2018中考相似三角形汇编
- 格式:doc
- 大小:592.00 KB
- 文档页数:22
中考数学真题汇编:图形的相似一、选择题1.已知,下列变形错误的是()A. B.C.D.【答案】B2.已知与相似,且相似比为,则与的面积比()A. B.C.D.【答案】D3.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3) C. (3,4) D. (1,5)【答案】C5.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A. B. C. D.【答案】D6.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或C. D. 或【答案】B7.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A8.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A9.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )A. B.C.D.【答案】C10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D11.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD =60°,则△OCE的面积是()。
2018年中考数学真题汇编相似和位似(附答案和解释)
一、选择题
1 ( 2018安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()
A4 B4 C6 D4
【答案】B
【逐步提示】由∠B=∠DAC,又找到共角∠C,得出△CAD∽△CBA,通过相似三角形的对应边成比例可求AC
【详细解答】解∵∠B=∠DAC,∠C=∠C,∴△CAD∽△CBA,∴ ,∵AD是中线,∴CD= BC=4,∴ ,解得AC=4 ,故选择B 【解后反思】求三角形的边的问题,在已知角相等的条下,一般是证明三角形相似,根据相似三角形的对应边成比例建立关系式求解【关键词】相似三角形,相似三角形的判定与性质
2 ( 2018甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,7,3分)如果两个相似三角形的面积比是14,那么它们的周长比是()
A. 116 B.14 C.16 D. 12
【答案】D
【逐步提示】本题考查了相似三角形的相关性质,解题的关键是掌握两个相似三角形的相似比与周长比、面积比之间的关系,由两个相似三角形的面积比得到两个相似三角形的相似比,进而得到它们的周长比;
【详细解答】解因为如果两个相似三角形的面积比是14,所以它们的相似比是12,而相似三角形的周长比等于相似比,即12,故选择D
【解后反思】相似三角形的对应线段、周长的比等于相似比,面积比等于相似比的平方,即若相似比为k,对应线段、周长的比为k,。
第 18 讲相像三角形知识点 1比率线段知识点 2平行线分线段成比率知识点 3相像三角形的性质知识点 4相像三角形的判断知识点 5相像多边形知识点 1 比率线段(2018 ·白银)已知a b(a 0,b0) ,以下变形错误的选项是()2 3A.a 2B . 2a 3b C.b 3D.3a 2bb 3 a 2(2018 ·成都)已知,且,则的值为 ___12_____ .知识点 2平行线分线段成比率(2018 ·嘉兴)(2018 ·哈尔滨)答案: D知识点 3相像三角形的性质A .1:1B . 1:3C .1:6D .1: 9(2018 ·重庆 A 卷)要制作两个形状同样的三角形框架 , 此中一个三角形的三边长分别为5cm , 6cm 和9cm ,另一个三角形的最短边长为 2.5cm ,则它的最长边为 CA. 3cmB. 4cmC. 4.5cmD. 5cm(2018 ·铜仁)( 2018 ·重庆 B 卷)(2018 ·自贡)如图,在⊿ ABC 中,点 D 、E 分别是 AB 、AC 的中点,若⊿ ADE 的面积为 4,则是⊿ ABC 的面积为 ( )A.8B.12C.14D.16( 2018 ·玉林)(2018 ·广东) 7. 在△ ABC 中, D 、 E 分别为边 AB 、 AC 的中点,则△ ADE 与△ ABC 的面积之比为( )A.1B.1 C.1 D.1 2346( 2018·乌鲁木齐)答案:D( 2018 ·河北)(2018 ·兰州)(2018 ·宜宾)如图,将△ABC沿 BC边上的中线AD平移到△ A' B' C'的地点,已知△ ABC的面积为9,阴影部分三角形的面积为 4. 若 AA'=1,则 A' D等于()A. 2B.32 3C. D.3 2(2018 ·随州)答案: C (2018 ·荆门)答案: C(2018 ·达州)如图,E, F是平行四边形ABCD 对角线 AC 上两点, AE CF 1AC.连结DE,DF 4并延伸,分别交AB, BC 于点 G, H ,连结GH,则SADC的值为()SBGHA.1B.2C.3D.1 2 3 4(2018 ·毕节)如图, 在平行四边形ABCD中 ,E 是 DC上的点 ,DE:EC=3:2, 连结 AE交 BD于点 F, 则△ DEF与△BAF的面积之比为( )A.2:5B.3:5C.9:25D.4:25 (2018 ·包头)(2018 ·连云港)(2018 ·赤峰)(2018 ·资阳)知识点 4相像三角形的判断(2018 ·德阳)(2018 ·枣庄)答案: A(2018 ·泸州)如图 4,正方形 ABCD中,E,F 分别在边 AD,CD上,AF,BE订交于点 G,若 AE=3ED,DF=CF,则AG的值是(C)GFA.4B.5C.6D.7 345 6(2018 ·恩施)如下图,在正方形ABCD 中, G 为 CD 边中点,连结AG 并延伸交 BC 边的延伸线于 E 点,对角线 BD 交 AG 于 F 点,已知 FG 2 ,则线段 AE 的长度为(D)A.6 B . 8 C . 10 D . 12(2018 ·黄冈)如图,在Rt△ ABC 中,ACB 90 ,CD为AB边上的高,CE为AB边上的中线,AD 2,CE 5,则 CD ( C )A.2B.3 C.4D.2 3(2018·扬州)(2018·永州)(2018 ·淄博)如图,在Rt ABC中,CM均分ACB交AB于点 M ,过点 M 作 MN //BC交 AC于点 N ,且 MN 均分 AMC ,若 AN 1,则 BC 的长为()A.4B.6C. 4 3 D . 8(2018 ·南通)正方形ABCD的边长AB 2 , E 为 AB 的中点, F 为 BC 的中点, AF 分别与 DE、BD 相交于点 M 、N ,则 MN 的长为( C )A.5 5B . 2 5 1C . 4 5D . 36 3 15 3( 2018·威海)矩形ABCD 与 CEFG 如图搁置,点B,C , E 共线,点 C, D ,G 共线,连结AF,取AF的中点 H ,连结 GH ,若 BC EF 2, CD CE 1,则 GH ( C )A. 1B. 2C. 2D. 53 2 2(2018 ·巴中)(2018 ·南充)(2018 ·上海)(2018 ·柳州)(2018 ·盐城)如图,在直角ABC 中, C 90 ,AC 6 , BC8, P 、Q分别为边 BC 、 AB 上的两个动点,若要使APQ 是等腰三角形且BPQ 是直角三角形,则AQ.(2018 ·云南)(2018 ·北京)如图,在矩形ABCD中,E是边AB的中点,连结DE交对角线AC于点F,若AB 4 ,AD 3 ,则 CF 的长为。
相似三角形分类练习题(1)一、填空题1、如图,DE 是9BC 的中位线,那么4ADE 面积与z\ABC 面积之比是AD 12、如图,4ABC 中,DE//BC, AS 2且£但「8加,那么凡的= _________________________ 邮.3、如图,z^ABC 中,ZACB = 90° CD±AB,D 为垂足,AD = 8cm ,DB = 2cm ,那么 CD =cm4、如图,4ABC 中,D 、E 分别在 AC 、AB 上,且 AD:AB = AE:AC = 1:2 , BC = 5cm , WJ DE =题一 1国 颗一 2国 褒一 M 图 埋一 4图 墨一 b 图 思一 6图 题一 10国5、如图,AD 、BC 相交于点 O, AB//CD, OB = 2cm , OC=4cm , ^AOB 面积为 4.5cm 2,那么4 DOC 面积为 cm 2.6、如图,4ABC 中,AB = 7, AD =4, /B=/ACD,那么 AC =7、如果两个相似三角形对应高之比为 4:5,那么它们的面积比为 o 8、如果两个相似三角形面积之比为 1:9,那么它们对应高之比为 o9、两个相似三角形周长之比为 2:3,面积之差为10cm 2,那么它们的面积之和为 cm?.口 -S10、如图,4ABC 中,DE//BC, AD:DB=2:3,那么 皿-橙荒此前= 二、选择题1、两个相似三角形对应边之比是 1:5,那么它们的周长比是(). (A) 1:君;(B) 1:25; (C) 1:5; (D) B1.2、如果两个相似三角形的相似比为 1:4,那么它们的面积比为().(A) 1:16; (B) 1:8; (C) 1:4; (D) 1:2.锐角三角形ABC 的高CD 和高BE 相交于O,那么与ADOB 相似的三角形个数是().(B) 2; (C) 3; (D) 4.(A) 1:9; (B) 1:81 ; (C) 3:1 ; (D) l:3o三、如图,4ABC 中,DE//BC, BC = 6,梯形DBCE 面积是z\ADE 面积的2倍,求DE 长.3、如图,(A) 1;4、如图, 梯形 ABCD , AD //BC, AC 和BD 相交于O 点, 共同£皿“:品3 = 1:9,那么%8:为叼=甄二4四、如图,4ABE 中,AD:DB=5:2, AC:CE=4:3,求BF:FC的值.五、如图,直角梯形ABCD 中,ABXBC, BC //AD , BC<AD , BC = q , AB = 8 , AC LCD,求AD 〔用的式子表示〕六、如图,4ABC 中,点D 在BC 上,/DAC = /B, BD = 4, DC=5, DE//AC 交AB 于点E,求DE长.七、如图,ABCD是矩形,AH =2, HD =4, DE = 2, EC= 1 , F是BC上任一点〔F与点B、点C不重合〕,过F作EH的平行线交AB于G,设BF为# ,四边形HGFE面积为,写出?与彳的函数关系式,并指出自变量A的取值范围.