具体步骤如下:第一步,在坐标系中画出角度α,β,α-β与单位圆,并标出终边与单位圆的交点;第二步,根据三角函数的定义写出各点的坐标;第三步,利用圆的旋转不变性得到等量关系;第四步,代入化简得到公式.问题2㊀除了公式C(α-β)外,你还能提出一些新的研究问题吗?你打算如何研究这些问题?师生活动:教师引导学生提出新的研究问题,学生思考研究新问题的方法.引导语:对于其他几个公式,也可以利用单位圆来研究.不过,本书不采用这这种研究方法,而是利用公式C(α-β)来推导其他公式.数学上把这种将新问题转化成已经解决的问题的方法叫作化归与转化的思想方法.设计意图:通过问题1帮助学生回顾利用圆的旋转不变性推导两角差的余弦公式的过程,明确研究公式C(α-β)的方法.(2)公式探究,发现问题问题3㊀你能利用公式C(α-β)推导出两角和的余弦公式吗?师生活动:先让学生独立思考,然后请学生回答推导思路,鼓励学生用多种方法解决.方案一:注意到α+β与α-β之间的关系,即α+β=α-(-β),再由公式C(α-β)推导;方案二:可以利用换元的观点来推导,用 -β 替换公式C(α-β)中的 β 也能获得公式c o s(α+β)=c o sαc o sβ-s i nαs i nβ.设计意图:从加减法的关系和整体代换的方法体现了数学中的化归与转化以及换元的数学思想方法.(3)深入拓展,公式推导问题4㊀由C(α+β)能推导出s i n(α+β)的公式吗?师生活动:学生独立思考后,教师可以根据学生的反应追问下列问题.思考1㊀如何建立正弦与余弦值之间的关系呢?预设答案:利用诱导公式五(或六),即可实现正弦㊁余弦之间的相互转化.思考2㊀如何得到s i n(α+β)的公式呢?预设答案:s i n(α+β)=c o sπ2-(α+β)éëêêùûúú=c o s(π2-α)-βéëêêùûúú=c o s(π2-α)c o sβ+s i n(π2-α) s i nβ=s i nαc o sβ+c o sαs i nβ.设计意图:利用两角和的余弦公式和诱导公式推导两角和的正弦公式.问题5㊀如何得到s i n(α-β)的公式呢?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:用 -β 来替换s i n(α+β)中的 β ,则有s i n(α-β)=s i nαc o s(-β)+c o sαs i n(-β)=s i nαc o sβ-c o sαs i nβ.72教学导航2024年3月上半月㊀㊀㊀引导语:把以上两角和的正弦公式和两角差的正弦公式分别记为S (α+β)和S (α-β).设计意图:通过整体化思维,以及化归与转化思想,利用两角和的正弦公式来推导两角差的正弦公式.问题6㊀已知任意角α,β的正切,你能推导出t a n (α+β)和t a n (α-β)吗?师生活动:学生独立完成,教师邀请学生展示和点评.预设答案:由正切与正弦㊁余弦的关系,可知t a n (α+β)=s i n (α+β)c o s (α+β)=s i n αc o s β+c o s αs i n βc o s αc o s β-s i n αs i n β,分子㊁分母同时除以c o s αc o s β,整理得t a n (α+β)=t a n α+t a n β1-t a n αt a n β.同理t a n (α-β)=t a n α-t a n β1+t a n αt a n β.引导语:把以上两角和的正切公式和两角差的正切公式分别记为T (α+β)和T (α-β).设计意图:利用正弦㊁余弦㊁正切之间的关系推导两角和与差的正切公式.问题7㊀和(差)角公式和我们以前学习的诱导公式之间有什么关系吗请用图示说明.师生活动:学生独立思考后,和同学交流自己的想法,教师展示图示,揭示它们之间的内在联系.诱导公式是和(差)角公式的特殊情况,如用S (α-β)推导诱导公式如图1所示.图1设计意图:比较和(差)角公式和诱导公式的异同,构建知识间的内在联系,加深对公式的理解.(4)公式应用,熟练掌握例1㊀已知s i n α=-35,α是第四象限的角,求s i n (π4-α),c o s (π4+α),t a n (α-π4)的值.思考1:你打算如何求解?请说说你的思维过程.思考2:如果去掉 α是第四象限的角 这个条件,结果和求解过程会有什么变化思考3:在以上解答中我们可以看到,在本题条件下,s i n(π4-α)=c o s (π4+α),那么对于任意角α,上式还成立吗你能想到几种方法来证明?预设答案:方案一:等式左右两边均使用和差公式展开.方案二:寻找π4-α与π4+α之间的内在联系,再结合诱导公式来转化与处理,即s i n (π4-α)=s i n π2-(π4+α)éëêêùûúú=c o s (π4+α).例2㊀利用和(差)角公式计算下列各式的值:①si n 72ʎc o s 42ʎ-c o s 72ʎs i n 42ʎ;②c o s 20ʎc o s 70ʎ-s i n 20ʎs i n 70ʎ;③1+t a n 15ʎ1-t a n 15ʎ.思考4:从例1和例2可以看出和(差)角公式有什么作用?(预设答案:求值或化简.)设计意图:例1步步递进,逐层深入,充分展示数学思维的发散性;例2强化公式的理解和应用,规范解题格式,训练有序思维和逆向思维.(5)系统归纳,总结提升问题8㊀你能用图式来回顾本节课5个和(差)角公式的推导过程吗?师生活动:学生独立完成(如图2)后与同学交流.图2问题9㊀在和(差)角公式的推导过程中用到了什么数学思想方法预设答案:化归与转化的思想整体代换的思想等.设计意图:用框图回顾推导过程,建立知识之间的内在联系,归纳总结本节课的数学思想方法等.6教学反思(1)公式延续,深入应用本节课以两角差的余弦公式为基础,利用角的变换和函数名之间的转换,将要推导的公式转化为熟悉的公式来解决.整个推导过程不但能够培养学生逻辑推理数学素养,还能让学生领悟知识之间的内在联系,初步体会三角恒等变换的特点以及转化与化归思想在数学研究中的应用价值.(2)关注应用,能力提升我们应该改变以往公式教学中 轻过程㊁重应用 的方式,在关注公式的理解和应用的同时,更应该让学生全程参与到公式的发现和推导中来,因为推导过程所承载的数学育人功能是不可能只通过 公式的应用 来实现的;还可以鼓励学生课后选择一个公式作为基础,采用不同的研究路径重新研究这一过程,再一次经历解决问题的过程.Z82。