【南大附中】2016-2017学年第二学期初一数学期末试卷及答案
- 格式:pdf
- 大小:504.64 KB
- 文档页数:9
2018-2019学年江苏省南京大学附中七年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.(4分)给出下列各数,0,0.21,3.14,π,0.14287,其中是无理数的有()A.1个B.2个C.3个D.4个2.(4分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.ac2>bc2D.a2>b23.(4分)一条公路两次转弯后又回到原来的方向(即AB∥CD,如图)如果第一次转弯时∠B=136°,那么∠C 应是()A.136°B.124°C.144°D.154°4.(4分)如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>AD B.AC<BC C.BC>BD D.CD<BD5.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A.7.6×10﹣8B.0.76×10﹣9C.7.6×108D.0.76×1096.(4分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±17.(4分)下列运算正确的是()A.﹣a2•3a3=﹣3a6B.=a5b2C.a5÷a5=a D.=﹣8.(4分)已知a,b为两个连续整数,且a<﹣1<b,则这两个整数是()A.1和2B.2和3C.3和4D.4和59.(4分)一个三角形的一边长是(x+3)cm,这边上的高是5cm,它的面积不大于20cm2,则()A.x>5B.﹣3<x≤5C.x≥﹣3D.x≤510.(4分)如图,AB∥CD,EG、EM、FM分别平分∠AEF、∠BEF、∠EFD,则下列结论正确的有()①∠DFE=∠AEF;②∠EMF=90°;③EG∥FM;④∠AEF=∠EGC.A.1个B.2个C.3个D.4个二、填空题(每题5分,共20分)11.(5分)分解因式:a2﹣2ab+b2﹣1=.12.(5分)如图,∠1的同旁内角是,∠2的内错角是.13.(5分)已知x2+y2=3,xy=,则(﹣)÷的值为.14.(5分)如图,直线l1∥l2,则∠1+∠2=.三、(每题8分,共16分)15.(8分)计算:(﹣4)2+(π﹣3)0﹣23﹣|﹣5|.16.(8分)化简:.17.(8分)解不等式(组),并把解集表示在数轴上.(1)(2)18.(8分)解分式方程:﹣=1.五、(每题10分,共20分)19.(10分)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.20.(10分)已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含x2项和常数项.(1)求a,b的值;(2)求(2a+b)2﹣(a﹣2b)(a+2b)﹣3a(a﹣b)的值.六、(12分)21.(12分)如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)32和2012这两个数是奇特数吗?若是,表示成两个连续奇数的平方差形式.(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?七、(12分)22.(12分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?八、(14分)23.(14分)如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.2018-2019学年江苏省南京大学附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【解答】解:在,0,0.21,3.14,π,0.14287中,无理数有:π,共1个.故选:A.2.【解答】解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故选:B.3.【解答】解:∵AB∥CD,∴∠B=∠C,∵∠B=136°,∴∠C=136°,故选:A.4.【解答】解:A、CD与AD互相垂直,没有明确的大小关系,错误;B、AC与BC互相垂直,没有明确的大小关系,错误;C、BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D、CD与BD互相垂直,没有明确的大小关系,错误,故选C.5.【解答】解:0.000000076=7.6×10﹣8.故选:A.6.【解答】解:由分式的值为零的条件得x2﹣1=0,2x+2≠0,由x2﹣1=0,得x=±1,由2x+2≠0,得x≠﹣1,综上,得x=1.故选:A.7.【解答】解:(A)原式=﹣3a5,故A错误;(B)原式=a5b2,故B错误;(C)原式=1,故C错误;故选:D.8.【解答】解:∵16<19<25,∴4<<5.∴4﹣1<﹣1<5﹣1,即3<﹣1<4.故选:C.9.【解答】解:有三角形面积的公式可以列出不等式×5(x+3)≤20,从而x≤5.∵x+3>0,∴x>﹣3,故选:B.10.【解答】解:∵AB∥CD,∴∠DFE=∠AEF,∠DFE+∠BEF=180°,故①正确,∵ME平分∠BEF,MF平分∠DFE,∴∠MEF=∠BEF,∠MFE=∠DFE,∴∠MEF+∠MFE=(∠BEF+∠DFE)=90°,∴∠EMF=90°,故②正确,∵EG平分∠AEF,∴∠GEF=∠AEF,∵∠AEF=∠DFE,∴∠GEF=∠MFE,∴EG∥MF,故③正确,无法判断∠AEF=∠EGC,故④错误.