相似三角形分类练习题〔2〕一、填空题ace._ = =__ =41、:b d丁,且那么&十八/=2、在一张比例尺为1:5000的地图上,某校到果园的图距为8cm ,那么学校到果园的实际距离为_______ m3、如图,4ABC 中,/ACB = 90° ,CD 是斜边AB 上的高,AD=4cm, BD = 16cm,那么CD =_______ c mo4、如图,/ACD = /B, AC= 6, AD =4,那么AB5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB于E,那么图中相似三角形〔包括全等三角形在内〕共有________ 对.6、如图,MBC中,BC=15cm ,DE、FG均平行于BC且将9BC面积分成三等分,那么FG =cm.7、如图,AF //BE//CD, AF=12, BE=19, CD =28,那么FE:ED 的值等于s • s8、如图,AABC, DE //GF//BC,且AD = DG = GB,那么 '樟度翎10、如图,4ABC 重心为G, 3BC 和为BC 在BC 边上高之比为 (A) /1 = /2; (B) /2 = /C; (C) /1 = /BAC; (D) /2 =/B3、如图,AB//A' B' , BC//B' C' , AC//A' C',那么图中相似三角形组数为( (A) 5; (B) 6; (C) 7; (D) 8. BE 和CD 相交于点F, DF:FC=1:3,那么叫理:'©c = ( ) 0 三、?BC 中,AB = AC, AD 是底边BC 上高,BE 是AC 上中线,BE 和AD 相交于F, BC = 10 , AB= 13,求 BF 长.四、如图,ABFE 、EFCD 是全等的正方形,M 是CF 中点,DM 和AC 相交于N ,正方形边长为口, 求AN 的长.(用仪的式子表示)五、如图,AABC 中,AD ±BC, D 是垂足,E 是 BC 中点,FE± BC 交 AB 于 F, BD = 6, DC = 4, AB=8,求 BF 长.h p …A儿 _____ 口B zik — £ I P I Cc B t n .: n F 'MIEN*3晒 + S JI 兆V = ~~T六、如图,^ABC 中,〃 = 90° ,DEFG 是*BC 中内接矩形,AB = 3,AC = 4, 匕,求矩形DEFG 周长.AD = 3cm , BC = 6cm , CD = 4cm ,现要截出矩形 EFCG, ,设BE=x ,矩形EFCG 周长为y ,(1)写出?与工的(2)才取何值,矩形EFCG 面积等于直角梯形ABCD 的相似形〔3〕一、填空题1、如果两个相似三角形的周长比为 2:3,那么面积比为9、如图,ABCD 是正方形,E 是DC 上一点,DE:EC= 5:3, AELEF, WJ AE:EF=二、选择题1、两个相似三角形的相似比为 4:9, (A) 2:3; (B) 4:9; (C) 4:81 ;2、如图,D 是?BC 边BC 上一点, 那么这两个相似三角形的面积比为( (D) 16:81.△ABDsWAB,那么(). 4、如图,AABC 中,DE //BC, (A) 1:3; (B) 1:世 1:9; (D) 1:18.题六国七、如图,有一块直角梯形铁皮ABCD, (E 点在AB 上,与点A 、点B 不重合) 函数关系式,并指出自变量了取值范围; 5分O;(C) BE D C 0S-fE32、两个相似三角形相似比为2:3,且面积之和为13cm2,那么它们的面积分别为L3、三角形的三条边长分别为5cm , 9cm , 12cm ,那么连结各边中点所成三角形的周长为cm4、如图,PQ//BA, PQ = 6, BP=4, AB = 8,那么PC 等于AD _15、如图,4ABC 中,DE//BC, 万,、F=2cm2,贝〔J % 用地5=cm2.题T图题T图圈一6困6、如图,C为线段AB上一点,AACM > 3BN都是等边三角形,假设AC = 3, BC = 2,那么WCD与9ND面积比为7、AABC 中,〃ACB = 90° ,CD 是斜边AB 上的高,AB=4cm , AC = 2>^cm ,那么AD =cm.8、如图,平行四边形ABCD的对角线AC与BD相交于O, E是CD的中点,AE交BD于F,那么DF:FO=9、如图,AF //BE//CD, AB:BC=1:2, AF = 15, CD = 21,贝U BE=10、如图,DC //MN //PQ //AB, DC = 2, AB = 3.5 , DM =MP =PA,那么MN =; PQ =二、选择题1、如图,要使△ACD S/BCA,必须满足().AC _ AB CD _BC(A) CD AC; (B) AD AC; (C)AD2 = CDBD; (D)AC2=CDBC.2、如图,9BC中,CD LAB于D, DELAC于E, ZACB = 90°,那么与ABC相似的三角形个数为().(A) 2; (B) 3; (C) 4; (D) 5.3、如图,4ABC中,D是AC中点,AF//DE,工^濡皿的小飞,那么5但;“皿=().(A) 1:2; (B) 2:3; (C) 3:4; (D) 1:1.4、如图,平行四边形ABCD中,O i、02、03为对角线BD上三点,且BO i = 01.2 = 02.3 =03D,连结AO i并延长交BC于点E,连结E03并延长交AD于F,那么AD:FD等于().(A) 19:2 ; (B) 9:1 ; (C) 8:1 ; (D) 7:1.三、如图,矩形ABCD中,AB = 10cm , BC = 12cm , E为DC中点,AFLBE于点F,求AF长.四、如图,D、E分别是9BC边AB和AC上的点,/1 = /2,求证:ADAB=AEAC.五、如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, /ECA=/D,求证:ACBE=CEAD.六、如图,4ABC 中,/ACB=90° ,BC=8, AC=12, /BCD = 30°,求线段CD 长.七、如图,等腰梯形ABCD 中,AD //BC, AB=DC = 5, AD=6, BC=12, E 在AD 上,AE = 2, F为AB上任一点(点F与点A、点B不重合),过F作EC平行线交BC于G,设BF=k,四边形EFGC面积为,,(1)写出,与二的函数关系式;(2) K取何值,EGXBCo相似三角形分类练习题(3)一、填空题1、假设纱一加二°,贝U▼=x-y _ y_ _ + ♦2、I3彳,那么丁=3、如图,/B=/ACD, u旧= 2:1,那么AC:AB =4、如图,DE//BC, AD=4cm , DE = 2cm , BC = 5cm ,贝U AB =cm5、如图,DE//BC, AD:DB=1:2,那么小DE与?BC面积之比为6、如图,梯形ABCD 中,DC //EF//AB, DE = 4, AE = 6, BC = 5,那么BF =7、如图,平行四边形 ABCD 中,对角线AC 、BD 相交于O, BC=18, E 为OD 中点,连结CE 并延长交AD 于F,那么DF =AD _BC _ AC _ 58、如图,AABC 和ABED 中,假设砧 1 BS DE 弓,且3BC 和z^BED 周长之差为10cm ,那么4 ABC 周长为 cm9、如图,△ACB S /ECD, AC:EC = 5:3, 1诚c = i8,那么 Me =510、如图,AABC 中,BE 平分/ABC, BD = DE, AD =万 cm , BD = 2cm,那么 BC =cm11、如图,ABCD 是平行四边形,BC = 2CE,那么用厘〜凡^^二12、如图,AABC 中,DE//BC, BE 、CD 相交于F,且用"^ =变心用,那么$山:氏皿=13、如图,4ABC 中,BC=15cm , DE 、FC 平行于BC,且将z\ABC 面积三等分,那么 DE+FC = _______ c m14、将长为^cm 的线段进行黄金分割,那么较长线段与较短线段之差为 cm115、如图,平行四边形 ABCD 中,延长AB 至ij E,使BE= 2 AB,延长CD 至U F,使DF = DC, EF 交BC 于G ,交AD 于H ,那么又期:“斑抹= 二、选择题1、如图,4ABC 中,DE//BC,那么以下等式中不成立的是〔〕2、两个相似三角形周长分别为 8和6,那么它们的面积比为〔(A) 4:3;(B) 16:9; (C) 2:仃;(D) 仃:及.3、如图,DE//BC, AB = 15 , AC = 9, BD = 4,那么 AE 长是()(A)AD _ AE AD _ AE AB = AC. g DB = EC. AD = DE DB BC .AD(D) 1-1" DEBCA题一 5图 蛊- 6徙一 i"2 22- 6-(A) 5;⑻(A) 2:1 ; (B) 2:3; (C) 4:9; (D) 5:4.5、如图,在边长为"的正方形ABCD 的一边BC 上,任取一点E,彳EF±AE 交CD 于点F,如 果BE= x , CF= ,那么用x 的代数式表示产是().y = - 一 + z y = - - x y ~x 2 + -j = x 2 + -(A) g ; (B) 口 ; (C)鼻;(D)阴.1、:3 4 6 ,求+ £的值.2、如图,菱形ABCD 边长为3 ,延长AB 至ij E 使BE=2AB ,连结EC 并延长交AD 延长线于点F, 求AF 的长.3、如图,4ABC 中,DE//BC,心皈 :端心用觉:时=1:2 , BC =2^ ,求DE 长.4、如图,直角梯形 ABCD 中,DALAB, AB //DC , ZABC = 60° , ABC 平分线 BE 交 AD 于 E, CEXBE, BE=2,求 CD 长.5、如图,ABCD 是边长为"的正方形,E 是CD 中点,AE 和BC 的延长线相交于F, AE 垂直平 分线交AE 、BC 于H 、G,求线段FG 长.6、如图,z\ABC 中,AB>AC,边AB 上取一点D,在边AC 上取一点E,使AD=AE,直线DE BP BD=_ 的延长线和BC 延长线交于点P,求证:°尹CE o 四、(此题8分)如图,AABC 中,AB = AC, AD ±BC, D 为垂足,E 为 AC 中点,BE 交 AD 于 G, AD = 18cm , BE=15cm ,求小BC 面积.17工4、如图,DE//BC,11-B DC B控五图五、如图,4ABC中,点M在BC边上移动〔不与点B、C重合〕,作ME//CA交AB于E,作BM = xMF //BA交AC于F, S©c = 10cm2,设BC ,四边形AEMF面积为y,写出尸与x的函数关系式,并指出工取值范围.。
