基于ANSYS有限元多载荷步结构的分析
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。
其中,ANSYS在热分析方面的应用具有很高的价值,能对复杂结构的温度分布、热应力等问题进行有效的数值模拟和分析。
本文旨在深入探讨ANSYS有限元分析软件在热分析中的应用。
二、ANSYS软件及其热分析功能ANSYS是一款广泛应用于机械、电气、流体等多领域的有限元分析软件。
其强大的功能主要得益于其精细的数值计算方法和广泛的适用性。
在热分析方面,ANSYS可以模拟各种复杂的热传导、热对流和热辐射问题,为工程师提供精确的数值结果和直观的图形展示。
三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中进行热分析,首先需要建立准确的模型并进行网格划分。
ANSYS提供了强大的建模工具,可以方便地建立各种复杂的模型。
同时,其网格划分功能可以根据模型的特点和需求,自动或手动进行网格的生成和优化。
这为后续的热分析提供了可靠的数值基础。
2. 材料属性设定与载荷施加在热分析中,材料属性设定和载荷施加是关键步骤。
ANSYS 提供了丰富的材料库,可以根据实际需要选择合适的材料并进行属性的设定。
同时,根据问题的需求,可以在模型上施加各种类型的热载荷,如温度、热流等。
3. 求解与结果分析完成模型建立、网格划分、材料属性设定和载荷施加后,就可以进行求解了。
ANSYS采用先进的数值计算方法,可以快速得到求解结果。
同时,ANSYS提供了丰富的后处理功能,可以对求解结果进行可视化展示和分析。
例如,可以绘制温度分布图、热流图等,帮助工程师直观地了解问题的特点。
四、ANSYS在热分析中的优势相比传统的实验方法,ANSYS在热分析中具有以下优势:1. 准确性高:ANSYS采用先进的数值计算方法,可以模拟各种复杂的热传导、热对流和热辐射问题,得到的结果更加准确可靠。
2. 效率高:相比传统的实验方法,ANSYS可以在短时间内得到求解结果,大大提高了工作效率。
7多载荷作用下的阶梯轴有限元分析7.1 实践任务和目的阶梯轴是机械传动中的常见的部件,受力复杂、一般受到弯扭组合变形,对于装配有斜齿轮的阶梯轴还受拉力作用。
传统的材料力学精确分析很困难,对于轴上的键槽,轴肩等辅助定位和安装的结构都无法考虑。
本次实践用ANSYS 软件分析阶梯轴,如图7.1所示,轴材料为40Cr ,采用两个约束的简支梁结构支撑,根据材料力学知识可以得出两键槽中间部分受弯扭组合变形,轴承支承左端只受弯曲,大键槽受径向力FR1=2KN ,小键槽受径向力FR2=3KN ,作用在两端的转矩为Mn=2KN.M 。
其中轴的大截面D=40mm 、d=35mm ,求解出应力和位移的分布云图,其中材料参数:弹性模量E=210GPA ,泊松比0.3。
7.2实验环境Ansys14.0及其以上版本软件,win7以上版本操作系统7.3实践准备1)有限元建模的基本原则建模时需要考虑两条基本原则:一是保证计算结果的精度,二是控制模型的规模。
在保证精度的前提下,减小模型规模是必要的,它可在有限的条件下使有限元计算更好、更快地完成。
①保证精度原则适当增加单元数量,即划分比较密集的网格。
实际计算时,可以比较两种网格的计算结果,如果相差较大,可以继续增加单元数量。
如果结果变化不大,则可以停止增加。
在划分网格特别是在应力精度要求很高的区域时尽量划分比较规则的网格形状。
一般情况下,使单元形状为正多边形(等边三角形或正方形)和正多面体。
②控制规模原则模型规模是指模型的大小,直观上可用节点数和单元数来衡量,可以通过控制节点和单元数量来控制模型规模,此外,模型规模还受节点和单元编号的影响;在估计模型规模时,除了考虑节点的多少外,还应考虑节点的自由度数。
2)有限元建模的一般步骤不同问题的有限元建模过程和内容不完全相同,在具体实施分析之前,首先弄清分析对象的几何形状、约束特点和载荷规律,以明确结构型式、分析类型、计算结果的大致规律、精度要求、模型规模大小等情况,以确定合理的建模策略和分析方案。
在Ansys中,子步和载荷步是非常重要的概念,对于进行复杂仿真分析的工程师来说,深入理解并正确设置子步和载荷步是非常关键的。
接下来,我将从深度和广度的角度,结合自己的理解和经验,详细解释这两个概念的含义和设置方法。
1. 子步的含义与设置方法让我们来理解什么是子步。