故选:C.二、填空题(每题5分,共20分)11.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).12.【解答】解:∠1与∠3,∠B是同旁内角;∠2的内错角是∠3,故答案为:∠3,∠B.∠3.13.【解答】解:∵x2+y2=3,xy=,∴(x+y)2=x2+y2+2xy=3+1=4.∴x+y=±2,∴(﹣)÷=×=﹣=.故答案是:.14.【解答】解:如图,延长AB,CD交于点E,过E作EF∥l1,则AB∥l1∥l2,∴∠1=∠AEF,∠2=∠CEF,∴∠1+∠2=∠AEC,∵∠DBE=180°﹣125°=55°,∠BDE=180°﹣85°=95°,∴△BDE中,∠BED=180°﹣55°﹣95°=30°,∴∠1+∠2=30°,故答案为:30°.三、(每题8分,共16分)15.【解答】解:原式=16+1﹣8﹣5=4.16.【解答】解:÷(1﹣)=÷=•=.17.【解答】解:(1)3(1﹣x)+2(2x+1)<6,3﹣3x+4x+2<6,﹣3x+4x<6﹣3﹣2,x<1,将不等式的解集表示在数轴上如下:(2)解不等式x﹣3(x﹣1)≤7,得:x≥﹣2,解不等式1﹣<x,得:x<﹣0.5,则不等式组的解集为﹣2≤x<﹣0.5,将不等式组的解集表示在数轴上如下:18.【解答】解:方程两边同乘(x+2)(x﹣2),得,x(x+2)﹣1=(x+2)(x﹣2)整理得,x2+2x﹣1=x2﹣4,解得,经检验:是原方程的根,∴原方程的根是.五、(每题10分,共20分)19.【解答】解:原式=÷﹣=×﹣=﹣=﹣,∵,∴,∴原式=﹣=﹣.20.【解答】解:(1)原式=2ax2+4ax﹣6x﹣12﹣x2﹣b=(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b).∵不含x2项和常数项,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12.(2)原式=4a2+4ab+b2﹣a2+4b2﹣3a2+3ab=7ab+5b2.当a=,b=﹣12时,原式=7××(﹣12)+5×(﹣12)2=678.六、(12分)21.【解答】解:(1)32这个数是奇特数.因为32=92﹣72,∵8、16、24这三个数都是奇特数,他们都是8的倍数,2012不是8的倍数,∴2012这个数不是奇特数.(2)两个连续奇数构造的奇特数是8的倍数.理由如下:(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n.七、(12分)22.【解答】解:(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后还能购进y本科普书.依题意得550×8+12y≤10000,解得,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.八、(14分)23.【解答】解:(1)AD∥EF.理由如下:∵∠BDA+∠CEG=180°,∠ADB+∠ADE=180°,∠FEB+∠CEF=180°∴∠ADE+∠FEB=180°,∴AD∥EF;(2)∠F=∠H,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠EDH=∠C,∴HD∥AC,∴∠H=∠CGH,∵AD∥EF,∴∠CAD=∠CGH,∴∠BAD=∠F,∴∠H=∠F.第11页(共11页)。
2016-2017学年度(上)期末测试卷七年级数学一、选择题1.3-的倒数是()A.3B.13 C.13- D.3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.【答案】C【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A、∠α与∠β不一定互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”.3.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【答案】A【解析】试题分析:由绝对值性质可得:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.因为|a﹣1|=a﹣1,所以a﹣1≥0,所以a≥1.选A.考点:绝对值的性质.【此处有视频,请去附件查看】4.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“祝”字一面对面的字是()A.新B.年C.快D.乐【答案】D【解析】试题分析:正方体的平面展开图的特征:相对面展开后间隔一个正方形.由图可得“祝”字对面的字是“快”,故选:D.点睛:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短【答案】A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159【答案】B【解析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.“点睛”此题主要考查图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.【此处有视频,请去附件查看】二、填空题7.温度由1℃下降10℃后是________℃.