江苏省2019学年初一下学期期中考试数学试卷【含答案及解析】
- 格式:pdf
- 大小:867.34 KB
- 文档页数:17
2019-2020学年江苏省南通市如东县七年级第二学期期中数学试卷一、选择题1.下列各数中,无理数是()A.B.C.D.3.14159265342.若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y 3.不等式组的解集在数轴上表示为()A.B.C.D.4.下列四个命题是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直5.估计2﹣的值在()A.﹣2到﹣1之间B.﹣1到0之间C.0到1之间D.1到2之间6.如图,直线a,b被c所截,a∥b,若∠3=3∠2,则∠2的度数为()A.30°B.45°C.50°D.60°7.若关于x,y的方程组的解也是二元一次方程x﹣2y=1的解,则m的值为()A.B.C.D.18.关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1B.0≤a<1C.﹣1<a≤0D.﹣1≤a<09.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.2010.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<2二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.化简:=.12.已知方程组,则x﹣y=.13.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.14.如图,AB∥CD,∠1=48°,∠C和∠D互余,则∠B=°.15.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过80%,那么明年空气质量良好的天数比去年至少要增加天.16.如果点P(﹣3a﹣2,a2)在第二象限,那么a的取值范围是.17.若2m+1的值同时大于3m﹣2和m+2的值,且m为整数,则3m﹣5=.18.有这样的一列数a1、a2、a3、…、a n,满足公式a n=a1+(n﹣1)d,已知a2=197,a5=188,若a k>0,a k+1<0,则k的值为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:﹣+﹣|2﹣|;(2)解方程组.20.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.21.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.22.填空完成推理过程:如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.证明:∵AB∥CD(已知)∴∠4=∠BAF()∵∠3=∠4(已知)∴∠3=∠(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠CAD∴∠3=∠(等量代换)∴AD∥BE()23.平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.24.疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款456万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A,B两种型号的口罩生产线各多少台.(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台同时进行生产.若工厂的工人每天工作8h,则至少租用A种型号的口罩机多少台才能在5天内完成任务?25.已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB 的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.26.在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M(1,0),过点M作直线l平行于y轴.(1)试判断点A(﹣1,a)是否是直线l的“伴侣点”?请说明理由;(2)若点P(2m﹣5,8)是直线l的“伴侣点”,求m的取值范围;(3)若点A(﹣1,a)、B(b,2a)、C(﹣,a﹣1)是平面直角坐标系中的三个点,将三角形ABC进行平移,平移后点A的对应点为D,点B的对应点为E,点C的对应点为F.若点F刚好落在直线l上,F的纵坐标为a+b,点E落在x轴上,且三角形MFD 的面积为,试判断点B是否是直线l的“伴侣点”?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.)1.下列各数中,无理数是()A.B.C.D.3.1415926534【分析】根据无理数、有理数的定义即可判定选择项.解:=6,,,3.1415926534是有理数,是无理数,故选:B.2.若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y【分析】根据不等式的性质求解即可.解:A、当x=﹣3,y=1时,x<y,x2>y2,故A不符合题意;B、两边都乘﹣3,不等号的方向改变,故B不符合题意;C、两边都除以2,不等号的方向不变,故C不符合题意;D、两边都乘﹣1,不等号的方向改变,两边都加1,不等号的方向不变,故D符合题意;故选:D.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.4.下列四个命题是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【分析】根据平行线的性质与判定即可得出答案.解:A、内错角相等,假命题;B、如果两个角的和是180°,那么这两个角是邻补角;假命题;C、在同一平面内,平行于同一条直线的两条直线互相平行;真命题;D、在同一平面内,垂直于同一条直线的两条直线互相垂直;假命题;故选:C.5.估计2﹣的值在()A.﹣2到﹣1之间B.﹣1到0之间C.0到1之间D.1到2之间【分析】根据估算无理数的大小方法得出答案.解:∵﹣3<﹣<﹣2,∴﹣1<2﹣<0,故选:B.6.如图,直线a,b被c所截,a∥b,若∠3=3∠2,则∠2的度数为()A.30°B.45°C.50°D.60°【分析】根据平行线的性质求出∠1=∠2,求出∠3=3∠1,根据邻补角互补求出∠1即可.解:∵a∥b,∴∠1=∠2,∵∠3=3∠2,∴∠3=3∠1,∵∠1+∠3=180°,∴∠1=45°,即∠2=45°,故选:B.7.若关于x,y的方程组的解也是二元一次方程x﹣2y=1的解,则m的值为()A.B.C.D.1【分析】联立不含m的方程求出x与y的值,进而求出m的值即可.解:联立得:,①+②×2得:5x=10,解得:x=2,把x=2代入①得:y=,把x=2,y=代入得:2m+(2m﹣1)=7,解得:m=.故选:A.8.关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1B.0≤a<1C.﹣1<a≤0D.﹣1≤a<0【分析】根据题意可知:两个整数解是0,1,可以确定a取值范围.解:∵a<x<2有两个整数解,∴这两个整数解为0,1,∴a的取值范围是﹣1≤a<0,故选:D.9.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.20【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a 个单位长度,其扫过的面积为24,推出a=4即可解决问题.解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故选:C.10.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<2【分析】根据“点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个”,得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.解:∵点A(a,0)在点B(2﹣a,0)的左边,∴a<2﹣a,解得:a<1,记边AB,BC,AC所围成的区域(含边界)为区域M,则落在区域M的横纵坐标都为整数的点个数为4个,∵点A,B,C的坐标分别是(a,0),(2﹣a,0),(1,﹣1),∴区域M的内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域M的边界上,∵点C(1,﹣1)的横纵坐标都为整数且在区域M的边界上,∴其他的3个都在线段AB上,∴2≤2﹣a<3.解得:﹣1<a≤0,故选:A.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.化简:=3.【分析】根据算术平方根的定义求出即可.解:=3.故答案为:3.12.已知方程组,则x﹣y=﹣1.【分析】方程组中两方程相减即可求出所求.解:,①﹣②得:2x﹣2y=﹣2,则x﹣y=﹣1.故答案为:﹣1.13.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=8.【分析】由MN∥y轴可知点M点N的横坐标相同,从而得出关于a的方程,解得a的值即可.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.14.如图,AB∥CD,∠1=48°,∠C和∠D互余,则∠B=138°.【分析】根据AB∥CD,∠1=48°,可以得到∠D的度数,然后根据∠C和∠D互余,可以得到∠C的度数,再根据∠C+∠B=180°,即可得到∠B的度数.解:∵AB∥CD,∴∠1=∠D,∠B+∠C=180°,∵∠1=48°,∴∠D=48°,∵∠C和∠D互余,∴∠C=42°,∴∠B=138°,故答案为:138.15.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过80%,那么明年空气质量良好的天数比去年至少要增加74天.【分析】设明年空气质量良好的天数比去年要增加x天,由去年该市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%且明年(365天)这样的比值要超过80%,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.解:设明年空气质量良好的天数比去年要增加x天,依题意,得:365×60%+x>365×80,解得:x>73.∵x为整数,∴x的最小值为74.故答案为:74.16.如果点P(﹣3a﹣2,a2)在第二象限,那么a的取值范围是a且a≠0.【分析】根据第二象限内点的坐标特点可得﹣3a﹣2<0,再解不等式即可.解:∵点P(﹣3a﹣2,a2)在第二象限,∴﹣3a﹣2<0且a≠0,解得:a>﹣且a≠0,故答案为:a>﹣且a≠0.17.若2m+1的值同时大于3m﹣2和m+2的值,且m为整数,则3m﹣5=1.【分析】根据题意列出不等式组,求出解集即可求得m=2,代入3m﹣5求得结果即可.解:根据题意得:,解得:1<m<3,∵m为整数,∴m=2,∴3m﹣5=1故答案为1.18.有这样的一列数a1、a2、a3、…、a n,满足公式a n=a1+(n﹣1)d,已知a2=197,a5=188,若a k>0,a k+1<0,则k的值为67.【分析】根据题意可得,解得,所以a n=200﹣3(n﹣1),再根据a k>0,a k+1<0,即可求得k的值.解:根据题意可知:,解得,所以a n=200﹣3(n﹣1),所以a k=200﹣3(k﹣1),a k+1=200﹣3k,∵a k>0,a k+1<0,200﹣3(k﹣1)>0,解得k<,200﹣3k<0,解得k>,所以66<k<67则k的值为67.故答案为:67.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:﹣+﹣|2﹣|;(2)解方程组.【分析】(1)原式利用平方根、立方根定义,以及绝对值的代数意义,计算即可求出值;(2)方程组利用加减消元法求出解即可.解:(•)原式=5﹣+3﹣(﹣2)=5﹣+3﹣+2=﹣;(2),①×2+②得:11x=33,解得:x=3,把x=3代入①得:y=3,则方程组的解为.20.若m是不等式组的最大整数解,求:1+m+m2+…+m2020的值.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出最大整数解,代入求出即可.解:,由不等式①,得x≥﹣2,由不等式②,得x<0,所以不等式组的解集为:﹣2≤x<0,解集中最大的整数为:﹣1,则m=﹣1,所以1+m+m2+…+m2018=1+(﹣1)+(﹣1)2+…+(﹣1)2020=1﹣1+1﹣1+…+1=1.21.如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值.解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).22.填空完成推理过程:如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.证明:∵AB∥CD(已知)∴∠4=∠BAF(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠BAE(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠CAD∴∠3=∠CAD(等量代换)∴AD∥BE(内错角相等,两直线平行)【分析】根据已知条件和解题思路,利用平行线的性质和判定填空.解:AD∥BE,理由如下:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).故答案是:两直线平行,同位角相等;BAE;CAD;内错角相等,两直线平行.23.平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为6;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.【分析】(1)求出点P坐标即可解决问题;(2)根据坐标轴上点的特征,可知b=0,可得P(﹣,0),延长即可解决问题;(3)构建不等式组,求出m的取值范围即可解决问题;解:(1)∵a=1,∴2﹣3m+1=0,∴m=1,∴3b﹣2﹣16=0,∴b=6,∴P(1,6),∴点P到x轴的距离为6,故答案为6.(2)∵点P落在x轴上,∴b=0,∴﹣2m﹣16=0,∴m=﹣8,∴2a+24+1=0,∴a=﹣,∴P(﹣,0),P′(,4).(3)由题意:≤4<,解得:﹣2<m≤3,∴m的最小整数值为﹣1.24.疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款456万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率分别如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A,B两种型号的口罩生产线各多少台.(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台同时进行生产.若工厂的工人每天工作8h,则至少租用A种型号的口罩机多少台才能在5天内完成任务?【分析】(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台,根据财政拨款456万元购进A,B两种型号的口罩生产线共30台,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据工作总量=工作效率×时间结合在5天内完成200万只口罩的生产任务,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台,依题意得:,解得:.答:购进A种型号的口罩生产线10台,B种型号的口罩生产线20台.(2)设租用A种型号的口罩机m台,则租用B种型号的口罩机(15﹣m)台,依题意得:5×8×[4000m+3000(15﹣m)]≥2000000,解得:m≥5.答:至少租用A种型号的口罩机5台才能在5天内完成任务.25.