在Ansys中,子步是为了确保仿真收敛而进行的时间步长分割。
当仿真过程中存在非线性行为或者材料模型的非线性影响较大时,我们就需要使用子步来有效地控制仿真的精度和稳定性。
在设置子步时,首先需要考虑仿真的时间范围,并根据具体情况进行合理的分割。
一般来说,我们可以根据仿真模型的非线性程度和材料特性来确定子步的数量和大小。
对于高度非线性的模型,需要细分子步以确保仿真的准确性;而对于较为线性的模型,则可以适当减少子步以提高仿真效率。
在设置子步时,还需要考虑到各个载荷的作用情况,以确保在每个子步内能够充分考虑不同载荷的影响。
通过合理设置子步,可以有效地控制仿真的收敛性,并且提高仿真结果的准确性。
2. 载荷步的含义与设置方法载荷步是指在Ansys中对载荷进行分段加载的方法。
在工程仿真中,往往会面对需要分段加载的情况,这时就需要使用载荷步来对载荷进行合理分段,并进行逐步加载以观察结构的响应。
在设置载荷步时,首先需要考虑加载的类型和大小,然后根据具体的分析目的来确定载荷的分段情况。
通常情况下,我们可以根据结构的承载能力和材料的特性来确定载荷的分段加载,并且可以根据仿真的结果来调整载荷步的设置,以得到更加准确的分析结果。
总结和回顾通过对子步和载荷步的含义和设置方法的详细解释,我们可以看到,在Ansys中合理设置子步和载荷步对于确保仿真的准确性和稳定性是非常重要的。
通过合理分割子步和载荷,我们可以更好地控制仿真的收敛性和精度,并且可以更加准确地模拟结构的响应情况。
个人观点和理解在我的实际工程仿真经验中,我发现合理设置子步和载荷步可以大大提高仿真的精度和效率。
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
ansys中载荷步、载荷子步、时间步的关系编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(ansys中载荷步、载荷子步、时间步的关系)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为ansys中载荷步、载荷子步、时间步的关系的全部内容。
实际工况=载荷步(时间步)+载荷步(时间步)+。
.。
.载荷步=载荷子步(时间增量)+载荷子步(时间增量)+..。
.。
.实体加载和有限元模型加载的区别:实体加载是不能利用叠加,所以实体加载要手工叠加.对实体是覆盖,有限元模型加载是可以设置的。
有限元加载可以利用fcum进行叠加。
比如,第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。
第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。
加载与载荷步、子步及平衡迭代次数的说明加载与载荷步、子步及平衡迭代次数的说明:一、加载方式的区别实体加载和有限元模型加载的区别:实体加载是不能利用叠加,所以实体加载要手工叠加。
对实体是覆盖,有限元模型加载是可以设置的。
有限元加载可以利用fcum进行叠加.比如,第一个荷载步,对关键点1施加10kn,第二荷载步也对关键点1施加10kn,则这两个荷载步结果是完全一致的。
第一个荷载步,对节点1施加10kn,第二荷载步也对节点1施加10kn,而且用命令fcum,add则第二荷载步是20kn的结果。
实体加载方法的优点:a、几何模型加载独立于有限元网格,重新划分网格或局部网格修改不影响载荷;b、加载的操作更加容易,尤其是在图形中直接拾取时;无论采取何种加载方式,ANSYS求解前都将载荷转化到有限元模型,因此加载到实体的载荷将自动转化到其所属的节点或单元上;二、载荷步及子步这些概念主要用于非线性分析或载荷随时间变化的问题。
基于有限元分析的结构强度与稳定性分析研究有限元分析是一种广泛应用于结构工程中的分析方法,它可以通过对结构的离散化,将一些连续的问题转化成一些离散的问题,并且可以通过计算机模拟进行数值求解。
基于有限元分析的结构强度与稳定性分析在工程设计中有着非常重要的作用,很多工程结构都需要经过这种分析方法来进行验证和检验。
1. 基本原理有限元分析的基本原理可以概括为:将复杂系统分解成许多简单的部分,每个部分我们都可以用简单的数学模型来描述。
最后我们将这些数学模型整合成一个整体模型,这个整体模型就是所谓的有限元模型。