【答案】-9【解析】试题分析:根据温度的关系,利用有理数的加减可得1-10=-9.故答案为:9.8.大家翘首以盼的南京地铁4号线将于2017年春节前开通,它从龙江站到仙林湖站线路长度33.8千米.则数据33.8用科学记数法表示为___________.【答案】3.38×10【解析】试题分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此33.8=3.38×10.9.若23m n +=-,则842m n --的值是________.【答案】14【解析】试题分析:根据整体思想,先提公因式,整体代入即可得8-4m-2n=8-2(2m+n)=8-2×(-3)=14.10.如果一个角是2015'︒,那么这个角的余角是___________︒.【答案】69.75【解析】试题分析:根据互余两角的和为90°,可求解余角为90°-20°15′=69°45′=69.75°.故答案为:60.7511.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.【答案】150【解析】设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150,故答案为150.12.如图是一个数值运算的程序,若输出y的值为5,则输入的值为_______.【答案】±4【解析】试题分析:根据运算程序,可知运算的关系式为(x2-1)÷3,代入可得(x2-1)÷3=5,解方程可得x=±4.13.小明想度量图中点C到三角形ABC的边AB的距离,在老师的指导下小明完成了画图,那么____就是点C到直线AB的距离.【答案】线段CD的长度【解析】试题分析:根据点到直线的距离为点到直线的垂线段的长度,可知CD的长度为点C到AB的距离.故答案为:CD的长度互补的角是14.如图,直线AB与CD相交于O,OE与AB、OF与CD分别相交成直角.图中与COE________.【答案】EOD ∠和BOF∠【解析】试题分析:根据对顶角相等可知∠AOC=∠B OD,∠DOF=90°,可根据和为180°的两角互为补角,可知∠COE 的补角为∠EOD 何∠BOF.15.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么2a b c +-=________.【答案】0【解析】试题分析:由题意及数轴上点的位置得:(a+b)÷2=c,即a+b=2c,则2a b c +-==0.故答案为0点睛:此题考查了有理数的混合运算,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推……,线段2015AC 的长为____.【答案】2015112⎛⎫- ⎪⎝⎭【解析】试题分析:根据中点的意义,可知:1 C B =12AB,2C B =121 C B =12×12AB,……由此可知其规律为:n C B =1()2n 1n C B -,因此可知12015C B =20151(2AB,因此可求得2015AC =2015112⎛⎫- ⎪⎝⎭.故答案为:2015112⎛⎫- ⎪⎝⎭.三、解答题17.计算:(1)()()322453⎡⎤-÷⨯--⎣⎦;(2)()157242612⎛⎫+-⨯- ⎪⎝⎭【答案】(1)8(2)18-【解析】试题分析:根据有理数的混合运算,先算乘方,再算乘除,最后算加减,如果有括号先算括号里面的,然后结合乘方运算求解即可.试题解析:(1)()()322453⎡⎤-÷⨯--⎣⎦=-8÷4×[5-9]=-2×(-4)=8(2)()157242612⎛⎫+-⨯- ⎪⎝⎭=157(24)(24)(24)2612⨯-+⨯---=-12-20+14=-1818.解方程:(1)()432x x -=-;(2)223146x x +--=【答案】(1)1x =(2)0x =【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,解方程即可.试题解析:(1)4-x=3(2-x)4-x=6-3x-x+3x=6-42x=2x=1(2)223146x x +--=3(x+2)-2(2x-3)=123x+6-4x+6=123x+4x=12-6-67x=0x=019.化简求值:()()2222274523a b a b ab a b ab +-+--,其中1a =-,2b =.【答案】228a b ab +,-30【解析】试题分析:根据去括号法则和合并同类项法则化简,然后代入求值即可.试题解析:原式228a b ab =+其中1a =-,2b =,代入得:原式()()2212812=-⨯+⨯-⨯=30-20.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.【答案】(1)作图见解析(2)2【解析】试题分析:(1)根据题目中图形可知:主视图共3列,从左到右,第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形,左视图共2列,从左到右,第一列有3个小正方形,第二列有1个小正方形,俯视图共2列,从左到右,第一列有2个小正方形,第二列有1个小正方形,第三列有1个小正方形.(2)可在第二层第一列第一行加一个,第三层第一列加一个,共2个.试题解析:(1)如图;(2)可在第二层第一列第一行加一个,第三层第一列加一个,共2个.考点:几何体的三视图.∠=∠,在射线AE上取一点D,使21.如图,利用直尺和圆规,在三角形ABC的边AC上方作EAC ACBAD BC=,连接CD.观察并回答所画的四边形是什么特殊的四边形?