已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB 的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°﹣∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=(∠CBE﹣∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB 的度数,将其代入∠DAC:∠ACB:∠CBE中可求出结论.解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°﹣∠B,∴∠ACB=∠ACF+∠BCF=180°﹣(∠B﹣∠A)=120°.(2)在图②中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=∠CAD,∠EBQ=∠CBE,∴∠AQB=∠BQM﹣∠AQM=(∠CBE﹣∠CAD).∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,∴∠ACB=180°﹣∠ACP=180°﹣∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.26.在同一平面内,若一个点到一条直线的距离不大于1,则称这个点是该直线的“伴侣点”.在平面直角坐标系中,已知点M(1,0),过点M作直线l平行于y轴.(1)试判断点A(﹣1,a)是否是直线l的“伴侣点”?请说明理由;(2)若点P(2m﹣5,8)是直线l的“伴侣点”,求m的取值范围;(3)若点A(﹣1,a)、B(b,2a)、C(﹣,a﹣1)是平面直角坐标系中的三个点,将三角形ABC进行平移,平移后点A的对应点为D,点B的对应点为E,点C的对应点为F.若点F刚好落在直线l上,F的纵坐标为a+b,点E落在x轴上,且三角形MFD 的面积为,试判断点B是否是直线l的“伴侣点”?请说明理由.【分析】(1)求出点A到直线l的距离即可判断;(2)由点P(2m﹣5,8)是直线l的“伴侣点”得出1﹣(2m﹣5)≤1,或2m﹣5﹣1≤1,解不等式即可;(3)构建方程组求出a、b的值即可判断;解:(1)点A(﹣1,a)不是直线l的“伴侣点”,理由如下:∵点M(1,0),过点M作直线l平行于y轴,∴直线l:x=1,∵A(﹣1,a),∴点A到直线l的距离为2,2>1,∴点A不是直线l的“伴侣点”.(2)∵点P(2m﹣5,8)是直线l的“伴侣点”,∴1﹣(2m﹣5)≤1,或2m﹣5﹣1≤1,解得:m≥2.5,或m≤3.5,∴m的取值范围是2.5≤m≤3.5;(3)点B是直线l的“伴侣点”,理由如下:∵C(﹣,a﹣1)→F(1,a+b),∴横坐标加,纵坐标加b+1,∴D(,a+b+1),E(b+,2a+b+1),∵点E落在x轴上,∴2a+b+1=0,∵三角形MFD的面积为,∴••|a+b|=,∴a+b=±,当a+b=时,解得a=﹣,b=2,此时B(2,﹣3),点B是直线l的“伴侣点”.当a+b=﹣时,解得a=﹣,b=0,此时B(0,﹣1),点B是直线l的“伴侣点”.。
2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷一、选择题(每小题3分,满分24分)1.(3分)下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.(3分)用下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.2cm、4cm、3cm B.6cm、12cm、5cmC.4cm、5cm、3cm D.4cm、5cm、8cm3.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10﹣3B.7×10﹣3C.7×10﹣5D.7×10﹣4 4.(3分)若一个多边形的每个内角都为135°,则它的边数为( )A.8B.9C.10D.125.(3分)下列式子是完全平方式的是( )A.a2+2ab﹣b2B.a2+2a+1C.a2+ab+b2D.a2+2a﹣1 6.(3分)如图,△ABC中的边BC上的高是( )A.AF B.DB C.CF D.BE7.(3分)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为( )A.①②B.①③C.②③D.以上都错8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为( )A.2a2B.a2C.a2D.4a2二、填空题(每小题3分,共30分)9.(3分)计算:2x(x﹣3)= .10.(3分)分解因式:x2﹣2xy+y2= .11.(3分)若a m=16,a n=2,则a m﹣2n的值为 .12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是 .13.(3分)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 .14.(3分)一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为 .15.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为 .16.(3分)如图,小明从点A向北偏东70°方向走到B点,又从B点向北偏西30°方向走到点C,则∠ABC的度数为 °.17.(3分)若x2﹣mx﹣12=(x+3)(x+n),则mn= .18.(3分)如图,在△ABC中,E点是AC边上的一个点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=74°,∠AEB=128°,则原三角形的∠B= °.三.解答题(本大题共96分)19.(20分)计算:(1)2a3•(a2)3÷a;(2)π0+(﹣)﹣3+(﹣3)2;(3)2m(m﹣n)﹣(m﹣n)2;(4)(2a﹣b﹣c)(2a+b﹣c).20.(15分)因式分解:(1)3x(a﹣b)﹣6y(b﹣a);(2)2ax2﹣2ay2;(3)(x2+9)2﹣36x2.21.(7分)先化简,再求值:(x﹣1)(3x+1)﹣(x+2)2+5,其中x2﹣3x﹣1=0.22.(7分)如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)在平移过程中,线段BC扫过的面积为 .23.(7分)(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=5时,计算图中阴影部分的面积.24.(8分)如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.25.(8分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.26.(10分)发现与探索如图,根据小军的方法,将下列各式因式分解:(1)a2+5a+6;(2)a2+2ab﹣3b2.小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是边长为(a+b)的正方体,被如图所示的分割线分成8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为: ;(4)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.27.(14分)如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= °;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E 的度数;如果会,请说明理由.2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.(3分)下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.【分析】根据平移与旋转的性质得出.【解答】解:A、能通过其中一个四边形平移得到,错误;B、能通过其中一个四边形平移得到,错误;C、能通过其中一个四边形平移得到,错误;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.(3分)用下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.2cm、4cm、3cm B.6cm、12cm、5cmC.4cm、5cm、3cm D.4cm、5cm、8cm【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、2+3>4,能组成三角形,故本选项错误;B、6+5=11<12,不能组成三角形,故本选项正确;C、3+4>5,能组成三角形,故本选项错误;D、5+4>8,能组成三角形,故本选项错误.故选:B.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.3.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10﹣3B.7×10﹣3C.7×10﹣5D.7×10﹣4【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=9.07×10﹣4,故选:D.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)若一个多边形的每个内角都为135°,则它的边数为( )A.8B.9C.10D.12【分析】由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°﹣135°=45°,∴这个多边形的边数为:360°÷45°=8,故选:A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的内角和与外角和定理是关键.5.(3分)下列式子是完全平方式的是( )A.a2+2ab﹣b2B.a2+2a+1C.a2+ab+b2D.a2+2a﹣1【分析】利用完全平方公式的结构特征判断即可.【解答】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.(3分)如图,△ABC中的边BC上的高是( )A.AF B.DB C.CF D.BE【分析】根据三角形高的定义即可解答.【解答】解:△ABC中的边BC上的高是AF,故选:A.【点评】本题考查了三角形的角平分线、中线和高:过三角形的一个顶点引对边的垂线,这个点与垂足的连线段叫三角形的高.7.(3分)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为( )A.①②B.①③C.②③D.以上都错【分析】利用内错角相等两直线平行,以及等量代换及同旁内角互补两直线平行即可得到结果.【解答】解:①∠1=∠2,可判定AD∥BC,不能判定AB∥CD;②∠3=∠4,可判定AB∥CD;③AD∥BE可得∠1=∠2,再由∠D=∠B,可得∠3=∠4,可判定AB∥CD;④∠BAD+∠BCD=180°,不能判定AB∥CD;故选:C.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为( )A.2a2B.a2C.a2D.4a2【分析】设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);求出二者面积表达式相减即可.【解答】解:设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);正方形的面积为[(2x+a)]2,长方形的面积为x(x+a),二者面积之差为[(2x+a)]2﹣x(x+a)=a2.故选:C.【点评】本题考查了列代数式与整式的混合运算,设出长方形的宽,据此表示出正方形和长方形的面积表达式是解题的关键.二、填空题(每小题3分,共30分)9.(3分)计算:2x(x﹣3)= 2x2﹣6x .【分析】根据单项式乘多项式法则计算可得.【解答】解:2x(x﹣3)=2x2﹣6x,故答案为:2x2﹣6x.【点评】本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式法则.10.(3分)分解因式:x2﹣2xy+y2= (x﹣y)2 .【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣y)2,故答案为:(x﹣y)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.11.(3分)若a m=16,a n=2,则a m﹣2n的值为 4 .【分析】首先根据幂的乘方的运算方法,求出a2n的值是多少;然后根据同底数幂的除法的运算方法,求出a m﹣2n的值为多少即可.【解答】解:∵a m=16,a n=2,∴a2n=4,∴a m﹣2n===4.故答案为:4.【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是 四 .【分析】根据多边形的内角和公式与外角和定理列式进行计算即可求解.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=360°,解得n=4.故答案为:四.【点评】本题考查了多边形的内角和公式与外角和定理,熟记内角和公式,外角和与多边形的边数无关,任何多边形的外角和都是360°是解题的关键.13.(3分)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 65° .【分析】先根据平行线的性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB的大小.【解答】解:∵l∥m,∴∠2=∠1=120°,∵∠2=∠ACB+∠A,∴∠ACB=120°﹣55°=65°.故答案为65°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.(3分)一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为 56 .【分析】根据题意可知m+n=7,mn=8,然后根据因式分解法将多项式进行分解后即可求出答案.【解答】解:由题意可知:m+n=7,mn=8,原式=mn(m+n)=8×7=56,故答案为:56.【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.15.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为 12 .【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故答案为:12.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,5,分别作为腰,由三边关系定理,分类讨论.16.(3分)如图,小明从点A向北偏东70°方向走到B点,又从B点向北偏西30°方向走到点C,则∠ABC的度数为 80 °.【分析】根据题意画出方位角,利用平行线的性质解答.【解答】解:如图:∵∠1=70°,∠3=30°,∴∠2=70°,∴∠ABC=180°﹣30°﹣70°=80°,故答案为:80【点评】此题考查方向角问题,解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.(3分)若x2﹣mx﹣12=(x+3)(x+n),则mn= ﹣4 .【分析】利用十字相乘的方法得当3n=﹣12,3+n=﹣m.【解答】解:∵x2﹣mx﹣12=(x+3)(x+n),∴3n=﹣12,3+n=﹣m.∴n=﹣4,m=1.∴mn=﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.18.(3分)如图,在△ABC中,E点是AC边上的一个点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=74°,∠AEB=128°,则原三角形的∠B= 66 °.【分析】由三角形内角和定理可得出关于∠A,∠B,∠C的方程,联立后即可求出∠B 的度数.【解答】解:在△ABC中,∠A+∠B+∠C=180°①,在△BCD中,∠CDB+∠BCD+∠CBD=180°,即74°+∠C+∠B=180°②,在△ABE中,∠AEB+∠ABE+∠A=180°,即128°+∠B+∠A=180°③.由①得:∠A+∠C=180°﹣∠B④,由②+③,得:202°+∠B+(∠A+∠C)=360°⑤.将④代入⑤,整理得:382°﹣∠B=360°,∴∠B=66°.故答案为:66.【点评】本题考查了三角形内角和定理以及折叠的性质,牢记“三角形内角和是180°”是解题的关键.