专题5.2 图形的相似一、单选题1.两三角形的相似比是2:3,则其面积之比是()A.: B. 2:3 C. 4:9 D. 8:27【来源】广西壮族自治区玉林市2018年中考数学试卷【答案】C【解析】【分析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9,故选C.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键. 2.已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A. 32 B. 8 C. 4 D. 16【来源】贵州省铜仁市2018年中考数学试题【答案】C点睛:此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的面积的比等于相似比的平方的性质的应用.3.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈 B.四丈五尺 C.一丈 D.五尺【来源】吉林省长春市2018年中考数学试卷【答案】B【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.4.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. B. C. D.【来源】黑龙江省哈尔滨市2018年中考数学试题【答案】D【解析】分析:由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出,此题得解.详解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴,,∴.故选:D.点睛:本题考查了相似三角形的判定与性质,利用相似三角形的性质找出是解题的关键.5.如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A. 1:3 B. 3:1 C. 1:9 D. 9:1【来源】湖北省荆门市2018年中考数学试卷【答案】C【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识,熟练掌握和灵活运用平行四边形的性质、相似三角形的判定与性质是解题的关键.6.如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A. B. C. D. 1【来源】四川省达州市2018年中考数学试题【答案】C【解析】分析:首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得,,由此即可解决问题.点睛:本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O 为位似中心缩小为原图形的,得到△COD,则CD的长度是()A. 2 B. 1 C. 4 D. 2【来源】湖南省邵阳市2018年中考数学试卷【答案】A【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.8.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A. 1 B. C.-1 D.+1【来源】湖北省随州市2018年中考数学试卷【答案】C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴,∴,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.9.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A. B. C. D.【来源】广西壮族自治区桂林市2018年中考数学试题【答案】A【解析】分析:分两种情形:当A与点N、M重合时来确定b的最大与最小值即可.详解:如图1,当点A与点N重合时,CA⊥AB,∴MN是直线AB的一部分,∵N(3,1)∴OB=1,此时b=1;当点A与点M重合时,如图2,延长NM交y轴于点D,易证△MCN∽△BMD∴∵MN=3-=,DM=,CN=1∴BD=∴OB=BD-OD=-1=,即b=-,∴b的取值范围是.故选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..10.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD =60°,则△OCE的面积是()A. B. 2 C. D. 4【来源】江苏省宿迁市2018年中考数学试卷【答案】A【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°,∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,【点睛】本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.11.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A. 16 B. 18 C. 20 D. 24【来源】广西壮族自治区贵港市2018年中考数学试卷【答案】B【解析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴,解得:x=2,∴S△ABC=18,故选B.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.12.在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A. B. C. D.【来源】广东省2018年中考数学试题【答案】C【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC 是解题的关键.二、填空题13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.【来源】四川省资阳市2018年中考数学试卷【答案】9【解析】【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14.如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.【来源】贵州省贵阳市2018年中考数学试卷【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=(4﹣x),由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.15.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.【来源】上海市2018年中考数学试卷【答案】【详解】作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴,即,解得x=,即正方形DEFG的边长为,故答案为:.【点睛】本题考查了相似三角形的判定与性质,正确添加辅助线求出BC边上的高是解题的关键.16.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)【来源】广西钦州市2018年中考数学试卷【答案】40【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.17.如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:_____.【来源】湖南省邵阳市2018年中考数学试卷【答案】△ADF∽△ECF【解析】【分析】利用平行四边形的性质得到AD∥CE,则根据相似三角形的判定方法可判断△ADF∽△ECF.【详解】∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF,故答案为:△ADF∽△ECF.【点睛】本题考查了平行四边形的性质、相似三角形的判定,熟练掌握平行四边形的性质和相似三角形的判定是解题的关键.18.如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.【来源】北京市2018年中考数学试卷【答案】点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.19.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.【来源】山东省菏泽市2018年中考数学试题【答案】(2,2)详解:与是以点为位似中心的位似图形,,,若点的坐标是,过点作交于点E.点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.三、解答题20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【来源】陕西省2018年中考数学试题【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21.已知正方形中与交于点,点在线段上,作直线交直线于,过作于,设直线交于.(1)如图,当在线段上时,求证:;(2)如图2,当在线段上,连接,当时,求证:;(3)在图3,当在线段上,连接,当时,求证:.【来源】湖南省常德市2018年中考数学试卷【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【详解】(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点睛】本题是相似形综合题,涉及到的知识点有正方形的性质、平行四边形、菱形的判定、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.22.如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.【来源】四川省眉山市2018年中考数学试题【答案】(1)证明见解析;(2);(3)证明见解析.