(尺规作图要求保留作图痕迹,不写作法)【答案】作图见解析【解析】试题分析:根据基本作图-做一个角等于一只角,结合题意画图,然后判断即可.试题解析:如下图所画的四边形为:平行四边形22.如图,90AOB ∠=︒,在AOB ∠的内部有一条射线OC .(1)画射线.OD OC ⊥(2)写出此时AOD ∠与BOC ∠的数量关系,并说明理由.【答案】(1)作图见解析(2)(1)AOD BOC ∠=∠或180AOD BOC ∠+∠=︒【解析】试题分析:(1)根据基本作图—做已知直线的垂线即可;(2)通过图形判断即可.试题解析:(1)画图,如下图(2)AOD BOC ∠=∠或180AOD BOC ∠+∠=︒23.已知关于m 的方程12(m -16)=-5的解也是关于x 的方程2(x -3)-n =3的解.(1)求m 、n 的值;(2)已知线段AB =m ,在射线AB 上取一点P ,恰好使AP PB =n ,点Q 为线段PB 的中点,求AQ 的长.【答案】(1)m =6,n =3;(2)AQ =214或152【解析】【分析】(1)先利用解一元一次方程的方法解出12(m -16)=-5中m 的值;因为两个方程同解,代入()233x n --=解出n 的值即可.(2)因为点P 的位置不能确定,故应分点P 在线段AB 上时,先根据比值求出AP ,PB 的长度,再根据中点定义求出PQ 的长度,相加即可求出AQ 的长度;当点P 在线段AB 的延长线上时,根据比值求出BP 的长度,再根据中点定义求出BQ 的长度,相加即可求出AQ 的长度.【详解】解:()()111652m -=-,1610m -=-,6m =,关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解.x m ∴=,将6m =,代入方程()233x n --=得:()2633n --=,解得:3n =,故63m n ==,;()2由()1知:63AP AB PB==,,①当点P 在线段AB 上时,如图所示:63AP AB PB == ,,9322AP BP ∴==,, 点Q 为PB 的中点,1324PQ BQ BP ∴===,9321244AQ AP PQ ∴=+=+=;②当点P 在线段AB 的延长线上时,如图所示:63AP AB PB== ,,3PB ∴=,点Q 为PB 的中点,32PQ BQ ∴==,315622AQ AB BQ ∴=+=+=.故214AQ =或152.24.图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.【答案】(1)34cm;(2)每相邻两节套管间重叠的长度为1cm.【解析】试题分析:(1)根据“第n 节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm ,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x 的一元一次方程,解方程即可得出结论.试题解析:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm ).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm ),设每相邻两节套管间重叠的长度为xcm ,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm .考点:一元一次方程的应用.25.如图(1),点O 为线段AB 上一点,过点D 作射线OC ,使:1:2AOC BOC ∠∠=,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在线段AB 的下方.(1)将图(1)中的直角三角板绕点O 按逆时针方向旋转,使ON 落在射线OB 上(如图(2)),则三角板旋转的角度为____度;(2)继续将图2中的直角三角板绕点O 按逆时针方向旋转,使ON 在AOC ∠的内部(如图3).试求AOM ∠与NOC ∠度数的差;(3)若图1中的直角三角板绕点O 按逆时针方向旋转一周,在此过程中:①当直角边OM 所在直线恰好垂直于OC 时,AOM ∠的度数是________;②设直角三角板绕点O 按每秒15︒的速度旋转,当直角边ON 所在直线恰好平分AOC ∠时,求三角板绕点O 旋转时间t 的值.【答案】(1)90︒(2)30AOM NOC ∠-∠=︒(3)①150AOM ∠=︒或30°②4t =或()16s 【解析】试题分析:(1)根据旋转的性质可知,旋转角是∠MON.(2)如图3,利用角平分线的定义,结合已知条件,求得∠AOC=60°,然后根据直角的性质、图中角与角间的数量关系推出结论;(3)①根据旋转的定义,画图,然后根据周角和已知角求解;②根据速度和角平分线的性质,分逆时针和顺时针计算即可.试题解析:(1)90︒(2)30AOM NOC ∠-∠=︒(3)①150AOM ∠=︒或30︒②4t =或()16s 26.数轴上有A 、B 、C 三点,分别表示有理数26-、10-、20,动点P 从A 出发,以每秒1个单位的速度向右移动,当P 点运动到C 点时运动停止,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 点对应的数:_________;(2)当P 点运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回A 点.①用含t 的代数式表示Q 点在由A 到C 过程中对应的数:_________;②当t =______时,动点P 、Q 到达同一位置(即相遇);③当3PQ =时,求t 的值.