三.解答题(本大题共96分)19.(20分)计算:(1)2a3•(a2)3÷a;(2)π0+(﹣)﹣3+(﹣3)2;(3)2m(m﹣n)﹣(m﹣n)2;(4)(2a﹣b﹣c)(2a+b﹣c).【分析】(1)原式利用幂的乘方运算法则,以及同底数幂的乘除法则计算即可求出值;(2)原式利用零指数幂、负整数指数幂法则计算即可求出值;(3)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2a9÷a=2a8;(2)原式=1﹣8+9=2;(3)原式=2m2﹣2mn﹣m2+2mn﹣n2=m2﹣n2;(4)原式=(2a﹣c)2﹣b2=4a2﹣4ac+c2﹣b2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(15分)因式分解:(1)3x(a﹣b)﹣6y(b﹣a);(2)2ax2﹣2ay2;(3)(x2+9)2﹣36x2.【分析】(1)原式变形后,提取公因式即可;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.【解答】解:(1)原式=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(2)原式=2a(x2﹣y2)=2a(x+y)(x﹣y);(3)原式=(x2+9+6x)(x2+9﹣6x)=(x+3)2(x﹣3)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(7分)先化简,再求值:(x﹣1)(3x+1)﹣(x+2)2+5,其中x2﹣3x﹣1=0.【分析】根据多项式乘多项式、完全平方公式可以化简题目中的式子,然后根据x2﹣3x﹣1=0,即可解答本题.【解答】解:(x﹣1)(3x+1)﹣(x+2)2+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,由x2﹣3x﹣1=0,得x2﹣3x=1,∴原式=2(x2﹣3x)=2×1=2.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.22.(7分)如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)在平移过程中,线段BC扫过的面积为 16 .【分析】(1)直接利用B点平移规律得出各对应点位置即可;(2)利用中线的定义得出答案;(3)利用高线的定义得出垂足的位置;(4)理由平行四边形面积求法得出答案.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,中线CD即为所求;(3)如图所示,高线AE即为所求;(4)线段BC扫过的面积为:4×4=16.故答案为:16.【点评】此题主要考查了平移变换以及基本作图,正确得出平移规律是解题关键.23.(7分)(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=5时,计算图中阴影部分的面积.【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【解答】解:(1)根据题意得:阴影部分的面积=x(2x+1)+x(2x+1﹣x)=3x2+2x;(2)当x=5时,原式=3×52+2×5=56.答:图中阴影部分的面积是85.【点评】此题考查了列代数式,以及代数式求值,熟练掌握运算法则是解本题的关键.24.(8分)如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.【分析】先根据∠1=∠2,得出CE∥BF,进而得到∠4=∠AEC,再根据∠3=∠4,进而得到∠3=∠AEC,据此可得AB∥CD.【解答】解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.【点评】本题主要考查了平行线的性质与判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.25.(8分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【分析】(1)根据平行线的性质和判定证明即可;(2)根据角平分线的定义和平行线的性质解答即可.【解答】证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.【点评】本题考查了平行线的判定与性质,熟记性质与判定方法并判断出EF∥AD是解题的关键.26.(10分)发现与探索如图,根据小军的方法,将下列各式因式分解:(1)a2+5a+6;(2)a2+2ab﹣3b2.小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是边长为(a+b)的正方体,被如图所示的分割线分成8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为: (a+b)3=a3+3a2b+3ab2+b3 ;(4)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.【分析】(1)(2)先在等式的左边加上一次项系数一半的平方,把式子配成完全平方的形式,再根据平方差公式进行解答即可;(3)根据正方体的体积公式和给出的条件即可得出答案;(4)根据(3)得出的式子再进行转化,然后把a+b=4,ab=2代入计算即可得出答案.【解答】解:(1)a2+5a+6=a2+5a+()2﹣()2+6=(a+)2﹣=(a++)(a+﹣)=(a+3)(a+2);(2)a2+2ab﹣3b2=a2+2ab+b2﹣b2﹣3b2=(a+b)2﹣4b2=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b);(3)(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3;(4)由(a+b)3=a3+3a2b+3ab2+b3得:(a+b)3=a3+3ab(a+b)+b3,将a+b=4,ab=2代入a3+3ab(a+b)+b3得,43=a3+3×2×4+b3,解得:a3+b3=64﹣24=40.【点评】本题考查了因式分解法的应用,用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.27.(14分)如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= 135 °;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.【分析】(1)由三角形内角和定理得出∠OBA+∠OAB=90°,由角平分线的也得出∠ABC+∠BAC=×90°=45°,再由三角形内角和定理即可得出结果;(2)由三角形内角和定理和角平分线的也得出∠ABC+∠BAC=90°﹣n°,再由三角形内角和定理得出∠ACB的度数;(3)求出∠CBD=90°,同理∠CAD=90°,由四边形内角和求出∠ACB+∠ADB=180°,由(1)知:∠ACB=90°+n°,即可得出结果;(4)由三角形外角性质得出∠OAB=∠NBA﹣∠AOB,由角平分线定义得出∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,即可得出结果.【解答】解:(1)∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:135;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°;(3)∵BC、BD分别是∠OBA和∠NBA的角平分线,∴∠ABC=∠OBA,∠ABD=∠NBA,∠ABC+∠ABD=∠OBA+∠NBA,∠ABC+∠ABD=(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°,∵四边形内角和等于360°,∴∠ACB+∠ADB=360°﹣90°﹣90°=180°,由(1)知:∠ACB=90°+n°,∴∠ADB=180°﹣(90°+n°)=90°﹣n°,∴∠ACB+∠ADB=180°,∠ADB=90°﹣n°;(4)∠E的度数不变,∠E=40°;理由如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA﹣∠AOB,∵AE、BC分别是∠OAB和∠NBA的角平分线,∴∠BAE=∠OAB,∠CBA=∠NBA,∠CBA=∠E+∠BAE,即∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,∴∠E=40°.【点评】本题考查了三角形内角和定理、角平分线的也、三角形的外角性质等知识;熟练掌握三角形内角和定理和角平分线的也是解题的关键.。
2019学年江苏南通实验中学七年级下期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -64的立方根是()A. B.4 C.- 4 D.162. - 1.732、、、、3.212212212221、3.14这些数中无理数的个数()A.5个B.2个C.3个D.4个3. 下列各式中正确的是()A. B.C. D.4. 一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5. 的绝对值是()A. B. C. D.6. 的平方根是()A. B.9 C D.37. 如图AB//CD,CE平分∠ACD、∠A=110°,则∠ECD等于()A.110°B.70°C.55°D.35°8. 如图在一块长为12cm,宽为6cm的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2cm)则空白部分表示的草地面积是()A. 70B. 60C. 48D. 189. 如图直线,则的大小()A. 35°B. 45°C. 55°D. 80°10. 如图把一张长方形线条ABCD 沿AF 折叠,使D落在D′处使∠ABD=20°,A D′//DB 则∠DAF的度数为()A. 60°B. 55°C. 45°D. 30°11. 如图所示,直线a, b被直线c所截现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7其中能判定a//b的条件的序号是()A. ①②B. ①③C. ①④D. ③④12. 如果,那么x的值是()A. 12B. -12C.D.二、填空题13. 的算术平方根是。
14. 已知x、y都是实数且则的平方根是。
2019-2020学年江苏省南通市海安市十校联考七年级第二学期期中数学试卷一、选择题(共10小题).1.点P(﹣2,3)在第()象限A.一B.二C.三D.四2.下列命题是真命题的是()A.相等的角是对顶角B.过一点有且只有一条直线平行于已知直线C.同位角相等D.平面内,垂直于同一直线的两直线平行3.在,,1.732,,,3.1010010001……,中无理数有()A.1B.2C.3D.44.已知是mx+2y=4的解,则m的值是()A.3B.﹣3C.2D.﹣25.如图,四个实数m,n,p,q在数轴上对应的点分别是M,N,P,Q.若n+q=0,则m,n,p,q四个实数中,绝对值最大的是()A.m B.n C.p D.q6.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个7.的整数部分是a,小数部分是b,则a﹣b的值是()A.B.6+C.6﹣D.﹣68.若y=﹣6,则xy的值为()A.﹣2B.2C.﹣3D.39.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四10.如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)二、填空题:(本题共10小题,11~16每小题3分,17~20每小题3分,共34分.把最后的结果填在答题卡中横线上.)11.点Q(4,﹣3)到x轴的距离是.12.若方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,则a﹣b=.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.正数的两个平方根是2a+1和4﹣3a,则这个正数是.15.写出方程3x+2y=11的正整数解是.16.已知点P(2﹣x,3x+6)到两坐标轴的距离相等,则点P的坐标为.17.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是.18.已知点4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则=.19.实数a、b在数轴上的位置如图,则化简=.20.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为.三、解答题:(本题共7小题,共86分.解答时应写出必要文字说明、证明过程或演算步骤)21.计算:(1)+3﹣5;(2);(3).22.解下列方程组:(1)(用代入法);(2);(3).23.如图,△ABC在直角坐标系中,(1)请写出△ABC各顶点的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',写出A'、B'、C'的坐标,并在图中画出平移后图形;(3)求出三角形ABC的面积.(4)若线段AB交y轴与点P,直接写出点P的坐标.24.(1分)已知:如图,点B,E分别在直线AC和DF上,若∠AGB=∠EHF,∠C=∠D求证:∠A=∠F证明:∵∠AGB=∠EHF(已知)∠AGB=∠FGD()∴∠EHF=(等量代换)∴DB∥EC()∴∠=∠DBA()∵∠C=∠D∴()∴∥()∴∠A=∠F()25.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.26.温州苍南马站四季柚,声名远播,今年又是一个丰收年.某经销商为了打开销路,对1000个四季柚进行打包优惠出售.打包方式及售价如图.假设用这两种打包方式恰装完全部柚子.(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值.(2)当销售总收入为7280元时.①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋共包装了多少袋?②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.27.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.参考答案一、选择题:(每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸相应位置上)1.点P(﹣2,3)在第()象限A.一B.二C.三D.四【分析】根据各象限内点的坐标的符号,结合P的纵横坐标的符号可得答案.解:已知P点坐标(﹣2,3),横坐标﹣2<0,纵坐标3>0,故点P在第二象限.故选:B.2.下列命题是真命题的是()A.相等的角是对顶角B.过一点有且只有一条直线平行于已知直线C.同位角相等D.平面内,垂直于同一直线的两直线平行【分析】根据对顶角、平行线的判定和性质进行判断即可.解:A、相等的角不一定是对顶角,原命题是假命题;B、过直线外一点有且只有一条直线平行于已知直线,原命题是假命题;C、两直线平行,同位角相等,原命题是假命题;D、平面内,垂直于同一直线的两直线平行,是真命题;故选:D.3.在,,1.732,,,3.1010010001……,中无理数有()A.1B.2C.3D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.解:=﹣2,=7,=3,,,3.1010010001…是无理数,共有3个,故选:C.4.已知是mx+2y=4的解,则m的值是()A.3B.﹣3C.2D.﹣2【分析】把x与y的值代入方程计算即可求出m的值.解:把代入方程得:2m﹣2=4,解得:m=3.故选:A.5.如图,四个实数m,n,p,q在数轴上对应的点分别是M,N,P,Q.若n+q=0,则m,n,p,q四个实数中,绝对值最大的是()A.m B.n C.p D.q【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的是点P表示的数p.故选:C.6.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.