在有限元模型中,每个部分我们可以用有限元来表示,有限元是把连续的实体离散成有限数量的区块,每个区块可以用简单的梁柱或壳单元等来表示。
然后将这些小区块以适当的约束条件连接在一起,形成一个整体的力学系统。
这样,在这个力学系统中,我们就可以通过有限元法来求解每个小区块的力学状态和组成整个结构的运动方程。
2. 结构强度分析结构强度是指结构在承受各种载荷作用下不发生破坏或超过许可变形的能力。
我们需要通过有限元分析来验证设计的质量和可靠性。
对于某一特定的结构,我们首先需要对其进行建模。
建模的步骤包括材料参数的设定、结构形状和尺寸的描述等等。
然后,利用有限元软件进行模拟,得到结构在各种载荷作用下的力学响应及应力情况,用以判断结构的稳定性和强度。
常规的结构强度分析主要有静力分析、模态分析和疲劳分析。
其中静力分析是指对于一个静止的结构,在一定的约束条件下,在不同作用力的条件下求解结构内部的应力和变形。
模态分析是指对于一个动态的结构,在不同的激励频率下,通过求解系统的振动情况来判断结构的稳定性。
疲劳是指结构在长时间或循环载荷下的破坏模式。
3. 结构稳定性分析除了强度分析,结构稳定性也是进行有限元分析的重要内容之一。
结构稳定性包括稳定性和屈曲分析等,主要是用于评估结构是否会发生塌陷、失效或崩溃等问,来判断结构的紧固和组装是否合适,排除现有的节点不实,固定形式不当。
基于ANSYS WORKBENCH的装配体有限元分析模拟装配体的本质就是设置零件与零件之间的接触问题。
装配体的仿真所面临的问题包括:(1)模型的简化。
这一步包含的问题最多。
实际的装配体少的有十几个零件,多的有上百个零件。
这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。
在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。
(2)零件之间的联接。
装配体的一个主要特征,就是零件多,而在零件之间发生了关系。
我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。
如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。
如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢?(3)材料属性的考虑。
在一个复杂的装配体中所有的零件,其材料属性多种多样。
我们在初次分析的时候,可以只考虑其线弹性属性。
但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。
此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。
基于ANSYS的汽车钢板弹簧有限元分析作者:徐建全郑永陈铭年来源:《海峡科学》2010年第12期[摘要] 采用APDL参数化有限元分析技术,对某轻型载货汽车的前钢板弹簧进行参数化建模。
应用ANSYS软件的非线性模块,考虑钢板弹簧实际工作过程中的大变形、片间接触和摩擦等多种非线性因素,建立了钢板弹簧的有限元模型,得到了钢板弹簧在不同载荷作用下的变形和应力分布。
[关键字] 钢板弹簧;有限元分析;ANSYS;接触单元引言钢板弹簧是历史最悠久的汽车部件之一,它结构简单、保养维修方便、制造成本低,与其它弹性元件比较,不仅起着弹性元件的作用,而且也能起着导向元件的作用,并且能传递各种力和力矩,其片间的接触、摩擦在弹簧振动时还将起到阻尼的作用,因此是目前汽车悬架特别是货车悬架广泛采用的一种弹性元件[1]。
长期以来,用于刚度计算及应力分析的方法主要有两种:共同曲率法和集中载荷法。
前者假设板簧受载后各簧片在同一截面上都具有相同的曲率,后者假设板簧各片仅在端部相互接触。
但这两种假设都与实际不完全相符,因此计算结果和实际相差较大[2-3]。
本文应用ANSYS 有限元软件对钢板弹簧进行有限元分析,应用点-面接触单元划分板簧片之间可能的接触面,对板簧两端的卷耳、中心螺栓和U型螺栓的约束做了合理的模拟,尽可能的按照实际受载情况对钢板弹簧加载,计算的结果与实际的更加接近。
1 钢板弹簧的有限元建模1.1 钢板弹簧有限元几何模型的建立本文所分析的某轻型载货汽车的前钢板弹簧由10片板簧组成,具体尺寸如表1所示。