【答案】(1)26t -+;(2)①258t -;②32或1243;③3t =,29,35,1213,1273.【解析】【分析】(1)根据题意可得P 点对应的数;(2)①P 因为点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒所以Q 点在由A 到C 过程中对应的数()26216258t t -+-=-为;②分为返回前相遇和返回后相遇两种情况:返回前相遇,P 的路程等于Q 的路程等于Q 的路程减去16;而返回后相遇,则是二者走的总路程是Q 到C 的路程的2倍,分别列式子求解.【详解】(1)P 点所对应的数为:26t-+(2)①258t -②P 点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒当1639t ≤≤时,P :26t -+,Q :()26216258t t -+-=-26258t t -+=-,解之得32t =当3946t ≤≤时,P :26t -+,Q :()20239982t t--=-26982t t -+=-,解之得1243t =③3t =,29,35,1213,1273【点睛】考核知识点:一元一次方程应用.理解定义,列出方程是关键.。
2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。
七年级数学期末试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 等于A. B. C. D.【答案】C【解析】根据负指数的运算得: .故选C.2. 下列图形中与是内错角的是A. B. C. D.【答案】A【解析】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选:A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.3. 下列运算正确的是A. (ab)2=a2b2B. a2+a4=a6C. (a2)3=a5D. a2•a3=a6【答案】A【解析】A. (ab)²=a²b²,正确;B. a²+ =,不是同类项不能合并,错误;C.,错误;D. ,错误.故选A.4. 如果是完全平方式,则常数m的值是A. 8B. -8C.D. 17【答案】C【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值:因为x²+mx+16=x²+mx+4²,∴mx=±2x⋅4,解得m=±8.故选C.5. 下列各式从左边到右边的变形是因式分解的是A. B.C. D. 学。
科。
网...【答案】D【解析】A、没把一个多项式转化成几个整式积的形式,故A错误;B.是乘法交换律,故B错误;C.是整式的乘法,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.6. 若方程组的解满足,则的值为A. B. C. D.不能确定【答案】A【解析】,①-②得:2x-2y=4a,即x-y=2a,代入x-y=-2,解得:2a=-2,得:a=-1.故选A.7. 下列命题:①三角形的一条中线将三角形分成面积相等的两部分;②平行于同一条直线的两条直线互相平行;③若,则;④对于任意,代数式的值总是正数.其中正确命题的个数是A. 4个B. 3个C. 2个D. 1个【答案】B【解析】①三角形的一条中线将三角形分成面积相等的两部分,是真命题; ②平行于同一条直线的两条直线互相平行,是真命题;③若|a|=|b|,则a=b或a=-b,是假命题;④对于任意x,代数式x²-6x+10的值总是正数,是真命题.其中正确命题的个数是3个.故选B.点睛:本题考查了命题与定理的知识点,解题关键是了解平行线的性质,三角形中线的性质,绝对值的意义,代数式的值.8. 下列四个不等式组中,解为的不等式组有可能是A. B. C. D.【答案】B【解析】因为不等式组的解满足−1<x<3,∴取不等式组的一个解x=0,A. 当x=0时,不等式组不成立,故本选项错误;B. 当x=0时,不等式组成立,故本选项正确;C. 当x=0时,不等式组不成立,故本选项错误;D. 当x=0时,不等式组不成立,故本选项错误;故选B.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. ____.【答案】【解析】首先把化为,再根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘计算得:原式= ×=,故答案为:-4.10. 小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.00175秒,将这个数用科学记数法表示为____.【答案】【解析】根据绝对值小于1 的正数用科学计数法表示使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,所以0.00175=1.75× .学。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016~2017学年第二学期初一数学期末试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内)1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy = C .632)(x x = D .422x x x =+2.