解:①3是27的立方根,原来的说法错误;②的算术平方根是,原来的说法错误;③﹣=2是正确的;④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.7.的整数部分是a,小数部分是b,则a﹣b的值是()A.B.6+C.6﹣D.﹣6【分析】估算无理数的大小方法得出答案.解:∵9<13<16,∴3<<4,∴的整数部分是3,小数部分是﹣3,即a=3,b=﹣3,可得:a﹣b=,故选:C.8.若y=﹣6,则xy的值为()A.﹣2B.2C.﹣3D.3【分析】根据二次根式的被开方数是非负数得到x=,则y=﹣6,代入求值即可.解:由题意,得x﹣≥0且﹣x≥0,所以x﹣=0.所以x=,则y=﹣6,故xy=×(﹣6)=﹣3,故选:C.9.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四【分析】在平面直角坐标系中画出过点P且平行于坐标轴的直线,分别截取线段PQ1=PQ2=PQ3=PQ4=5,则可知点Q不在第四象限.解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.10.如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)【分析】要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动 (44)44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.解:要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…于是会出现:(44,44)点处粒子运动了44×45=1980分钟,此时粒子会将向下移动.从而在运动了1989分钟后,粒子所在位置为(44,35).故选:D.二、填空题:(本题共10小题,11~16每小题3分,17~20每小题3分,共34分.把最后的结果填在答题卡中横线上.)11.点Q(4,﹣3)到x轴的距离是3.【分析】根据点的坐标可得答案.解:点Q(4,﹣3)到x轴的距离是3,故答案为:3.12.若方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,则a﹣b=3.【分析】先根据二元一次方程的定义得出a﹣2=1,b+1=1,据此可得a、b的值,再代入计算可得.解:∵方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,∴a﹣2=1,b+1=1,∴a=3,b=0,则a﹣b=3﹣0=3.故答案为:3.13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.正数的两个平方根是2a+1和4﹣3a,则这个正数是121.【分析】根据正数的平方根有两个,且互为相反数,求出a的值,即可确定出这个正数.解:根据题意得:2a+1+4﹣3a=0,解得:a=5,可得这个正数的两个平方根为11和﹣11,则这个正数为121.故答案为:121.15.写出方程3x+2y=11的正整数解是或.【分析】直接利用二元一次方程的解法得出符合题意的答案.解:当x=1时,y=4;当x=3时,y=1.故方程3x+2y=11的正整数解是:或.故答案为:或.16.已知点P(2﹣x,3x+6)到两坐标轴的距离相等,则点P的坐标为(3,3),(6,﹣6).【分析】根据点P到两坐标轴的距离相等,则横坐标与纵坐标相等或互为相反数列出方程求出x的值,然后即可得解.解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故答案为:(6,﹣6),(3,3).17.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是(7,﹣3)或(﹣1,1).【分析】利用点平移的坐标变化规律分两种情形分别求解.解:若A与C对应,则D(7,﹣3),若B与C对应,则D(﹣1,1).故答案为(7,﹣3)或(﹣1,1).18.已知点4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则=.【分析】根据题意用z表示出x与y,代入原式计算即可得到结果.解:由4x﹣3y﹣6z=0,x+2y﹣7z=0,得到x=3z,y=2z,则原式==.故答案为.19.实数a、b在数轴上的位置如图,则化简=﹣2a.【分析】利用数轴得出a+b<0,b﹣a>0,进而化简各式得出即可.解:如图所示:a+b<0,b﹣a>0,故=﹣a﹣b+(b﹣a)=﹣2a.故答案为:﹣2a.20.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为P(404,4).【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2019÷5=403…4,∴当k=2019时,P点的纵坐标是4,横坐标是403+1=404,∴P(404,4),故答案为P(404,4).三、解答题:(本题共7小题,共86分.解答时应写出必要文字说明、证明过程或演算步骤)21.计算:(1)+3﹣5;(2);(3).【分析】首先利用绝对值的性质和二次根式的性质化简,然后再计算加减即可.解:(1)原式=(1+3﹣5)=;(2)原式=4+3﹣2=5;(3)原式=﹣3+3﹣+4=.22.解下列方程组:(1)(用代入法);(2);(3).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组利用加减消元法求出解即可.解:(1),由②得:y=﹣2x+3③,把③代入①得:3x﹣2(﹣2x+3)=8,解得:x=2,把x=2代入②得:y=﹣1,则方程组的解为;(2),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则方程组的解为;(3),①+②得:5x+2y=16④,②+③得:3x+4y=18⑤,④×2﹣⑤得:7x=14,解得:x=2,把x=2代入④得:y=3,把x=2,y=3代入③得:z=1,则方程组的解为.23.如图,△ABC在直角坐标系中,(1)请写出△ABC各顶点的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',写出A'、B'、C'的坐标,并在图中画出平移后图形;(3)求出三角形ABC的面积.(4)若线段AB交y轴与点P,直接写出点P的坐标.【分析】(1)根据网格即可写出△ABC各顶点的坐标;(2)根据平移的性质即可把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',进而写出A'、B'、C'的坐标,画出平移后图形;(3)根据网格即可求出三角形ABC的面积;(4)若线段AB交y轴与点P,直接写出点P的坐标.解:(1)A(﹣2,﹣2),B(3,1),C(0,2);(2)如图,△A'B'C'即为所求;A'(0,1),B'(5,4),C'(2,5);(3)三角形ABC的面积为:5×4﹣1×3﹣2×4﹣3×5=7.(4)P(0,﹣).24.(1分)已知:如图,点B,E分别在直线AC和DF上,若∠AGB=∠EHF,∠C=∠D求证:∠A=∠F证明:∵∠AGB=∠EHF(已知)∠AGB=∠FGD(对顶角相等)∴∠EHF=∠FGD(等量代换)∴DB∥EC(同位角相等,两直线平行)∴∠C=∠DBA(两直线平行,同位角相等)∵∠C=∠D∴∠D=∠DBA(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【分析】根据已知条件和对顶角相等可得∠EHF=∠FGD,再根据平行线的判定与性质即可证明结论.【解答】证明:∵∠AGB=∠EHF(已知),又∠AGB=∠FGD(对顶角相等),∴∠EHF=∠FGD(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D,∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠FGD;同位角相等,两直线平行;C;两直线平行,同位角相等;∠D=∠DBA,等量代换;DF,AC,内错角相等,两直线平行;两直线平行,内错角相等.25.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.【分析】(1)根据角平分线定义求出∠BCD,求出∠D+∠BCD=180°,根据平行线的判定推出即可.(2)根据平行线的性质求出∠DAC,代入∠EAD=180°﹣∠DAC﹣∠BAC求出即可.解:(1)AD∥BC,理由是:∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,∵∠D=100°,∴∠D+∠BCD=180°,∴AD∥BC.(2)∵AD∥BC,∠ACB=40°,∴∠DAC=∠ACB=40°,∵∠BAC=70°,∴∠DAB=∠DAC+∠BAC=40°+70°=110°,∴∠EAD=180°﹣∠DAB=180°﹣110°=70°.26.温州苍南马站四季柚,声名远播,今年又是一个丰收年.某经销商为了打开销路,对1000个四季柚进行打包优惠出售.打包方式及售价如图.假设用这两种打包方式恰装完全部柚子.(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值.(2)当销售总收入为7280元时.①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋共包装了多少袋?②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.【分析】(1)根据收入共950元,可得出一元一次方程,解出即可;(2)①纸盒装共包装了x箱,则编织袋装共包装y袋,根据等量关系可得出方程组,解出即可;②根据①的关系可以y表示出x,减去留下的b箱纸盒装,再由销售总收入为7280元,可得出方程,解出即可.解:(1)由题意,得64a+126a=950,解得:a=5,答:a的值为5.(2)①设纸盒装共包装了x箱,则编织袋装共包装y袋,由题意,得,解得:答:纸盒装共包装了35箱.②由8x+18y=1000,可得,由题意得,64×(125﹣﹣b)+126y=7280,解得:y=40﹣,∵x,y,b都是整数,且x≥0,y≥0,b>0,∴b=9,x=107,y=8,∴b的值为9.答:b的值为9.27.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解;(2)根据“爱心点”的定义,可得方程组,先求得n,再求得m,进一步得到a的值;(3)解方程组用q和p表示x和y,代入2m=8+n,得到关于p和q的等式,再根据p,q为有理数,求出p,q的值.解:(1)∵,∴,∵2×6=8+4,∴点A是爱心点;∵,∴,∵2×5≠8+14,∴点B不是爱心点;(2)∵,∴n=﹣10,又∵2m=8+n,∴2m=8+(﹣10),解得m=﹣1,∴﹣1﹣1=a,即a=﹣2;(3)解方程组得,又∵点B是“爱心点”满足:,∵2m=8+n,∴,整理得:,∵p,q是有理数,p=0,﹣6q=4,∴.。
2019-2020学年江苏省无锡市江阴中学七年级第二学期期中数学试卷一、选择题(共8小题).1.(3分)下列汽车标志中,可以看作由“基本图案”通过平移得到的是()A.B.C.D.2.(3分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,53.(3分)方程组的解为()A.B.C.D.4.(3分)已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3B.4C.5D.65.(3分)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a186.(3分)下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角7.(3分)用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=648.(3分)如图,在△ABC中,点D在BC上,点E、F在AB上,点G在DF的延长线上,且∠B=∠DFB,∠G=∠DEG,若∠BEG=29°,则∠BDE的度数为()A.61°B.58°C.65.5°D.59.5°二、填空题(本大题共有10小题,每空2分,共20分)9.根据资料显示,新冠病毒的直径约为100nm,其中1nm=1×10﹣9m,则100nm用科学记数法可表示为m.10.(8分)如图,将周长为9的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为.11.(4分)已知正方形的边长为a,如果它的边长增加2,那么它的面积增加了.12.(4分)若二项式a2+(m﹣1)a+9是一个含a的完全平方式,则m等于.13.(4分)我国古代数学著作《増制算法统宗》记载“绳索量竿”问题,“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”.其大意为:现有一根竿和一条绳索用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则列出符合题意的方程组是.14.(4分)若3x=30,3y=6,则3x﹣y的值为.15.(2分)已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y=.16.(2分)若(x+p)(x+q)的乘积中不含有x的一次项,则p,q之间的关系为.17.(4分)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.18.(4分)如图,在△ABC中,AB=5,AC=8,CD=3BD,点E是AC的中点,BE、AD交于点F,则四边形DCEF的面积的最大值是.三、解答题(本大题共有8题,共56分)19.(6分)化简或计算:(1)(3﹣π)0﹣2﹣2+(﹣3)2;(2)(x+1)2﹣(1﹣2x)(1+2x).20.(6分)因式分解(1)x2﹣9;(2)(x2+4)2﹣16x2.21.(8分)解方程组:(1)(2)22.(6分)如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是,线段AC扫过的图形的面积为.23.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).24.(7分)已知:如图,点C在∠AOB的一边OA上,过点C作DE∥OB,CF平分∠ACD,CG平分∠DCO.(1)若∠O=50°,求∠DCF的度数;(2)当∠O为多少度时,CD平分∠OCF,并说明理由.25.(8分)当m、n都是实数,且满足2m﹣n=6时,我们就称(m﹣1,+1)为和谐数对.(1)请判断(2,﹣4)是否为和谐数对?(2)已知关于x、y的方程组,当a为何值时,以方程组的解为数对即(x,y)是否为和谐数对?请说明理由.26.(9分)(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.参考答案一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)下列汽车标志中,可以看作由“基本图案”通过平移得到的是()A.B.C.D.解:A、不能通过基本图形平移得到,故此选项不合题意;B、不能通过基本图形平移得到,故此选项不合题意;C、不能通过基本图形平移得到,故此选项不合题意;D、能通过基本图形平移得到,故此选项符合题意;故选:D.2.(3分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,5解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.3.(3分)方程组的解为()A.B.C.D.解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.4.(3分)已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3B.4C.5D.6解:360°÷60°=6.故该正多边形的边数为6.故选:D.5.(3分)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18解:a3•(a3)2=a9,故选:B.6.(3分)下列说法中正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.三角形的外角大于任何一个内角解:A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选:B.7.