详解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M为BC的中点,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN为等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)设BM=CM=MN=a,∵四边形DNBC是平行四边形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(负值舍去),∴BC=2a=;点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.23.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【来源】湖北省武汉市2018年中考数学试卷【答案】(1)证明见解析;(2);(3).【详解】(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC=,同(1)的方法得,△ABP∽△PQF,∴,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,(3)在Rt△ABC中,sin∠BAC=,如图,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴,同(1)的方法得,△ABG∽△BCH,∴=,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC=.【点睛】本题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,根据题意添加辅助线构造出图1中的相似三角形模型是解本题的关键.24.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)【来源】湖南省邵阳市2018年中考数学试卷【答案】(1)证明见解析;(2)①;②添加AC=BD.【解析】【分析】(1)连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE//GF,即可得证;(2)①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得;②连接AC、BD,根据①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD的条件均可以满足此条件.【详解】(1)如图1,连接AC,(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴,∴△OGM∽△OEN,∴;②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,【点睛】本题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.25.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【来源】江苏省淮安市2018年中考数学试题【答案】(1)15°;(2)BE=.(3)AC=20.【解析】分析:(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;详解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°;(2)如图①中,(3)如图②中,将△BCD沿BC翻折得到△BCF.则有:x(x+7)=122,∴x=9或﹣16(舍去),∴AF=7+9=16,在Rt△ACF中,AC=.点睛:本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.26.在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.【来源】湖北省黄石市2018年中考数学试卷【答案】(1)证明见解析;(2)证明见解析;(3)详解:(1)∵EF∥BC,∴△AEF∽△ABC,∴,∴==;(2)若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴,∴==;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,而==a,∴+ a =a,解得:a=,∴=×=.点睛:本题主要考查相似形的综合问题,解题的关键是熟练掌握相似三角形的判定与性质和三角形重心的定义及其性质等知识点.27.(1)(发现)如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.①若AB=6,AE=4,BD=2,则CF =________;②求证:△EBD∽△DCF.(2)(思考)若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.(3)(探索)如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示).【来源】江苏省盐城市2018年中考数学试题【答案】(1)①4;②证明见解析;(2)存在;(3)1-cosα.(1)①先求出BE的长度后发现BE=BD,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,【解析】分析:另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;②证明△EBD∽△DCF,这个模型可称为“一线三等角相似模型”,根据“AA”判定相似;(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而通过证明△BDM≅△CDN可得BD=CD;详解:(1)①∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°,∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BDE=60°,又∵∠EDF=60°,∴∠CDF=180°-∠EDF-∠B=60°,则∠CDF =∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC-BD=6-2=4;②证明:∵∠EDF=60°,∠B=60°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴△EBD∽△DCF(2)存在.如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,( 3 )连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点∴∠B=∠C,OB=OC,∴△OBG≅△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°−α,则∠GOH=180°-(∠BOG+∠COH)=2α,∵∠EOF=∠B=α,则∠GOH=2∠EOF=2α,由(2)题可猜想应用EF=ED+DF=EG+FH,则 C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=mcosα,GB=mcos2α,.点睛:本题考查了角平分线的定义,等边三角形的性质,全等三角形以及相似三角形的判定和性质等知识点.难度较大.28.如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【来源】山东省威海市2018年中考数学试题【答案】(1);(2)可求线段AD的长;(3)证明见解析;(4)△BMF≌△NFM≌△MAN≌△FNE.(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.详解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.点睛:本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.29.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.【来源】山东省东营市2018年中考数学试题【答案】(1)75;4;(2)CD=4.详解:(1)∵BD∥AC,∴∠ADB=∠O AC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.点睛:本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.30.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F .若=,求的值.【来源】云南省昆明市2018年中考数学试题【答案】(1)证明见解析;(2)四边形PMBN 是菱形,理由见解析;(3)(3)由于,可设DP=k ,AD=2k ,由(1)可知:AG=DP=k ,PG=AD=2k ,从而求出GB=PC=4k ,AB=AG+GB=5k ,由于CP ∥AB ,从而可证△PCF ∽△BAF ,△PCE ∽△MAE ,从而可得,,从而可求出EF=AF-AE=AC-AC =AC ,从而可得.详解:(1)过点P 作PG ⊥AB 于点G ,∴易知四边形DPGA ,四边形PCBG 是矩形, ∴AD=PG ,DP=AG ,GB=PC ∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°, ∴∠APG=∠PBG , ∴△APG ∽△PBG ,∴,∴PG 2=AG•GB, 即AD 2=DP•PC; (2)∵DP ∥AB ,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;又易证:△PCE∽△MAE,AM=AB=,∴∴,∴EF=AF-AE=AC-AC=AC,∴.点睛:本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.41。