其中,片宽都是70 mm,第1与第2片厚度为8 mm,第3片到第10片厚度为7 mm。
1.2 钢板弹簧的材料属性在几何模型建立后进行材料属性的定义,钢板弹簧的材料为60CrMnBa,弹性模量为2.05×105 MPa,泊松比为0.3,屈服极限为1 100 MPa,抗拉强度为1 250 MPa。
1.3 钢板弹簧的网格划分采用ANSYS软件中的SOLID95实体单元进行网格划分,它是SOLID45 (3维8节点)高阶单元形式,此单元能够容许不规则形状,并且不会降低精确性,特别适合边界为曲线的模型;同时,其偏移形状的兼容性好,SOLID95有20个节点,每个节点有3个自由度(X,Y,Z方向),此单元在空间的方位任意,具有塑性、蠕变、辐射膨胀、应力刚度、大变形以及大应变的能力。
本案例作者:技术邻海阔天空5技术邻正在举办ANSYS技术大赛,时间为8月1日至11月30日,有兴趣可以登录技术邻-点击“动态”-右侧有报名入口。
有一悬臂梁,长1米,截面尺寸为100mm*100mm,左端固定,顶面上施加分布力系。
载荷从1MPa,2MPa,3MPa渐渐增加。
要求结构的最大位移。
本问题可以直接在wb中用多载荷步来求解,这里说明如何使用插入APDL命令的方式实现。
【求解过程】1.打开ANSYS WORKBENCH14.52.创建结构静力学分析系统。
3.创建几何体。
双击geometry单元格,进入DM,选择mm单位。
创建长方体。
其尺寸设置是退出DM.4.划分网格。
双击MODEL,进入到MECHANICAL中,按照默认方式划分网格。
5.固定左端面。
6.添加APDL命令以分步加载。
下面使用APDL命令进行分步加载。
由于该命令最后要传递到经典界面中计算,而经典界面没有单位。
为保持统一性,都用毫米单位。
(1)设置单位(2)创建命名集。
由于在命令中要引用顶面这个面,为了能够正确引用,先需要给它一个名称,这需要使用命名集来完成。
选择上述顶面,创建命名集。
在弹出的对话框中设置名字:topface则树形大纲中出现了该命名集。
有了命名集,在后面就可以使用该名字了。
(3)插入APDL命令。
在数形大纲中先选择A5,再从工具栏中选择命令按钮则图形窗口变成了一个文本编辑器,此处可以输入命令。
该文本窗口内说了很多话,主要内容包含两点:第一,这些命令会在SOLVE命令刚执行前执行。
第二,注意这里用的单位是mm.现在我们向该文本窗口输入下列命令。
这段ADPL命令流的含义是:首先退出前面的某个处理器(finish)然后进入到求解器中(/solve),在1,2,3,个时间步,依次在顶面上施加1,2,3mpa的载荷(sf),并将该载荷步写入到载荷步文件中(lswrite),然后先后求解这三个载荷步(lssolve)。
最后退出求解器(finish)在上述命令流中,对于顶面加载时,用到了前面定义的命名集的名字。
基于ANSYS有限元多载荷步结构的分析
摘要多载荷步结构分析是ANSYS有限元分析的关键部分,本文以二维悬臂梁杆为例,分析了其在不同时刻的载荷下的应力分布,总结了多载荷步问题的求解方法。
关键字ANSYS ;有限元分析;多载荷步
0引言
ANSYS是当前使用最广泛,功能最强大的有限元软件,对工程结构在各种外荷载作用下可进行全面分析,并能对结构的变形、位移及应力分布结果通过图像和图表表示,为系统的优化提供可靠依据。
而在整个有限元分析中,如何正确施加载荷以及选择合适的求解方式至关重要,直接影响到分析结果的正确性。
1ANSYS载荷分析
ANSYS中将载荷分为六大类:自由度约束、集中力载荷、面载荷、体载荷、惯性载荷以及耦合场载荷。
为获得模型分析的正确计算结果就要对施加的载荷做相关的配置,在单载荷步系统中,载荷通过一个载荷步施加即可满足求解。
而对于实际大多数的有限元模型分析中,载荷的加载为多载荷步,需要多次施加不同的载荷步才能满足要求。
2多载荷步求解
对于多载荷步的问题,有两种可行的方法:
1)顺序求解法。
先加载第一个载荷步,然后求解。
接着加载第二个载荷步,再求解。
以此类推;
2)多载荷步文件法。
为每一个载荷步设置一个载荷文件,然后让ANSYS 自动依次读取每个载荷步文件并求解。
显然第二种方法自动化程度较高,本文采取第二种方法以一端固定的悬臂梁杆为例进行分析。
从零时刻起,给悬臂梁杆右部自由端施加随时间变化的应力,在ANSYS中施加多载荷步,确定不同时刻的应力分布。
力的载荷历程如图1.