(3分)用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64解:∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.8.(3分)如图,在△ABC中,点D在BC上,点E、F在AB上,点G在DF的延长线上,且∠B=∠DFB,∠G=∠DEG,若∠BEG=29°,则∠BDE的度数为()A.61°B.58°C.65.5°D.59.5°解:设∠DEF=x,∠EDF=y,则∠DFB=∠B=x+y,∠BDF=180°﹣2x﹣2y,∠G=∠DEG=x+29°,∵∠G+∠FEG=∠B+∠BDF,∴x+29°+29°=x+y+180°﹣2x﹣2y,∴2x+y=122°,∴∠BDE=∠BDF+∠EDF=180°﹣2x﹣2y+y=180°﹣2x﹣y=58°,故选:B.二、填空题(本大题共有10小题,每空2分,共20分)9.根据资料显示,新冠病毒的直径约为100nm,其中1nm=1×10﹣9m,则100nm用科学记数法可表示为10﹣7m.解:100nm=100×1×10﹣9m=10﹣7m.故答案为:10﹣7.10.(8分)如图,将周长为9的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为13.解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=9,∴AB+BC+AC=9,∴四边形ABFD的周长=9+2+2=13.故答案为:1311.(4分)已知正方形的边长为a,如果它的边长增加2,那么它的面积增加了4a+4.解:根据题意得:面积增加了(a+2)2﹣a2=4a+4,故答案为:4a+4.12.(4分)若二项式a2+(m﹣1)a+9是一个含a的完全平方式,则m等于7或﹣5.解:∵a2+(m﹣1)a+9是一个完全平方式,∴m﹣1=±6.∴m=7或m=﹣5,故答案为:7或﹣5.13.(4分)我国古代数学著作《増制算法统宗》记载“绳索量竿”问题,“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”.其大意为:现有一根竿和一条绳索用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则列出符合题意的方程组是.解:设绳索长x尺,竿长y尺,根据题意得:.故答案为:.14.(4分)若3x=30,3y=6,则3x﹣y的值为5.解:∵3x=30,3y=6,∴3x﹣y=3x÷3y=30÷6=5.故答案为:5.15.(2分)已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y=3.解:根据题意得:,解得.则原式=1+2=3.故答案是3.16.(2分)若(x+p)(x+q)的乘积中不含有x的一次项,则p,q之间的关系为互为相反数.解:(x+p)(x+q)=x2+(p+q)x+pq,由乘积中不含x的一次项,得到p+q=0,则p与q的关系为互为相反数.故答案为:互为相反数.17.(4分)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=72°.解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.18.(4分)如图,在△ABC中,AB=5,AC=8,CD=3BD,点E是AC的中点,BE、AD交于点F,则四边形DCEF的面积的最大值是9.解:连接CF,设S△BFD=a,∵CD=3BD,∴S△CFD=3a,S△ADC=3S△ABD,∵点E是AC的中点,∴S△ABE=S△CBE,S△AFE=S△CFE,∴S△ABF=S△CBF=4a,∴S△ABD=5a,∴S△ADC=15a,∴S△AFC=12a,S△ABC=20a,∴S△EFC=6a,∴S四边形DCEF=9a,∴S四边形DCEF=S△ABC,∵在△ABC中,AB=5,AC=8,∴S△ABC的最大值为:=20,∴四边形DCEF的面积的最大值是9,故答案为9.三、解答题(本大题共有8题,共56分)19.(6分)化简或计算:(1)(3﹣π)0﹣2﹣2+(﹣3)2;(2)(x+1)2﹣(1﹣2x)(1+2x).解:(1)(3﹣π)0﹣2﹣2+(﹣3)2=1﹣+9=9;(2)(x+1)2﹣(1﹣2x)(1+2x)=x2+2x+1﹣1+4x2=5x2+2x.20.(6分)因式分解(1)x2﹣9;(2)(x2+4)2﹣16x2.解:(1)原式=(x+3)(x﹣3);(2)原式=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.21.(8分)解方程组:(1)(2)解:(1),将①代入②,得:﹣6y+4y=6,解得:y=﹣3,将y=﹣3代入①,得:x=6,则方程组的解为;(2),①+②×2,得:4x=16,解得:x=4,将x=4代入②,得:2+y=6,解得:y=4,则方程组的解为.22.(6分)如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10.解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2﹣2××4×1﹣2××6×1=10,故答案为:平行且相等、10.23.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).解:(1)当x+y=4、xy=1时,x2y+xy2=xy(x+y)=1×4=4;(2)当x+y=4、xy=1时,原式=x2y2﹣x2﹣y2+1=x2y2﹣(x2+y2)+1=(xy)2﹣(x+y)2+2xy+1=1﹣16+2+1=﹣12.24.(7分)已知:如图,点C在∠AOB的一边OA上,过点C作DE∥OB,CF平分∠ACD,CG平分∠DCO.(1)若∠O=50°,求∠DCF的度数;(2)当∠O为多少度时,CD平分∠OCF,并说明理由.解:(1)∵DE∥OB,∴∠ACE=∠O,∵∠O=50°,∴∠ACE=50°,∴∠DCA=130°,∵CF平分∠ACD,∴∠DCF=65°;(2)结论:当∠O=60°时,CD平分∠OCF,法1:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠ACD=120°,又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF;法二:若CD平分∠OCF,∴∠DCO=∠DCF,∵∠ACF=∠DCF,∴∠ACF=∠DCF=∠DCO,∵∠AOC=180°,∴∠DCO=60°,∵DE∥OB,∴∠O=∠DOC,∴∠O=60°.25.(8分)当m、n都是实数,且满足2m﹣n=6时,我们就称(m﹣1,+1)为和谐数对.(1)请判断(2,﹣4)是否为和谐数对?(2)已知关于x、y的方程组,当a为何值时,以方程组的解为数对即(x,y)是否为和谐数对?请说明理由.解:(1)根据题意得:,解得:,代入得:2m﹣n=6+10=16≠6,则(2,﹣4)不是和谐数对;(2),①+②得:2x=2a+6,解得:x=a+3,把x=a+3代入①得:y=3﹣a,根据题意得:,解得:,代入得:2m﹣n=2a+8﹣4+2a=4a+4,当4a+4=6,即a=时,满足2m﹣n=6,即以方程组的解为数对即(x,y)为和谐数对.26.(9分)(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD 平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.解:(1)∵CE平分∠BCD,AE平分∠BAD,∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD①,∠B+∠EAB=∠E+∠ECB②,所以①+②得,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)如图2,延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD,∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D)=(β﹣α),即∠AEC==.(3)的值不发生变化,其值为.如图3,记AB与PQ交于E,AD与CB交于F,∵AD平分∠BAC,∴∠BAD=∠DAC,∵PQ⊥MN,∴∠DOF=∠BOE=90°,∵∠DOF+∠ADP=∠DAC+∠ACB①,∠ADP+∠DFO=∠OEB+∠ABC②,所以①﹣②得,90°﹣∠DFO=∠DAC+∠ACB﹣∠OEB﹣ABC,∴90°﹣∠DFO+(∠OEB﹣∠DAC)=∠ACB﹣ABC,∴∠ADP+∠ADP=∠ACB﹣ABC,∴2∠ADP=∠ACB﹣ABC,∴=.。
2019-2020学年七年级第二学期期中数学试卷一、选择题(共10小题).1.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.下列各式中计算正确的是()A.(﹣a5)2=a10B.(x6)2=x8C.b3•b3=b9D.a8÷a2=a4 3.下列三条线段不能构成三角形的是()A.2,3,4B.1,2,3C.,,D.20,30,40 4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条5.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y2•3x2y B.(a+2)(a﹣2)=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)26.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE 7.下列方程组中,是二元一次方程组的是()A.B.C.D.8.若a m=3,a n=2,则a m﹣2n的值是()A.1B.C.D.129.已知x+y=3,xy=2,则|x﹣y|的值为()A.±1B.1C.﹣1D.010.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°二、填空题(本大题8小题,每题2分,共16分)11.2020年肆虐全球的新冠病毒的大小为0.000000125米,用科学记数法表示为.12.已知:是方程4x﹣ay=3的解,则a=.13.如果一个多边形的每一个外角都等于60°,则它的内角和是.14.如图:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=26°,则∠2=°.15.如果(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=.16.若x=2m+1,y=3+4m,则用x的代数式表示y为.17.一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.18.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE 和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.三、解答题(本大题共8小题,共54分)19.计算与化简:(1);(2)(﹣2x)3+x2•x5÷x4;(3)(x﹣3)2+(x﹣2)(x﹣1).20.因式分解:(1)x2﹣2x+1;(2)a2(1﹣m)+4(m﹣1);(3)(x﹣y)2﹣4(x﹣y﹣1).21.解二元一次方程组:(1);(2).22.先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)+(3﹣x)(3+x),其中.23.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为.(3)能使S△MBC=S△ABC的格点M共有个.(点M异于点A)24.如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.25.(1)如图1,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)如图2,两条相交的直线OX、OY,使∠XOY=n°,在射线OX、OY上分别再任意取A、B两点,作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数;若发生变化,求出变化范围.26.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE 分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=cm,b=cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ 的面积等于6cm2.参考答案一、选择题(本大题10小题,每题3分,共30分)(2020.5)1.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,进而判断即可.解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.下列各式中计算正确的是()A.(﹣a5)2=a10B.(x6)2=x8C.b3•b3=b9D.a8÷a2=a4【分析】根据同底数幂的乘法运算法则、同底数幂的除法运算法则以及幂的乘方与积的乘方运算法则逐项分析即可.解:A、(﹣a5)2=a10,故本选项正确;B、(x6)2=x12,故本选项错误;C、b3•b3=b6,故本选项错误;D、a8÷a2=a6,故本选项错误.故选:A.3.下列三条线段不能构成三角形的是()A.2,3,4B.1,2,3C.,,D.20,30,40【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析即可.解:A、2+3>4,能够组成三角形;B、1+2=3,不能够组成三角形;C、+=>,能组成三角形;D、20+30>40,能够组成三角形.故选:B.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条【分析】利用n边形的内角和公式即可解决问题.解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:C.5.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y2•3x2y B.(a+2)(a﹣2)=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2【分析】根据因式分解的定义逐个判断即可.解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.6.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.7.下列方程组中,是二元一次方程组的是()A.B.C.D.【分析】根据二元一次方程组的定义逐个判断即可.解:A、含有三个未知数,不是二元一次方程组,故本选项不符合题意;B、是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C、是二元一次方程组,故本选项符合题意;D、是二元二次方程组,不是二元一次方程组,故本选项不符合题意;故选:C.8.若a m=3,a n=2,则a m﹣2n的值是()A.1B.C.D.12【分析】根据同底数幂的除法法则:底数不变,指数相减,及同底数幂的乘方与积的乘方运算,然后即可作出判断.解:∵a m﹣2n=a m÷a2n,a2n=(a n)2,∴a m﹣2n=3÷22=,故选:C.9.已知x+y=3,xy=2,则|x﹣y|的值为()A.±1B.1C.﹣1D.0【分析】根据完全平方公式的变形来a2+b2=(a+b)2﹣2ab和(a﹣b)2=(a+b)2﹣4ab 求解.解:∵x+y=3,xy=2,∴(x﹣y)2=(x+y)2﹣4xy=32﹣4×2=1.∴x﹣y=±1,∴|x﹣y|=1.故选:B.10.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,则∠1=∠2=∠3,即∠ABC=3∠3,根据三角形内角和定理得∠3+∠C=106°,在△ABC中,利用三角形内角和定理得∠A+∠ABC+∠C=180°,则20°+2∠3+106°=180°,可计算出∠3=27°,即可得出结果.【解答】解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠ABC=3∠3=81°,∠C=106°﹣27°=79°,故选:D.