中考数学真题汇编:图形的相似一、选择题.已知,下列变形错误的是(). . . .【答案】.已知与相似,且相似比为,则与的面积比(). . . .【答案】.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为,则它的最长边为(). . . .【答案】.在平面直角坐标系中,线段两个端点的坐标分别为(,),(,),若以原点为位似中心,在第一象限内将线段缩短为原来的后得到线段,则点的对应点的坐标为(). (,) . (,) . (,) . (,)【答案】.如图,△和△都是等腰直角三角形,,,△的顶点在△的斜边上,若,,则两个三角形重叠部分的面积为().【答案】.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( ). . 或 . . 或【答案】.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠∠∠∠∴、、、四点共圆∴∠°∵∠°∠∠°∴△∽△∴•∵∴•所以③正确. ①②③ . ① . ①② . ②③【答案】.如图,将沿边上的中线平移到的位置,已知的面积为,阴影部分三角形的面积为.若,则等于(). . . .【答案】.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( ). . . .【答案】.如图,在△中,点在边上,∥,与边交于点,连结,记△,△的面积分别为,,(). 若,则 . 若,则. 若,则. 若,则【答案】.如图,菱形的对角线、相交于点,点为边的中点,若菱形的周长为,∠=°,则△的面积是()。
. . . .【答案】.如图,已知是的直径,点在的延长线上,与相切于点,过点作的垂线交的延长线于点,若的半径为,,则的长为(). . . .【答案】二、填空题.如图,△中,点、分别在、上,∥,:=:,则△与△的面积的比为.【答案】.如图,在边长为的小正方形网格中,点、、、都在这些小正方形的顶点上,、相交于点,则∠.【答案】.矩形中,,.点在矩形的内部,点在边上,满足△∽△,若△是等腰三角形,则的长为数.【答案】或.如图,在矩形中,,,点、分别在、上,若,∠°,则的长为.【答案】.如图,、、、分别为矩形的边、、、的中点,连接、、、、,已知⊥,=,则的长为.【答案】.在△中∠°,平分∠平分∠、相交于点,且,则.【答案】.如图,在矩形中,,点为线段上的动点,将沿折叠,使点落在矩形内点处.下列结论正确的是. (写出所有正确结论的序号)①当为线段中点时,;②当为线段中点时,;③当三点共线时,;④当三点共线时,.【答案】①③④.如图,在△中,,,若,边上的中线垂直相交于点,则.【答案】三、解答题.为了测量竖直旗杆的高度,某综合实践小组在地面处竖直放置标杆,并在地面上水平放置个平面镜,使得,,在同一水平线上,如图所示.该小组在标杆的处通过平面镜恰好观测到旗杆顶(此时∠∠).在处测得旗杆顶的仰角为°,平面镜的俯角为°,米,问旗杆的高度约为多少米? (结果保留整数)(参考数据:°≈,°≈)【答案】解:如图,∵,∴∠∠°,∵∠∠,∴∠°,∴∠°,∵∠∠°,∴△∽△,∴,在△中,∠∠∠°°°,°,∴,∴×≈,答:旗杆高约米..如图,在正方形中,点在边上(不与点,重合),连接,作⊥,于点,⊥于点,设。
2018中考数学试题分类汇编:考点36相似三角形一•选择题(共28小题)1. (2018?重庆)制作一块3m x 2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A. 360 元B. 720 元C. 1080 元D. 2160 元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m x 2m=6m2,•••长方形广告牌的成本是120-6=20元/m 2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,•扩大后长方形广告牌的面积=9x 6=54m2,•••扩大后长方形广告牌的成本是54x 20=1080*,故选:C.2. (2018?玉林)两三角形的相似比是2:3,则其面积之比是()A. . ■:: 「;B. 2:3C. 4:9D. 8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:•••两三角形的相似比是2:3,•其面积之比是4: 9,故选:C.3. (2018?重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm, 6cm和9cm,另一个三角形的最短边长为 2.5cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:一=^-,解得:x=4.5,即另一个三角形的最长边长为 4.5cm,故选:C.4. (2018?内江)已知△ ABC与厶A i B i C i相似,且相似比为1:3,则厶ABC与厶A i B i C的面积比为()A. i:iB. i:3C. i:6D. i:9【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:已知厶ABC与厶A i B i C i相似,且相似比为i:3,则△ABC与△ A i B i C i的面积比为i:9,故选:D.5. (20i8?铜仁市)已知△ ABS A DEF相似比为2,且厶ABC的面积为i6,则厶DEF的面积为()A. 32B. 8C. 4D. i6【分析】由厶AB3A DEF相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得厶ABC与厶DEF的面积比为4,又由△ ABC的面积为i6,即可求得厶DEF的面积.【解答】解:•••△AB3A DEF,相似比为2,•••△ ABC与△ DEF的面积比为4,•••△ABC的面积为i6,• △ DEF 的面积为:i6X 丁=4.故选:C.A. 1:4B. 4:1C. 1:2D. 2:16. (2017?重庆)已知△ ABS A DEF且相似比为1:2,则厶ABC与厶DEF的面积比为()【分析】禾I」用相似三角形面积之比等于相似比的平方计算即可.【解答】解:•••△ AB3A DEF,且相似比为1: 2,•••△ ABC与△ DEF的面积比为1: 4,故选:A.7. (2018?临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与厶ABC相似的是()【分析】根据正方形的性质求出/ ACB根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,/ ACB=180 - 45°135°,A、C、D图形中的钝角都不等于135° 由勾股定理得,BC= ':, AC=2 对应的图形B 中的边长分别为1和•••图B中的三角形(阴影部分)与厶ABC相似,故选:B.8. (2018?广东)在厶ABC中,点D、E分别为边AB、AC的中点,则△ ADE与△ ABC的面积之比为()【分析】由点D、E分别为边AB AC的中点,可得出DEABC的中位线,进而可得出DE// BC及△ ADE^^ ABC,再利用相似三角形的性质即可求出△ ADE与△ ABC 的面积之比.【解答】解:•••点D、E分别为边AB AC的中点,A. 1:4B. 4:1C. 1:2D. 2:1••• DE%A ABC 的中位线,••• DE// BC,•••△ ADE^A ABC,9. (2018?自贡)如图,在△ ABC 中,点D 、E 分别是AB 、AC 的中点,若△ ADE 的面积为4,则厶ABC 的面积为( )的判定与性质得出答案.【解答】解:•••在△ ABC 中,点D 、E 分别是AB 、AC 的中点,••• DE / BC, DE=-BC, •••△ ADE^A ABC, DE 1~214•••△ ADE 的面积为4,•••△ ABC 的面积为:16,故选:D .【分析】直接利用三角形中位线定理得出 DE / BC, DE^BC,再利用相似三角形 ) 2 L14 D . 1610. (2018?崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE: EC=3 1,连接AE交BD于点卩,则厶DEF的面积与厶BAF的面积之比为()D ECA. 3: 4B. 9: 16C. 9: 1D. 3: 1【分析】可证明△ DF0A BFA根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:•••四边形ABCD为平行四边形,••• DC// AB,•••△DFE^^ BFA•••DE: EC=3 1,••• DE: DC=3 4,DE: AB=3: 4,5 DFE S\ BFA=9 : 16.故选:B.D £ C11. (2018?随州)如图,平行于BC的直线DE把厶ABC分成面积相等的两部分, 则=「的值为()A. 1B. -C. _ 1D..'【分析】由DE/ BC可得出△ ADE^A ABC,利用相似三角形的性质结合S ADE=S故选:D .【解答】解::DE// BC, •••/ ADE=/ B,Z AED=Z C, •••△ ADE^A ABC,12. (2018?哈尔滨)如图,在△ ABC 中,点D 在BC 边上,连接AD ,点G 在线 段AD 上, GE// BD ,且交AB 于点E, GF// AC,且交CD 于点F ,则下列结论一定【分析】由GE// BD GF// AC 可得出△ AEG^A ABD A DFG^A DCA 根据相似 【解答】解:TGE// BD , GF// AC, •••△ AEG^A ABD,A DFG^A DCAAE AGCF_DG __ !.AE AG CF BE - ~D G ' =DF , 三角形的性质即可找出 此题得解.四边形 BCED 可得出AB~, 结合BD=AB- AD 即可求出 B D A 的值,此题得解. AB _AG B DF _DG C-亠一 D 里亠 AC =BD D.观=DFAE AGAB _ ~AD ' -S A ADE =S 四边形 BCED-1.13. (2018?遵义)如图,四边形ABCD中,AD// BC, / ABC=90, AB=5,BC=1Q连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A. 5B. 4C. 3 仃D. 2 -【分析】先求出AC,进而判断出△ ADF^A CAB,即可设DF=x AD=!x,禾U用勾股定理求出BD,再判断出厶DEF^A DBA得出比例式建立方程即可得出结论.【解答】解:如图,在Rt A ABC中,AB=5, BC=10,••• AC=5 辽过点D作DF丄AC于F,•/ AFD=/ CBA••• AD// BC,•/ DAF=/ ACB•△ADF^A CAB.DF __AE• ! ■■,设DF=x则AD=女,在Rt A ABD中,BD= .| = ^ '■.,•••/ DEF=/ DBA / DFE=/ DAB=90 ,• △DEF^A DBA.DE••而"AD,故选:D.•x=2,•AD= _x=2 匚,故选:D.14. (2018?扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt^ABC和等腰Rt A ADE, CD与BE、AE分别交于点P, M.对于下列结论:①厶BAE^A CAD ② MP?MD=MA?ME;③2C^=CP?CM 其中正确的是()B A2A.①②③B.① C•①② D.②③【分析】(1)由等腰Rt A ABC和等腰Rt A ADE三边份数关系可证;(2)通过等积式倒推可知,证明△ PAM sA EMD即可;(3)2CR转化为AC2,证明△ ACP^A MCA,问题可证.【解答】解:由已知:AC= -AB, AD= :AE.[AC _ADvZ BACK EAD•••/ BAE=/ CAD•••△BAE^A CAD所以①正确vA BAE^A CAD•••/ BEA=/ CDAv/ PME=Z AMD•••△PME^A AMD.I MP _ ME••狀5••• MP?MD=MA?ME所以②正确vZ BEAN CDA/ PME=Z AMD••• P、E、D、A四点共圆•••Z APD=Z EAD=90vZ CAE=180-Z BAC-Z EAD=90•△CAP^A CMAAG=CP?CMv AC= :'AB•2C^=CP?CM所以③正确故选:A.15. (2018?贵港)如图,在△ ABC中,EF// BC, AB=3AE 若S四边形BCF=16,则SA. 16B. 18C. 20D. 24【分析】由EF/ BC,可证明△ AEF^A ABC,禾用相似三角形的性质即可求出则S\ ABC的值.【解答】解:v EF/ BC,•△AEF^A ABC,v AB=3AE•AE: AB=1:3 ,•S\AEF:S^ABC=1 : 9 ,设S\AEF=X,-S四边形BCF F16,解得:x=2,S ABC=18,故选:B.16. (2018?孝感)如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90, AE丄BD于点E,连CD分别交AE, AB于点F, G,过点A作AH丄CD 交BD于点H.则下列结论:①/ ADC=15:②AF=AG③AH=DF;④厶AF3A【分析】①由等边三角形与等腰直角三角形知厶CAD是等腰三角形且顶角/ CAD=150,据此可判断;②求出/ AFP和/FAG度数,从而得出/ AGF度数,据此可判断;③证△ ADF^A BAH即可判断;④由/AFG=/ CBG=60、/ AGF=Z CGB 即可得证;⑤设PF=x贝U AF=2x人卩彳人国叩卩?*^,设EF=a由厶ADF^ABAH知BH=AF=2x根据△ ABE是等腰直角三角形之BE=AE=+2x,据此得出EH=aPF' AP证厶PA3A EAH得■•…—,从而得出a与x的关系即可判断.【解答】解:•••△ ABC为等边三角形,△ ABD为等腰直角三角形,•••/ BAC=60、/ BAD=90、AC=AB=AD / ADB=Z ABD=45 ,•••△CAD是等腰三角形,且顶角/ CAD=150,•••/ ADC=15,故①正确;••• AE丄BD,即/ AED=90,•••/ DAE=45,•••/AFG=/ADO/DAE=60,/ FAG=45,•••/ AGF=75,由/ AFG^Z AGF知AF M AG,故②错误;记AH与CD的交点为P,由AH 丄CD且Z AFG=60知Z FAP=30 ,贝UZ BAH=Z ADC=15,在厶ADF和厶BAH中,r ZADF=ZBAH•••〔DA訓,ZDAF=ZABH=45°l•••△ADF^A BAH (ASA),••• DF=AH故③正确;vZ AFG=/ CBG=60,Z AGF=/ CGB•••△AFG^A CBG 故④正确;在Rt A APF中,设PF=x 贝U AF=2x AP= ] >一一= Ux , 设EF=a •••△ADF^A BAH ,BH=AF=2X△ABE中,vZ AEB=90、Z ABE=45 ,BE=AE=A+EF=a+2x ,.EH=B E BH=a+2x- 2x=a,vZ APF=Z AEH=90 , Z FAP=Z HAE,•••△PAF^A EAH•理翌即昱后.EH=AE ,即白一廿加,整理,得:2«=(翻-1)ax,由X M 0得2x=(善-1)a,即AF=(頂-1)EF,故⑤正确;故选:B.17. (2018?泸州)如图,正方形ABCD中,E, F分别在边AD, CD上, AF, BE 相交于点G,若AE=3ED DF=CF 则聲的值是()Gi*【分析】如图作,FN// AD,交AB于N ,交BE于M.设DE=a则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN// AD ,交AB于N ,交BE于M .•••四边形ABCD是正方形,A E D••• AB// CD, T FN// AD ,•••四边形ANFD是平行四边形,•••/ D=90 ,•••四边形ANFD是解析式,••• AE=3DE 设DE=a 贝U AE=3a, AD=AB=CD=FN=4,a AN=DF=2qT AN=BN MN // AE,••• BM=ME ,3••• MN=—a ,••• FM—a,••• AE// FM,GF故选:C.18. (2018?临安区)如图,在△ ABC中,DE// BC, DE分别与AB, AC相交于点D, E,若AD=4,DB=2,则DE: BC的值为()A. B.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解::DE// BC,•••△ ADE^A ABC,DE AD AD42BC"ALH-飞=3故选:A.19. (2018?恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG 并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2则线段AE的长度为()A. 6B. 8C. 10D. 12【分析】根据正方形的性质可得出AB//CD,进而可得出△ ABI A GDF,根据相似三角形的性质可得出亠丄=2,结合FG=2可求出AF AG的长度,由CG// AB、lirAB=2CG可得出EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:•••四边形ABCD为正方形,••• AB=CD AB// CD, •••/ ABF=Z GDF, / BAF=Z DGF,•••△ABF^A GDF,AB,GFf_G••• AF=2GF=4 ••• AG=6 •••CG// AB, AB=2CG•••EAB的中位线,••• AE=2AG=1220. (2018?杭州)如图,在△ ABC中,点D在AB边上,DE// BC,与边AC交于点E,连结BE.记厶ADE △ BCE的面积分别为Si, S2 ( )B.若2AD> AB,则3Si V 2③C.若 2AD v AB ,贝U 3Si >2®D.若 2AD v AB,则 3Si V 2S 2【分析】根据题意判定△ ADE^A ABC,由相似三角形的面积之比等于相似比的 平方解答.【解答】解:•••如图,在△ ABC 中,DE// BC,•••△ ADE^A ABC,•••若2AD > AB,即器〉寺时,A D 2此时3S > S?+S\BDE ,而S?+S\BDE V 2S2 .但是不能确定3S 与29的大小, 故选项A 不符合题意,选项21. (2018?永州)如图,在△ ABC 中,点D 是边AB 上的一点,/ ADCh ACB, AD=2, BD=6,则边 AC 的长为( )A . 2 B. 4 C. 6 D . 8AC AD【分析】只要证明厶ADS A ACB 可得篇菱,即AC 2=AD?AB,由此即可解决 问题;B 不符合题意. AD 若 2AD v AB,即=-<二时 ABS 1+ S 24S ABEE 1v7, 此时 3S v S 2+S\BDE V 2S 2,故选项C 不符合题意,选项 D 符合题意. 2Si^1 + S 2+S Z\BDE【解答】 解:I/ A=Z A ,/ ADC=/ ACB•••△ ADS A ACB•- AG=AD?AB=2<8=16, •/ AC >0 , • AC=4故选:B.解:• DE// BC,AD AE …BD HE ,用平行线分线段成比例定理和相似三角形的判定即可得出结论. 【分析】 【解答】 22.(2018?香坊区)如图,点D 、E 、F 分别是△ ABC 的边AB AC BC 上的点,•••DE// BC,• △AD3A ABC,• DE// BC, EF// AB,•四边形BDEF是平行四边形,故选:C.23. (2018?荆门)如图,四边形 ABCD 为平行四边形,E 、F 为CD 边的两个三 等分点,连接AF 、BE 交于点G ,则SxEFG : SxABG =()A . 1: 3B . 3: 1 C. 1: 9 D . 9: 1【分析】禾U 用相似三角形的性质面积比等于相似比的平方即可解决问题; 【解答】解:•••四边形ABCD 是平行四边形, ••• CD=AB CD// AB ,v DE=EF=FC ••• EF: AB=1: 3,•••△ EFG^A BAG故选:C.24. (2018?达州)如图,E,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=AC.连^AAD (J接DE, DF 并延长'分别交AB, BC 于点G, H ,连接GH ,则亠:的值为(CE _CF _^L AE5••• DE=BF EF=BDAD AE BF AB "AC 一BC '1 ? 3 A•虫 B •虫 C t D - 1【分析】 首先证明AG : AB=CH BC=1: 3,推出GH// AC,推出△ BGH^A BAC,可得尹竺尹匚(閑)2=(「)耳,号匹"4,由此即可解决问题. b ABGH 旳 1 4^AADC J【解答】解:•••四边形ABCD 是平行四边形 ••• AD=BC DC=AB ••• AC=CA•••△ ADC ^A CBA--SA ADC =S A ABC ,••• AE=CF=AC, AG / CD , CH// AD ,• AG : DC=AE CE=1: 3, CH : AD=CF AF=1: 3, • AG : AB=CH BC=1: 3, • GH// AC, • △ BGH^A BAC25. (2018?