本例为实体静态分析,多载荷步之间的联系是时间,因此在每个载荷步结束点赋予时间值。
根据图1,在0s~5s时间内,集中力从0开始线性增加到5000N,接着该力不变持续的时间段为5s~10s,在最后的10-15S的时间段跳跃到50000N。
根据时间的不同,将载荷分为3步。
0s~5s为第一步加载过程,5s~10s为第二步加载过程,10s~15s为第三步加载过程。
这其中的每一步为一个载
荷步。
①在ANSYS建立有限元模型,划分有限元网格,如图2,并施加左端固定的边界条件。
本例中的载荷为自由度约束和集中力载荷。
自由度载荷施加于悬臂梁杆左端,集中力载荷施加在右端。
②施加第一个集中力载荷,在Ansys中单击Solution(求解)→Define(定义载荷)→Apply(加载)→Structural(结构)→Fo rce/Moment(力/力矩)→On Keypoints(在关键点上),在弹出的对象拾取对话框中拾取悬臂梁右上端的节点,在Apply F/M on kpts对话框中设置力的方向为Y方向,大小为-5e3。
时间增量为5S。
③定义第一个载荷步结束时刻为5S。
Solution(求解)→Load Step Opts(载荷步设置)→Time/Frequenc(时间/频率)→Time and Substep Options(时间-时间步长),设置终止时间为5S。
由于0-5S的力是线性加载的,所以第一个载荷步的加载为斜坡式加载。
④创建第一个载荷步文件。
Solution(求解)→Load Step Opts(载荷步设置)→Write LS File(写载荷步文件),定义第一个载荷步文件编号为1。
⑤施加第二个载荷步的集中力载荷5000N,定义载荷步结束时间为10S。
由于在5-10S时间段内,力的加载恒定不变,载荷步的加载方式为阶跃式加载,时间增量为5S。
创建第二个载荷步文件,编号为2。
⑥施加第三个载荷步的集中力载荷50000N,定义载荷步结束时间为15S。
由于在10-15S时间段内,力跳跃到50000N,所以载荷步的加载方式为阶跃式加载,时间增量为5S。
创建第三个载荷步文件,编号为3。
⑦在创建了载荷文件后指定输出控制。
单击Solution(求解)→Load Step Opts (载荷步设置)→Output Ctrls(输出控制)→Solu Printout(求解答应),设置输出所有计算结果及指定每个子步结束后输出的求解结果。
⑧ANSYS读取载荷步文件并进行求解。
单击Solution(求解)→Solve(求解)→From LS File(根据载荷步文件求解),设置起始和结束载荷步文件1和3,设置载荷步文件编号增量为1。
⑨求解结束后,进入后处理器,查看求解结果。
单击General Postproc(通用后处理)→Read Results(读入结果文件)→By Time/Freq(根据时间/频率),在弹出Read Results by Frequency(通过时间/频率来选择结果文件)对话框中输入读取求解结果的时间点为5,输出结果如图3,将输入读取求解结果的时间点为15,输出结果如图4。
可以看到,悬臂梁杆在5秒时刻在Y轴方向上的应变分布如图3,可看出此时的最大应变值为1.20009,10秒时的外力不变,因此应变分布和图3一致。
15
秒时的应变分布如图4,最大应变值为12.0009,可见是5秒时的10倍。
、
3结论
多载荷步加载问题ANSYS有限元分析的核心内容,一般为顺序求解法和载荷步文件法。
第一种方法优点是直接,只需通过菜单方式实现所有设置,在每个载荷步定义好之后执行SOLVE命令即可。
但它的缺点是在交互使用时必须等到每一步求解结束后才能定义下一载荷步;而载荷步文件法在用户远离PC机或者其他终端设备时,依然可以很方便的进行批处理求解。
参考文献
[1]杨桂通.弹塑性力学引论.北京:清华大学出版社,2004.
[2]邓凡平.ANSYS12有限元分析自学手册.北京:人民邮电出版社,2010.
图3
图4。