如果,下列各式中正确的是( )a b <A . B .C .D .22ac bc <11a b >33a b ->-44a b >3.不等式组 的解集在数轴上可以表示为( )24357x x >-⎧⎨-≤⎩4.已知是二元一次方程的一个解,则的值为( )21x y =⎧⎨=-⎩21x my +=m A .3 B .-5 C .-3 D .55.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠36.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .107.下列命题是真命题的是( )A .同旁内角互补B .三角形的一个外角等于两个内角的和C .若a 2=b 2,则a =bD .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于的不等式组的所有整数解的和是10,则m 的取值范围是( )x 0321x m x -<⎧⎨-≤⎩A .B .C .D .45m <<45m <≤45m ≤<45m ≤≤(第5题图)(第8题图)(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .B .8191二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.分解因式:= .23105x x -13.若,则= .4,9nnx y ==()nxy 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式是一个完全平方式,则的值为 .9)1(2+-+x k x k 17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组的解,的值恰好是一个等腰三角形两边的长,⎩⎨⎧=++=+m y x m y x 232x y 且这个等腰三角形的周长为7,则的值为____________.m 三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题共有2小题,满分8分)计算:(1) (2)201701)1()2017()21(---+-π32423)2()(a a a a ÷+⋅-1FEDB A 20.(本题共有2小题,满分8分)因式分解:(1) (2)a a a +-23214-x 21.(本题共有2小题,满分8分)(1)解方程组: (2)求不等式的最大整数解.⎩⎨⎧=++=18223y x y x 241312+<--x x 22.(本题满分5分)先化简,再求值: ,其中.22(3)(2)(2)2x x x x +++--1x =-23.(本题满分5分)已知.63=-y x (1)用含的代数式表示的形式为 ;x y (2)若,求的取值范围.31≤<-y x 24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1,求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果,那么(a ,b )=c .b a c例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.41(2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)25.(本题满分7分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱)全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:住宿费(2人一间的标准间)伙食费市内交通费旅游景点门票费(身高超过1.2米全票)每间每天x 元每人每天100元每人每天y 元每人每天120元假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用?如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?2016~2017学年第二学期初一数学期末试卷答案 2017.6一、选择题:1.C 2.C 3.B 4.A 5.D 6.B 7.D 8.B 9.B 10.D 二、填空题:11. 12. 13.36 14.六4107-⨯)2(52-x x 15.20 16.7或-5 17.46° 18.2三、解答题:19.(1)原式= (2分) )1(12--+ = (4分)4(2)原式= (2分)3854a a a ÷+- = (4分)53a 20.(1)原式= (2分))12(2+-a a a = (4分) 2)1(-a a (2)原式= (2分))1)(1(22-+x x = (4分))1)(1)(1(2-++x x x 21.(1)(解对一个得2分,共4分)⎩⎨⎧==28y x (2)(3分),的最大整数解是19(4分)20<x x 22.化简得(2分),求值得(4分) 56+x 1-23.(1)(2分)63-=x y (2)(5分)335≤<x 24. 证得:BC=EF (1分)证得:△ABC ≌△DEF (3分)证得:∠ACB =∠F (4分) 证得:AC ∥DF (6分)25.(1)3,0,-2(每空1分)(2)(具体情况具体给分,满分4分)设(3,4)=x ,(3,5)=y 则,=543=xy3 ∴20333=⋅=+y x y x ∴(3,20)=x+y∴(3,4)+(3,5)=(3,20)26.(1)往返高铁费:(524×3+524÷2)×2=3668元 ⎩⎨⎧++++=++⨯⨯=⨯1920202000103668136681920204510052y x y x 解得: (3分)⎩⎨⎧==54500y x (2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;(5分) 设预定的房间房价每天a 元则4500+2000+1080+1920+10a ≤14000,解得a ≤450,答:标准间房价每日每间不能超过450元.(7分)。