二、填空题(本大题8小题,每题2分,共16分)11.2020年肆虐全球的新冠病毒的大小为0.000000125米,用科学记数法表示为 1.25×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000125米用科学记数法表示为1.25×10﹣7米.故答案是:1.25×10﹣7米.12.已知:是方程4x﹣ay=3的解,则a=9.【分析】将代入方程4x﹣ay=3得到关于a的方程,解之可得.解:根据题意,将代入方程4x﹣ay=3,得:12﹣a=3,解得a=9,故答案为:9.13.如果一个多边形的每一个外角都等于60°,则它的内角和是720°.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,因而代入公式就可以求出内角和.解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6﹣2)•180°=720°.故答案为:720°.14.如图:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=26°,则∠2=34°.【分析】过C作CM∥直线l1,证明CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=26°,∠2=∠ACM,即可求出答案.解:如图,过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=26°,∴∠1=∠MCB=26°,∴∠2=∠ACM=∠ACB﹣∠MCB=60°﹣26°=34°,故答案为:34.15.如果(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=.【分析】先利用多项式乘法的运算法则展开求它们的积,并且把a看作常数合并关于x2的同类项,令x2的系数为0,求出a的值.解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+(a2﹣2a)x+a2,∵不含x2项,∴1﹣2a=0,解得a=,故答案为:.16.若x=2m+1,y=3+4m,则用x的代数式表示y为y=(x﹣1)2+3.【分析】把y=3+4m化为y=3+22m求解即可.解:∵x=2m+1,y=3+4m,∴x=2m+1,y=3+22m,∴y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.17.一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.18.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE 和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.【分析】作辅助线,构建同底等高三角形,根据等腰直角三角形面积公式可得结论.解:连接EC,∵正方形ACDE和正方形CBFG,∴∠ACE=∠ABG=45°,∴EC∥BG,∴△BCG和△BEG是同底(BG)等高的三角形,即S△BCG=S△BEG,∴当BC=n时,S n=n2,∴S2020﹣S2019=×20202﹣×20192=(2020+2019)(2020﹣2019)=;故答案为:.三、解答题(本大题共8小题,共54分)19.计算与化简:(1);(2)(﹣2x)3+x2•x5÷x4;(3)(x﹣3)2+(x﹣2)(x﹣1).【分析】(1)根据负整数指数幂、零指数幂和有理数的乘方可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据完全平方公式、多项式乘以多项式可以解答本题.解:(1)=4+1﹣1=4;(2)(﹣2x)3+x2•x5÷x4=﹣8x3+x2+5﹣4=﹣8x3+x3=﹣7x3;(3)(x﹣3)2+(x﹣2)(x﹣1)=x2﹣6x+9+x2﹣3x+2=2x2﹣9x+11.20.因式分解:(1)x2﹣2x+1;(2)a2(1﹣m)+4(m﹣1);(3)(x﹣y)2﹣4(x﹣y﹣1).【分析】(1)原式利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可;(3)原式整理后,利用完全平方公式分解即可.解:(1)原式=(x﹣1)2;(2)原式=a2(1﹣m)﹣4(1﹣m)=(1﹣m)(a2﹣4)=(1﹣m)(a+2)(a﹣2);(3)原式=(x﹣y)2﹣4(x﹣y)+4=(x﹣y﹣2)2.21.解二元一次方程组:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),①×2﹣②得:﹣x=﹣6,解得:x=6,把x=6代入①得:y=﹣3,则方程组的解为;(2),①+②×2得:13x=13,解得:x=1,把x=1代入①得:y=,则方程组的解为.22.先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)+(3﹣x)(3+x),其中.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.解:原式=x2﹣4x+4﹣2x2+8x﹣4x﹣16+9﹣x2=2x2﹣3,当时,原式=2×()2﹣3=﹣.23.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为32.(3)能使S△MBC=S△ABC的格点M共有4个.(点M异于点A)【分析】(1)利用网格特点和平移的性质分别画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点和三角形高的定义画出C′D′,根据平移的性质得到线段AC扫过的部分为平行四边形,然后计算两个三角形的面积可得到此平行四边形的面积;(3)根据三角形面积公式,把直线BC平行使它经过点A,然后找出此直线上的格点即可.解:(1)如图,△A′B′C′为所作;(2)如图,C′D′为所作;线段AC扫过的面积=S△AA′C+S△C′A′C=×8×4+×4×8=32;(3)如图,过A点作BC的平行线,此直线的格点有4个(A点除外),即能使S△MBC =S△ABC的格点M共有4个.故答案为32,4.24.如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.【分析】(1)欲证明DG∥BC,只要证明∠BCD=∠2即可.(2)求出∠ACB,利用三角形内角和定理即可解决问题.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴∠EFB=90°,∠CDB=90°,∴∠EFB=∠CDB,∴EF∥CD,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴DG∥BC.(2)解:∵CD⊥AB,∴∠CDA=90°,∵∠A=60°,∴∠ACD=30°,∵CD平分∠ACB,∴∠ACD=∠ACB,∴∠ACB=60°,∵∠A=60°,∴∠B=60°.25.(1)如图1,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)如图2,两条相交的直线OX、OY,使∠XOY=n°,在射线OX、OY上分别再任意取A、B两点,作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数;若发生变化,求出变化范围.【分析】(1)先根据三角形内角和定理及角平分线的性质求出∠APB的度数,再根据三角形内角和是180°即可求解;(2)令∠OAC=∠CAB=x,∠ABD=∠BDY=y,再根据三角形的外角性质即可求解.【解答】(1)解:∵在△AOB中,∠MON=80°,∴∠OAB+∠OBA=100°,又∵AC、BD为角平分线,∴∠PAB+∠PBA=∠OAB+∠OBA=×100°=50°,∴∠APB=180°﹣(∠PAB+∠PBA)=130°,即随着点A、B位置的变化,∠APB的大小始终不变,为130°.(2)解:由题意,不妨令∠OAC=∠CAB=x,∠ABD=∠BDY=y,∵∠ABY是△AOB的外角,∴2y=n+2x,同理,∠ABD是△ABC的外角,有y=∠C+x,于是,显然有∠C=.26.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE 分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=3cm,b=3cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ 的面积等于6cm2.【分析】(1)由非负性可求a,b的值;(2)先求出C四边形BCDE=18cm,可得BE+BP=9cm,可求BP=4cm,即可求解;(3)分三种情况讨论,由三角形的面积公式可求解.解:(1)∵(a﹣3)2+|2a+b﹣9|=0,∴a﹣3=0,2a+b﹣9=0,∴a=3,b=3;故答案为:3,3;(2)∵AE=3cm,DE=3cm,∴AD=6cm=BC,∴C四边形BCDE=BC+CD+DE+EB=18cm,∵EP把四边形BCDE的周长平分,∴BE+BP=9cm,∴点P在BC上,BP=4cm,∴t==2s;(3)解:①点P在BC上(0<t≤3),∵S△BPQ=×2t×4=6,∴t=;②相遇前,点P在CD上(3<t≤),∵S△BPQ=×[(4﹣(t﹣3)﹣(2t﹣6)]×6=6,∴t=;③相遇后,点P在CD上(<t≤5),∵S△BPQ=×[((t﹣3)+(2t﹣6)﹣4]×6=6,∴t=5;∴综上所述,当t=s或s或5s时,△BPQ的面积等于6cm2.。
七年级数学试卷(考试时间:120分钟 总分:150分)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效一、选择题(本大题共8小题,共24分) 1.下面运算中,正确的是( )A. 248a a a =gB. 235=a a () C.624a a a ÷= D.224a a a +=2.下列各式从左到右的变形中,属于因式分解的是( ) A.243(4)3x x x x -+=-+ B.23)(3)9x x x -+=-( C.223)69x x x -=-+( D.22244(2)a ab b a b ++=+3.已知21x y =-⎧⎨=⎩是二元一次方程31x my +=的一个解,则m 的值为( )A. 5B. 7C. -7D. -54.若2(2)a -=-,22b -=- ,0(2)c =- ,那么a b c 、、三数的大小关系为( ) A. a b c << B.b a c << C.b a c =< D.c b a <<5.若a b <,则下列结论不一定成立的是( ) A.11a b +<+ B.33a b < C.22a b < D.6.已知x y 、满足32102315x y x y +=⎧⎨+=-⎩ ,则22x y -=( ) A.25 B.-25 C.5 D.-57. 某校组织防疫知识竞赛共有20道题,答对一题得5分,答错一题或不答扣3分,小周的得分要想超过80分,他至少要答对的题的道数为( ) A. 11 B.12 C.17 D.188.已知3x =是不等式5)(43)0x ax a --+<(的解,且2x =不是这个不等式的解,则实数a 的取值范围是( ) A .3a > B.32a ≤C.332a <≤D.332a ≤< 二.填空题(本大题共10小题,共30分)22a b ->-9.一般冠状病毒衣原体的直径约为0.00000011m ,把0.00000011用科学记数法可以表示 为 .10.如果二次三项式22(1)25x m x -++是一个完全平方式,那么m 的值是 . 11.已知3m =4,3n =2,则23m n -= .12.若1a b -=,则代数式222a b b --的值是 . 13.要使()()242x ax x ++-的结果中不含2x项,则a = .14.将二元一次方程2340x y +-=化为y kx b =+的形式,则k b += . 15.已知3a -和32a -的值的符号相反,则a 的取值范围是 .16.已知关于x 的不等式组831x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是 .17.已知当x m =时,多项式224x x n ++的值为4-,则当x m =-时,该多项式的值是 . 18.阅读以下内容:2(1)(1)1x x x -+=-,()()23111x x x x -++=-,()3241(1)1x x x x x -+++=-,根据这一规律:计算:23201920201+2+2+2++22-L=三.解答题(本大题共10小题,共96分) 19. (本题满分8分)计算:(1)()12019020********-⎛⎫⎛⎫+-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()2328423aa a --g20. (本题满分8分)分解因式:(1)22416m n - (2)244ax ax a -+21. (本题满分8分)先化简,再求值:()()()()()2322722x x x x x -+-+-+-,其中2240x x +-=.22. (本题满分8分)解方程组 (1)203104x y x y -=⎧⎨-=⎩ (2)32(2)421x x y x y --=⎧⎨-=⎩23.(本题满分10分)解不等式组:13(3)2112x xx x --+<⎧⎪⎨+-≤⎪⎩,并写出它的所有整数解.24.(本题满分10分)已知:2a b -=,1ab =,求(1)()2a b + (2)228+a ab b -25.(本题满分10分)已知关于,x y 的二元一次方程组3262x y x y k-=⎧⎨-=⎩的解满足x y <,求k 的取值范围.26.(本题满分10分)解方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:38216x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩,①,②,③小段同学的部分解答过程如下:解: + ,得49x y +=,④ + ,得237x y +=,⑤与 联立,得方程组49237x y x y +=⎧⎨+=⎩(1)请你补全小段同学的解答过程;(2)若m n p q 、、、满足方程组6,2()34,3()27,m n p q m n p q m n p q +++=⎧⎪++-=⎨⎪+-+=⎩则2m n p q +-+=27.(本题满分12分)疫情期间,某校九年级学生按要求有序匀速通过校门口的红外线测温仪进行体温监测,早晨打开2台设备监测,7分钟后学生全部测试完毕,在这期间正好还有30名教师也与学生一起参与了体温监测;中午该校九年级有一半学生回家吃午饭,于是打开1台设备对午饭后进校园的学生进行体温监测,6分钟后发现还有20个学生未监测到.(1)请问该校九年级共有多少名学生?每台设备平均每分钟可以监测多少名学生?(2)按照“分批次、错峰开学”要求,先九年级,再八年级,最后七年级学生进校园。
北郊中学2018-2019学年度第二学期七年级期中考试数学试卷一、选择题(每题2分,共16分)1.在下列四个汽车标志图案中,可以看作由“基本图案”经过平移得到的是2.下列计算正确的是A.1243a a a =⋅B.()1243a a =C.()123462a a -=- D.a a a =÷33 3.下列运算中,正确的是(A.()222y x y x -=- B.()()6322-=-+x x x C.2224241221y xy x y x ++=⎪⎭⎫ ⎝⎛+ D.()()22422x y x y x y -=-+- 4.长为11、8、6、4的四根木条,选其中三根组成三角形,有_____种选法A.1B.2C.3D.45.若一个多边形的内角和为1080°,则这个多边形的边数为A.6B.7C.8D.96.如图,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,AB//CD ,若∠1=72°,则∠2的度数为A.54°B.59°C.72°D.108°7.下列命题中,是真命题的有①两条直线被第三条直线所截,同旁内角互补;②若a2=b2,则a=b③多边形的外角和与边数有关;④若线段a 、b 、c 满足b+c>a 则以a 、b 、c 为边一定能组成三角形;⑤如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等。