南充)如图,正方形 ABCD 的边长为2, P 为CD 的中点,连结 AP , 过点B 作BE X AP 于点E,延长CE 交AD 于点F ,过点C 作CH 丄BE 于点G ,交BA BG故选:C.AB于点H,连接HF•下列结论正确的是()A. CE二匚B. EF二-C. cos/ CEP=:D. HF2=EF?CF2 5【分析】首先证明BH=AH,推出EG=BG推出CE=CB再证明△ CEH^A CBH Rt A HFE^ Rt A HFA利用全等三角形的性质即可——判断.【解答】解:连接EH.•••四边形ABCD是正方形,••• CD=AB-BC=AD=2 CD// AB,••• BE! AP , CH 丄BE,••• CH// PA,•••四边形CPAH是平行四边形,••• CP=AHv CP=PD=1AH=PC=1••• AH=BH,在Rt A ABE中 , v AH=HB,.EH=HB v HC丄BE,.BG=EG.CB=CE=2故选项A错误,v CH=CH CB=CE HB=HE.△ABC^A CEH,•••/ CBH2 CEH=90,••• HF 二HF HE 二HA ••• Rt A HFE ^ Rt A HFA, ••• AF=EF 设 EF=AF=x 在 Rt A CDF 中,有 22+ (2 -x ) 2= (2+x ) 2, •x 亍,• EF 丄,故B 错误,2••• PA// CH,• / CEP / ECH=g BCH'一— 1二二.,故 C 错误. ••• HF 甞•HF 2=EF?FC 故 D 正确, 故选:D .26. (2018?临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m , 测得AB=1.6m. BC=12.4m.则建筑物CD 的高是()A 3 CA . 9.3mB . 10.5m C. 12.4m D . 14m【分析】先证明ABE^^ACD,则利用相似三角形的性质得 」匚「.丄二, 然后利用比例性质求出CD 即可. 【解答】解::EB// CD,• △ ABE^A ACD,AB BE 即 1.2 AC - _C ,即 L 6+12. =CD ,• CD=10.5(米) 故选:B. 27.( 2018?长春)《孙子算经》是中国古代重要的数学著作,成书于约一千五 百年前,其中有首歌谣:今有竿不知其长,••• cos / CEP 二co gBCH=—,EF 7,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C. 一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,•••竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, 送帶,解得x=45(尺).故选:B.28. (2018?绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB丄BD,CD丄BD,垂足分别为B, D, AO=4m, AB=1.6m,CO=1m则栏杆C端应下降的垂直距离CD为()【分析】由/ ABO=Z CDO=9°、/ AOB=Z COD知厶ABO^A CDO,据此得将已知数据代入即可得.【解答】解::AB丄BD, CD丄BD,•••/ ABO=Z CDO=9°,0.4m D. 0.5m又•••/ AOB=Z COD•••△ABO^A CDQAO-_ABCO-■/ A0=4m, AB=1.6m, C0=1m,•厶.6…Il ,解得:CD=0.4故选:C.二•填空题(共7小题)29. (2018?邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ AD4A ECF .【分析】利用平行四边形的性质得到AD// CE则根据相似三角形的判定方法可判断△ ADF^A ECF【解答】解:•••四边形ABCD为平行四边形,•AD// CE,•△ADF^A ECF故答案AD2A ECF30. (2018?北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4, AD=3,则CF的长为丄-.D C【分析】根据矩形的性质可得出 AB// CD,进而可得出/ FAE 二/ FCD 结合/ AFE= / CFD (对顶角相等)可得出△ AFE^A CFD,利用相似三角形的性质可得出 —^=2,禾U 用勾股定理可求出 AC 的长度,再结合 CF^^.-?AC,即可求出 CF 的长. 【解答】解:•••四边形ABCD 为矩形, ••• AB=CD AD=BC AB / CD ,•••/ FAE=/ FCD ,又•••/ AFE=/ CFD ,/.△ AFE^A CFD-■-CD,AF f _AB••• AC==5 ,31. (2018?包头)如图,在?ABCD 中 , AC 是一条对角线,EF// BC,且EF 与AB 相交于点E ,与AC 相交于点F , 3AE=2EB 连接DF.若&AEF =1 ,则压ADF 的值为 525结合 S A A EF =1 知S A A DC =S A ABC =^-10:'.••• CF^-?AC~ X 5~ 【分析】由3AE=2EB 可设AE=2a BE=3q 根据EF / BC 得" 一bAABC2」=泮)「,AE2FC _B'3^AADF|2=故答案为:,再由 2 ,继而根据 S\ ADF^S△ ADC 可得答案.【解答】解::3AE=2EB•••可设 AE=2a BE=3a••• EF// BC,•••△ AEF^A ABC,=(—)2=(^)2」_I S\AEF =1,• S ―--S\AB ~ ,•••四边形ABCD 是平行四边形,••• EF / BC, AE亦2332. (2018?资阳)已知:如图,△ ABC 的面积为12,点D 、E 分别是边AB 、AC的中点,则四边形BCED 的面积为 9 .【分析】设四边形BCED 勺面积为X ,则Sx ADE =12- x ,由题意知DE / BC 且DE^BC,^AADFAF 2^ACDF_CF' _3 22 2 S\ADF=_S\ADC=7' X故答案为:从而得=(_)2,据此建立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,则S X ADE=12- x,•••点D、E分别是边AB AC的中点,•••。
(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:27(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9(2018•铜仁市)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.16(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1(2018•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B.C.D.(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.(2018•自贡)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16(2018•崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1(2018•随州)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.(2018•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. =B. =C. =D. =(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3 D.2(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD 于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.(2018•临安区)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8(2018•香坊区)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE∥BC,EF ∥AB,则下列比例式一定成立的是()A. =B. =C. =D. =(2018•荆门)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1(2018•达州)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A.B.C.D.1(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP 于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF(2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高 1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m(2018•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:.(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为.(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.(2018•张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB的面积最大,并求岀这个最大值;(2)求证:△PAN∽△PMB.(2018•株洲)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=,求tan∠ABM的值.(2018•大庆)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧的长度.(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.(2018•东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.(2018•南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.(2018•滨州)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.(2018•十堰)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若tanC=2,求的值.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.(2018•烟台)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD=,求的值.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN 上一点,求△PDC周长的最小值.(2018•聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.(2018•乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.。