1.在平面直角坐标系中,点P (3,-4)在第()象限A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.8的立方根是( )A .2 B .-2 C .2± D .643.如图,若AB ∥CD ,则①∠1=∠2;②∠3=∠4;③∠1+∠3=∠2+∠4,上述结论正确的是( ) A .只有① B .只有② C .①和② D .①②③ 4.下列式子中,属于二元一次方程的是( )A .232-=+x xB .2<+y xC .y x 5213-=-D .1≠xy5.已知b a <,则下列不等式一定成立的是( )A .0>-b a B .0<+b a C .b a -<-22 D .33b a ->- 6.抽样调查某班学生的身高情况,下列样本的选项最具有代表性的是()A .调查全体男生的身高 B .调查全体女生的身高 C .调查学号为单数的学生的身高 D .调查篮球兴趣小组的学生身高7.下列命题是真命题的是( )A .同位角相等B .互补的两个角必有一条公共边C .相等的角是对顶角D .所有三角形的内角和都为180° 8.下列四组数中,是方程组102x y x y +=⎧⎨-=⎩的解的是()A .19x y =⎧⎨=⎩ B .31x y =⎧⎨=⎩ C .75x y =⎧⎨=⎩ D .64x y =⎧⎨=⎩9.下列各数:3.14,81,31,-5,364-,0,71,6.0 ,π中,无理数有()个 A. 1 B.2 C.3 D. 4 10.已知点P (2-x ,x )在第二象限,则x 的取值范围为()A .20<<x B .2<x C .0>x D .2>x11.x 的21与5的差不小于3,用不等式表示为 12.32-的相反数是 ;-π3= ------13.已知⎩⎨⎧==12y x 是方程32=+ky x 的解,则k = ---14.如图,B 、A 、E 三点在同一直线上,请你添加一个条件,使A D ∥BC 。
2016-2017学年江西省南昌市七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在实数﹣2,0,﹣,1中,最小的数是()A.﹣2 B.0 C.﹣D.12.(3分)已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交3.(3分)由方程组可得出x与y的关系是()A.2x+y=4 B.2x﹣y=4 C.2x+y=﹣4 D.2x﹣y=﹣44.(3分)为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.15.(3分)将不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.6.(3分)某种笔记本原售价是每本6元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是()A.7本 B.6本 C.5本 D.4本7.(3分)王老师对本班60名学生的血型做了统计,列出统计表,则本班O型血的人数是()A.24人B.21人C.6人 D.9人8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)一个数的立方根是4,这个数的平方根是.10.(3分)若点P(|a|﹣2,a)在y轴的负半轴上,则a的值是.11.(3分)为了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,其中有30名学生的身高在165cm以上,则该问题中的样本容量是.12.(3分)已知关于x,y的二元一次方程2x+ϖy=7中,y的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是.13.(3分)若不等式的解集为x>3,则a的取值范围是.14.(3分)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(1)用代入法解方程组(2)用加减法解方程组.16.(6分)解不等式组并判断x=﹣是否为该不等式组的解.17.(6分)已知+|x﹣1|=0.(1)求x与y的值;(2)求x+y的平方根.18.(6分)已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;=S△ABC,求点P的坐标.(3)若在y轴上有一点P,使S△ABP20.(8分)学生对小区居民的健身方式进行调查,并将调查结果绘制成如图两幅不完整的统计图.请根据所给信息解答下列问题:(1)本次共调查人;(2)补全图(1)中的条形统计图,图(2)中“跑步”所在扇形对应的圆心角度数是;(3)估计2000人中喜欢打太极的大约有多少人?21.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵.若购进1棵A种树苗与2棵B种树苗共需200元;购进2棵A 种树苗与1棵B种树苗共需220元.