A.0个B.1个C.2个D.3个8.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是A.102°B.108°C.124°D.128°二、填空题(每题2分,共20分)9.计算:()()=-÷-36x x _______. 10.DMA 是遗传物质脱氧核糖核酸的英文简称,DMA 分子的直径只有0.0000007cm ,则0.0000007用科学记数法表示是____________.11.写出命题“直角三角形的两个锐角互余”的逆命题:_________________________.12.()().____206204205____25.042100100=⨯-=-⨯-; 13.已知,,23==n m a a 则=-n m a2________. 14.若()(),q px x x x ++=+-225则=-q p ______.15.若2542+-kx x 是一个完全平方式,则=k _______.16.如图,将△ABC 沿着AB 方向,向右平移得到△DEF ,若AE=8,DB=2,则CF=______.17.如图,在Rt △ABC 中,∠B=90°,∠ACB=59°,EF//GH ,若∠1=58°,则∠2=_____°.18.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题19.计算(每题4分,共24分)(1)()12024311--⨯+⎪⎭⎫ ⎝⎛--- (2)()28422222a a a a a ÷-⋅+-(3)()()()b a b a b a 2222+--+ (4)()()c b a c b a -+--(5)()()232323-+x x (6)()()()3932++-x x x20.(本题5分)求代数式()()()()232121-+-+-x x x x 的值,其中.21=x21.(本题5分)已知:()().12225=++=+y x y x ,(1)求xy 的值;(2)求xy y x 322-+的值。
2019-2020学年江苏省常州二十四中教育集团七年级第二学期期中数学试卷一、填空题(共10小题).1.(2分)计算:x2•x3=;=.2.(2分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.3.(2分)已知等腰三角形的两边长分别为2、5,则三角形的周长为.4.(2分)一个多边形的每一个内角为108°,则这个多边形是边形.5.(2分)若a m=8,a n=2,则a m﹣n=.6.(2分)如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.7.(2分)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB=.8.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为.9.(2分)一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为s.10.(2分)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为s.二、选择题(共6小题).11.(2分)下列运算正确的是()A.a+2a2=3a2B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6 12.(2分)下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm13.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4 14.(2分)若a=﹣0.32,b=3﹣2,c=,d=,则a、b、c、d的大小关系是()A.a<b<d<c B.b<a<d<c C.a<d<c<b D.c<a<d<b 15.(2分)下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④16.(2分)如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5cm2B.1cm2C.2cm2D.4cm2三、计算、因式分解和解方程组(每小题16分,共16分)17.(16分)计算(1)a3•a5+(a2)4﹣3a8(2)|﹣2|﹣()﹣2+(π﹣3)0﹣(﹣1)2021(3)(x﹣2y+4)(x+2y﹣4)(4)(3x+1)2﹣(3x﹣1)218.(7分)先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.19.(7分)已知(a+b)2=19,(a﹣b)2=13,求a2+b2与ab的值.四、解答题(共40分,其中20题5分,21--22题每题6分,23--24题每题7分,25题9分)20.(5分)利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.21.(6分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.22.(6分)如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!23.(7分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2,试问DG与BA是否平行?说明你的理由.24.(7分)探究:22﹣21=2×21﹣1×21=2()23﹣22==2(),24﹣23==2(),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:21+22+23+…+22019﹣22020.25.(7分)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C﹣∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.参考答案一、填空题.(每小题2分,共20分)1.(2分)计算:x2•x3=x5;=.解:x2•x3=x2+3=x5;==.故答案为:x5;.2.(2分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.3.(2分)已知等腰三角形的两边长分别为2、5,则三角形的周长为12.解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故答案为:12.4.(2分)一个多边形的每一个内角为108°,则这个多边形是五边形.解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故答案为:五.5.(2分)若a m=8,a n=2,则a m﹣n=4.解:a m﹣n==8÷2=4.故答案为:4.6.(2分)如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=15°.解:由一副常用的三角板的特点可知,∠EAD=45°,∠BFD=30°,∴∠ABF=∠EAD﹣∠BFD=15°,故答案为:15°.7.(2分)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB=75°.解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=45°,∴∠AEB=∠AEF+∠BEF=75°.故答案为:75°.8.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为2.解:(x+k)(x﹣2),=x2﹣2x+kx﹣﹣k,=x2+(k﹣2)x﹣2k,∵不含有x的一次项,∴k﹣2=0,解得k=2.故答案为:2.9.(2分)一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为160s.解:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.故答案是:160.10.(2分)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为3或12或15s.解:①当DE∥AC时,如图1中,易知∠BFD=30°∴旋转时间t==3s.②如图2中,当DE∥BC时,易知∠DFB=120°,∴旋转时间t==12s.③当DE∥AB时,如图3中,易知∠DFB=150°,∴旋转时间t==15s.综上所述,旋转时间为3s或12s或15s时,△ABC恰有一边与DE平行.故答案为3或12或15.二、选择题(每小题2分,共12分)11.(2分)下列运算正确的是()A.a+2a2=3a2B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6解:A、a与2a2不是同类项不能合并,故本选项错误;B、应为a8÷a2=a8﹣2=a6,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、(a3)2=a6,正确.故选:D.12.(2分)下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm解:A、1+2=3,不能构成三角形;B、3+2>4,能构成三角形;C、4+4<9,不能构成三角形;D、1+2<4,不能构成三角形.故选:B.13.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.14.(2分)若a=﹣0.32,b=3﹣2,c=,d=,则a、b、c、d的大小关系是()A.a<b<d<c B.b<a<d<c C.a<d<c<b D.c<a<d<b 解:∵a=﹣0.32=﹣0.09,b=3﹣2=,c==9,d==1,∴a、b、c、d的大小关系是:a<b<d<c.故选:A.15.(2分)下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选:D.16.(2分)如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5cm2B.1cm2C.2cm2D.4cm2解:连接CE,如图,∵点D为BC的中点,∴S△ADC=S△ABC,S△EDC=S△EBC,∵点E为AD的中点,∴S△EDC=S△ADC,∴S△EDC=S△ABC,∴S△EBC=2S△EDC=S△ABC,∵F点为BE的中点,∴S△BCF=S△EBC=×S△ABC=××8=2(cm2).故选:C.三、计算、因式分解和解方程组(每小题16分,共16分)17.(16分)计算(1)a3•a5+(a2)4﹣3a8(2)|﹣2|﹣()﹣2+(π﹣3)0﹣(﹣1)2021(3)(x﹣2y+4)(x+2y﹣4)(4)(3x+1)2﹣(3x﹣1)2解:(1)原式=a8+a8﹣3a8=﹣a8.(2)原式=2﹣+1﹣(﹣1)=4﹣=.(3)原式=[x﹣(2y﹣4)][x+(2y﹣4)]=x2﹣(2y﹣4)2=x2﹣(4y2﹣16y+16)=x2﹣4y2+16y﹣16.(4)原式=[(3x+1)+(3x﹣1)][(3x+1)﹣(3x﹣1)]=6x×2=12x.18.(7分)先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.解:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b)=4a2+4ab+b2﹣4a2+4b2﹣3ab﹣5b2=ab,当a=﹣1,b=2时,原式=﹣2.19.(7分)已知(a+b)2=19,(a﹣b)2=13,求a2+b2与ab的值.解:∵(a+b)2=19,∴a2+b2+2ab=19,∵(a﹣b)2=13,∴a2+b2﹣2ab=13,∴2a2+2b2=32,4ab=6,∴a2+b2=16,ab=.四、解答题(共40分,其中20题5分,21--22题每题6分,23--24题每题7分,25题9分)20.(5分)利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.21.(6分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.22.(6分)如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE 是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!解:∵∠BAC=180°﹣56°﹣44°=80°,又∵AE是△ABC的角平分线,∴∠CAE=40°,∵∠ABC=56°,AD是BC边上的高.∴∠BAD=90°﹣56°=34°,∴∠DAE=∠BAE﹣∠BAD=∠CAE﹣∠BAD=40°﹣34°=6°.23.(7分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2,试问DG与BA是否平行?说明你的理由.解:DG与BA平行,理由:∵AD⊥BC,EF⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴DG∥BA.24.(7分)探究:22﹣21=2×21﹣1×21=2(1)23﹣22=2×22﹣1×22=2(2),24﹣23=2×23﹣1×23=2(3),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:21+22+23+…+22019﹣22020.解:探究:22﹣21=2×21﹣1×21=21,23﹣22=2×22﹣1×22=22,24﹣23=2×23﹣1×23=23,(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.故答案为:1;2×22﹣1×22;2;2×23﹣1×23;325.(7分)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图,当AE⊥BC时,写出图中所有与∠B相等的角:∠E、∠CAF;所有与∠C相等的角:∠CDE、∠BAF.(2)若∠C﹣∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.解:(1)∵∠BAC=90°,AE⊥BC,∴∠CAF+∠BAF=90°,∠B+∠BAF=90°,∴∠CAF=∠B,由翻折可知,∠B=∠E,∴∠B=∠CAF=∠E,同理∠CAF+∠BAF=90°,∠C+∠CAF=90°,∴∠C=∠BAF,∵∠CAF=∠E,∴AC∥DE,∴∠C=∠CDE,∴∠C=∠CDE=∠BAF.故答案为:∠E、∠CAF;∠CDE、∠BAF;(2)①∵∠C﹣∠B=50°,∠C+∠B=90°,∴∠C=70°,∠B=20°;②∠BAD=x°,则∠ADF=(20+x)°,∴∠ADB=∠ADE=(160﹣x)°,∴∠FDE=∠ADE﹣∠ADF=(140﹣2x)°,∵∠B=∠E=20°,∴∠DFE=180°﹣∠E﹣∠FDE=(2x+20)°,当∠EDF=∠DFE时,140﹣2x=2x+20,解得,x=30,当∠DFE=∠E=20°时,2x+20=20,解得,x=0,∵0<x≤45,∴不合题意,故舍去,当∠EDF=∠E=20°,140﹣2x=20,解得,x=60,∵0<x≤45,∴不合题意舍去.综上可知,存在这样的x的值,使得△DEF中有两个角相等,且x=30.。