中考数学真题汇编:图形的相似一、选择题1.已知,下列变形错误的是()A. B. C. D.【答案】B2.已知与相似,且相似比为,则与的面积比()A. B. C. D.【答案】D3.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A. (5,1)B. (4,3)C. (3,4)D. (1,5)【答案】C5.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A. B. C. D.【答案】D6.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )A. B. 或 C. D. 或【答案】B7.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A8.如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A. 2B. 3C.D.【答案】A9.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为( )A. B. C. D.【答案】C10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D11.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()。
2018中考数学试题分类汇编:考点36 相似三角形一.选择题(共28小题)1.(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.2.(2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.3.(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得: =,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.4.(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:9【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.5.(2018•铜仁市)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.6.(2017•重庆)已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:A.7.(2018•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.8.(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.9.(2018•自贡)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.10.(2018•崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE :S△BFA=9:16.故选:B.11.(2018•随州)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.=S四边形BCED,可得【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.=S四边形BCED,∵S△ADE∴=,∴===﹣1.故选:C.12.(2018•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. =B. =C. =D. =【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=, =,∴==.故选:D.13.(2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.14.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.15.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.16.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH 即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.17.(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.18.(2018•临安区)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.19.(2018•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.20.(2018•杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.21.(2018•永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.22.(2018•香坊区)如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,若DE∥BC,EF∥AB,则下列比例式一定成立的是()A. =B. =C. =D. =【分析】用平行线分线段成比例定理和相似三角形的判定即可得出结论.【解答】解:∵DE∥BC,∴,∵DE∥BC,∴△ADE∽△ABC,∴,∵EF∥AB,∴,∵EF∥AB,∴△CEF∽△CAB,∴,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,EF=BD,∴,,,,∴正确,故选:C.23.(2018•荆门)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.24.(2018•达州)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A.B.C.D.1【分析】首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得==()2=()2=, =,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC =S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥AC,∴△BGH∽△BAC,∴==()2=()2=,∵=,∴=×=,故选:C.25.(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.26.(2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高 1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.27.(2018•长春)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.28.(2018•绍兴)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.二.填空题(共7小题)29.(2018•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF.【分析】利用平行四边形的性质得到AD∥CE,则根据相似三角形的判定方法可判断△ADF∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.30.(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.31.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF =1,则S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF=1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC=S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.32.(2018•资阳)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为9.【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得=()2,据此建立关于x的方程,解之可得.=12﹣x,【解答】解:设四边形BCED的面积为x,则S△ADE∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=()2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.33.(2018•泰安)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为步.【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.。