2019-2020学年江苏省常州市部分学校七年级第二学期期中数学试卷一、选择题(共8小题).s1.(2分)如图所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④2.(2分)下列计算不正确的是()A.a5•a2=a7B.a6÷a2=a3C.a2+a2=2a2D.(a2)4=a8 3.(2分)下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm4.(2分)下列等式由左边到右边的变形中,因式分解正确的是()A.m2﹣8m+16=(m﹣4)2B.4x3y2+6x3y=x3y(4y+6)C.x2+2x+1=x(x+2)+1D.(a+b)(a﹣b)=a2﹣b25.(2分)若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为()A.4B.5C.6D.86.(2分)如图,将△ABC纸片沿DE折叠,点A的对应点为A’,若∠B=60°,∠C =80°,则∠1+∠2等于()A.40°B.60°C.80°D.140°7.(2分)△ABC是直角三角形,则下列选项一定错误的是()A.∠A﹣∠B=∠C B.∠A=60°,∠B=40°C.∠A+∠B=∠C D.∠A:∠B:∠C=1:1:28.(2分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0二、填空题(共10小题).9.(2分)(﹣a2)3=.10.(2分)水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m,把这个数值用科学记数法表示为m.11.(2分)若等式(2﹣x)0=1成立,则x的取值范围是.12.(2分)小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是.13.(2分)(﹣a+b)=a2﹣b2.14.(2分)已知m﹣3=0,m+n=7,则m2+mn=.15.(2分)若(x+3)(x﹣2)=ax2+bx+c(a、b、c为常数),则a+b+c=.16.(2分)x2﹣mx+9是完全平方式,则m=.17.(2分)一艘船从A港驶向B港的航向是北偏东25°,则该船返回时的航向应该是.18.(2分)有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为.三、解答题(共64分)19.(16分)计算:(1)(2)3m(m﹣n)+6mn(3)4﹣(x+2)(x﹣2)(4)(a﹣2b)2﹣a(a﹣2b)20.(16分)因式分解:(1)3x4﹣12x3(2)a﹣b+2x(a﹣b)(3)16﹣9x2(4)(x+1)(x+5)+421.(4分)如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.22.(8分)在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;(3)画出△ABC的高CE所在直线,标出垂足E;(4)在(1)的条件下,线段AA1和CC1的关系是.23.(6分)如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.(6分)如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.25.(8分)如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).参考答案一、选择题(每小题2分,共16分)1.(2分)如图所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④解:根据“同位角”的意义,图①、图④中的∠1和∠2是同位角,故选:D.2.(2分)下列计算不正确的是()A.a5•a2=a7B.a6÷a2=a3C.a2+a2=2a2D.(a2)4=a8解:A.a5•a2=a7,故本选项不合题意;B.a6÷a2=a4,故本选项符合题意;C.a2+a2=2a2,故本选项不合题意;D.(a2)4=a8,故本选项不合题意.故选:B.3.(2分)下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm解:设x与4cm,3cm能构成三角形,则4﹣3<x<4+3,即1<x<7,故1cm不能与4cm,3cm能构成三角形.故选:D.4.(2分)下列等式由左边到右边的变形中,因式分解正确的是()A.m2﹣8m+16=(m﹣4)2B.4x3y2+6x3y=x3y(4y+6)C.x2+2x+1=x(x+2)+1D.(a+b)(a﹣b)=a2﹣b2解:A、原式=(m﹣4)2,符合题意;B、原式=2x3y(2y+3),不符合题意;C、原式=(x+1)2,不符合题意;D、原式不为因式分解,不符合题意.故选:A.5.(2分)若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为()A.4B.5C.6D.8解:设边数为n,∵多边形的内角和公式为:(n﹣2)×180°,∴多边形的每个内角为:,∵多边形的外角和公式为:360°,∴多边形的每个外角为:,∵一个多边形的每个内角都等于与它相邻外角的2倍,∴=×2,∴n=6,故选:C.6.(2分)如图,将△ABC纸片沿DE折叠,点A的对应点为A’,若∠B=60°,∠C =80°,则∠1+∠2等于()A.40°B.60°C.80°D.140°解:连接AA′.∵∠B=60°,∠C=80°,∴∠A=40°∵∠1=∠EA′A+∠EAA′,∠2=∠DA′A+∠DAA′,∠BCA=∠EA′D,∴∠1+∠2=∠EA′A+∠EAA′+∠DA′A+∠DAA′=∠EAD+∠EA′D=2∠EAD=80°,故选:C.7.(2分)△ABC是直角三角形,则下列选项一定错误的是()A.∠A﹣∠B=∠C B.∠A=60°,∠B=40°C.∠A+∠B=∠C D.∠A:∠B:∠C=1:1:2解:A、由∠A﹣∠B=∠C,可知∠A=90°,本选项不符合题意.B、由∠A=60°,∠B=40°,可知∠C=80°,△ABC不是直角三角形,本选项符合题意.C、由∠A+∠B=∠C,可知∠C=90°,本选项不符合题意.D、由∠A:∠B:∠C=1:1:2,可知∠C=90°,本选项不符合题意.故选:B.8.(2分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0解:2×(3+1)(32+1)(34+1)(38+1)(316+1)=(3﹣1)×(3+1)(32+1)(34+1)(38+1)(316+1)=(32﹣1)(32+1)(34+1)(38+1)(316+1)=(34﹣1)(34+1)(38+1)(316+1)=(38﹣1)(38+1)(316+1)=(316﹣1)(316+1)=332﹣1,31=3,32=9,33=27,34=1,…,依此类推,个位数字以3,9,7,1循环,∵32÷4=8,∴332的个位数字为1,即332﹣1的个位数字为0.故选:D.二、填空题(每小题2分,共20分)9.(2分)(﹣a2)3=﹣a6.解:原式=﹣a6.10.(2分)水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m,把这个数值用科学记数法表示为1×10﹣10m.解:0.000 0000 001=1×10﹣10.故答案为:1×10﹣10.11.(2分)若等式(2﹣x)0=1成立,则x的取值范围是x≠2.解:∵等式(2﹣x)0=1成立,∴2﹣x≠0,解得:x≠2.故答案为:x≠2.12.(2分)小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是六.解:设多边形的边数为n,多加的外角度数为α,则(n﹣2)•180°=840°﹣α,∵840°=4×180°+120°,内角和应是180°的倍数,∴同学多加的一个外角为120°,∴这是4+2=6边形的内角和,故答案为:六.13.(2分)﹣(a+b)(﹣a+b)=a2﹣b2.解:a2﹣b2=(a+b)(a﹣b)=﹣(a+b)(b﹣a).故答案是:﹣(a+b).14.(2分)已知m﹣3=0,m+n=7,则m2+mn=21.解:由m﹣3=0,得m=3,∵m+n=7,∴m2+mn=m(m+n)=3×7=21.故答案为:21.15.(2分)若(x+3)(x﹣2)=ax2+bx+c(a、b、c为常数),则a+b+c=﹣4.解:∵(x+3)(x﹣2)=x2﹣2x+3x﹣6=x2+x﹣6=ax2+bx+c,∴a=1,b=1,c=﹣6,∴a+b+c=1+1﹣6=﹣4;16.(2分)x2﹣mx+9是完全平方式,则m=±6.解:∵x2﹣mx+9是完全平方式,∴m=±6.故答案为:±6.17.(2分)一艘船从A港驶向B港的航向是北偏东25°,则该船返回时的航向应该是南偏西25°.解:如图,从A港驶向B港的航向是北偏东25°,返回时的航向南偏西25°,故答案为:南偏西25°.18.(2分)有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为11.解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=10,2ab=10,所以a2+b2=11,故答案为:11.三、解答题(共64分)19.(16分)计算:(1)(2)3m(m﹣n)+6mn(3)4﹣(x+2)(x﹣2)(4)(a﹣2b)2﹣a(a﹣2b)解:(1)原式=5﹣1﹣16=﹣12;(2)原式=3m2﹣3mn+6mn=3m2+3mn;(3)原式=4﹣(x2﹣4)=4﹣x2+4=8﹣x2;(4)原式=a2﹣4ab+4b2﹣a2+2ab=﹣2ab+4b2.20.(16分)因式分解:(1)3x4﹣12x3(2)a﹣b+2x(a﹣b)(3)16﹣9x2(4)(x+1)(x+5)+4解:(1)3x4﹣12x3=3x3(x﹣4);(2)a﹣b+2x(a﹣b)=(a﹣b)(2x+1);(3)16﹣9x2=(4+3x)(4﹣3x);(4)(x+1)(x+5)+4=x2+6x+9=(x+3)2.21.(4分)如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.解:∵AB∥CD,∠BFG=140°,∴∠CGF=∠BFG=140°,∵∠CGF=∠CGE+∠EGF,∠EGF=90°,∴∠CGE=50°.22.(8分)在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;(3)画出△ABC的高CE所在直线,标出垂足E;(4)在(1)的条件下,线段AA1和CC1的关系是平行且相等.解:(1)如图,△A1B1C1即为所求;(2)如图,中线AD即为所求;(3)如图,高CE即为所求;(4)线段AA1和CC1的关系为:平行且相等.故答案为:平行且相等.23.(6分)如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:根据题意得:(3a+b﹣a)(2a+b﹣a)=(2a+b)(a+b)=2a2+3ab+b2(平方米),则绿化的面积是(2a2+3ab+b2)平方米;当a=3,b=2时,绿化面积是:2×32+3×3×2+22=40(平方米).24.(6分)如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.解:∠B=∠CDE,理由:∵DF∥AC,∴∠DFB=∠A,∵∠BFD=∠CED,∴∠A=∠CED,∴AB∥DE,∴∠B=∠CDE.25.(8分)如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).解:(1)∵∠ABC与∠BAC的角平分线相交于点P,∴PC平分∠ACB,∴∠PCD=∠PCE=∠ACB=×90°=45°,∵PC⊥DE,∴∠CPD=90°,∴∠CDE=45°,∴∠ADP=135°,∵∠BAC=40°,∠ACB=90°,∴∠ABC=90°﹣40°=50°,∵∠PBA=∠ABC=25°,∠PAB=∠BAC=20°,∴∠APB=180°﹣25°﹣20°=135°.(2)结论:∠APB=∠ADP.理由:∵PB,PA分别是∠ABC,∠BAC的角平分线,∴∠PBA=∠ABC,∠PAB=∠BAC,∴∠APB=180°﹣(∠ABC+∠BAC)=180°﹣(180°﹣90°)=135°,∵∠ADP=135°,∴∠APB=∠ADP.。
江苏省2019学年初一下学期期中考试数学试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________题号一二三四五六总分
得分
一、单选题
1. 如果是二元一次方程mx+y=3的一个解,则m的值是()
A. -2
B. 2
C. -1
D. 1
2. 下列运算中,正确的是()
A. B.
C. D.
3. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是().
A. 15°
B. 25°
C. 30°
D. 35°
4. 可以写成:()
A. B. C. D.
5. 如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有()
A. 4个
B. 3个
C. 2个
D. 1个
6. 已知多项式的积中不含x2项,则m的值是 ( )
A. -2
B. -1
C. 1
D. 2
7. 若a=(﹣)﹣2,b=(﹣2016)0,c=(﹣0.2)﹣1,则a、b、c三数的大小关系是
()
A. a<b<c
B. a>b>c
C. a>c>b
D. c>a>b
8. 下列语句:
①任何数的零次方都等于1;
②如果两条直线被第三条直线所截,那么同位角相等;
③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;
④平行线间的距离处处相等.
说法错误的有()
A. 1个
B. 2个
C. 3个
D. 4个
9. 将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每
次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折n次可以得条折痕. ( )
A. B. C. D.
二、选择题
10. 如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行
的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().
A.0 B.1 C. D.
三、填空题
11. 已知方程,用的代数式表示为______________.
12. 某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为米.
13. 若,则=_______。
14. 若,则=_______。
15. 已知一个多边形的每一个内角都是,则这个多边形的边数为_______.
四、解答题
16. 如图(1)是一个长为,宽为(>)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.
五、填空题
_______。
17. 如图,已知∠1=60°,∠C+∠D+∠E+∠F+∠A+∠B=
18. 已知,则整数的值是_______。
19. 如图,将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .
20. 如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得
A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积
为S2,则S2=_______。
六、解答题
21. (1)计算:
(2)(﹣a2)3﹣(﹣a3)2+2a5?(﹣a)
(3)(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)
22. 因式分解
(1)x3—2x2y+xy2
(2)m2(m﹣1)+4(1﹣m)
(3)
23. 已知,求代数式的值.
24. 已知.3m=6,9n=2.求32m-4n+1的值.
的三个顶点的位置25. 在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC
如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等。
26. 如图,已知BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD相交于点H,如果∠GFH与∠BHC互补.求证:∠1=∠2.
27. (1)设a-b=4,a2+b2=10,求(a+b)2的值;
(2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…,
探索以上式子的规律,试写出第n个等式,并说明第n个等式成立.
28. 现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1)所示,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应的数轴上的数是,点H 对应的数轴上的数是;
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=a,试用a来表示∠M的大小:(写出推理过程)
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和
∠FOC的平分线交于点N,求∠N+∠M的值.
参考答案及解析
第1题【答案】
第2题【答案】第3题【答案】第4题【答案】第5题【答案】
第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】
第11题【答案】第12题【答案】第13题【答案】
第14题【答案】第15题【答案】第16题【答案】第17题【答案】
第18题【答案】第19题【答案】
第20题【答案】第21题【答案】
第22题【答案】
第23题【答案】第24题【答案】
第25题【答案】第26题【答案】
第27题【答案】
第28题【答案】。