(1)求购进A种树苗和B种树苗每棵各多少元?(2)若小区购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(3)若购进B种树苗的数量少于A种树苗的数量,请设计一种费用最省的方案,并求出该方案所需费用?五、探究题(本大题共1小题,共10分)22.(10分)一个数学小组将一个直角三角形ABC(∠ACB=90°),放进平面直角坐标系中,进行探究活动.(1)若点C与坐标原点O重合时,如图1,点A坐标为(﹣3,3),点B坐标为(5,5),这时△ABC的面积为;(直接写出结果)(2)若点C在第三象限,且AC过坐标原点O,AB交x轴于G;作直线DM平行x轴,DM交BC于E,交AB于F.①如图2,若∠AOG=50°,求∠CEF的度数.②如图3,在AC取点N,使∠NEC+∠CEF=180°,求证:∠NEF=2∠AOG.2016-2017学年江西省南昌市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在实数﹣2,0,﹣,1中,最小的数是()A.﹣2 B.0 C.﹣D.1【解答】解:根据实数比较大小的方法,可得1>0>﹣>﹣2,∴在﹣2、0、﹣、1这四个数中,最小的实数是﹣2;故选:A.2.(3分)已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交【解答】解:∵A(2,﹣2)、B(﹣1,﹣2),∴A、B两点到x轴的距离相等且在x轴的下方,∴AB∥x轴,故选:B.3.(3分)由方程组可得出x与y的关系是()A.2x+y=4 B.2x﹣y=4 C.2x+y=﹣4 D.2x﹣y=﹣4【解答】解:,把②代入①得2x+y﹣3=1,即2x+y=4.故选:A.4.(3分)为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【解答】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.5.(3分)将不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.【解答】解:,解不等式①得,x≥﹣1,解不等式②得,x<3,在数轴上表示如下:.故选:D.6.(3分)某种笔记本原售价是每本6元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本是()A.7本 B.6本 C.5本 D.4本【解答】解:设购买x本笔记本,根据题意得:2×6+(x﹣2)×6×0.7<0.8×6x,解得:x>6,∵x为正整数,∴最少购买7本笔记本.故选:A.7.(3分)王老师对本班60名学生的血型做了统计,列出统计表,则本班O型血的人数是()A.24人B.21人C.6人 D.9人【解答】解:本班O型血的人数是60×0.15=9(人),故选:D.8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)一个数的立方根是4,这个数的平方根是±8.【解答】解:设这个数为x,则根据题意可知=4,解之得x=64;即64的平方根为±8.故答案为±8.10.(3分)若点P(|a|﹣2,a)在y轴的负半轴上,则a的值是﹣2.【解答】解:∵点P(|a|﹣2,a)在y轴的负半轴上,∴|a|﹣2=0且a<0,解得a=±2且a<0,所以,a=﹣2.故答案为:﹣2.11.(3分)为了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,其中有30名学生的身高在165cm以上,则该问题中的样本容量是100.【解答】解:从中抽取了100名学生进行测量,其中有30名学生的身高在165cm 以上,则该问题中的样本容量是100,故答案为:100.12.(3分)已知关于x,y的二元一次方程2x+ϖy=7中,y的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是2x+3y=7.【解答】解:设y的系数为k,把代入2x+ωy=7,解得ω=3,所以原方程即为2x+3y=7.故答案为:2x+3y=7.13.(3分)若不等式的解集为x>3,则a的取值范围是a≤3.【解答】解:化简不等式组可知∵解集为x>3∴a≤314.(3分)珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(1)用代入法解方程组(2)用加减法解方程组.【解答】解:(1)由①,可得:x=2y﹣1③,把③代入②,解得y=1,∴x=2×1﹣1=1,∴原方程组的解是.(2)①+②,可得:4x=12,解得x=3,把x=3代入①,解得y=﹣1,∴原方程组的解是.16.(6分)解不等式组并判断x=﹣是否为该不等式组的解.【解答】解:,由①得x>﹣2,由②得x≤1,∴原不等式组的解集是﹣2<x≤1.∵﹣2<﹣≤1,∴x=﹣是该不等式组的解.17.(6分)已知+|x﹣1|=0.(1)求x与y的值;(2)求x+y的平方根.【解答】解:(1)∵+|x﹣1|=0,∴x﹣1=0,x+2y﹣7=0,解得:x=1,y=3.(2)x+y=1+3=4.∵4的平方根为±2,∴x+y的平方根为±2.18.(6分)已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.【解答】解:(1)如图,(2)证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠CEF=∠CBD,∵DH∥BC,∴∠BDH=∠CBD,∴∠BDH=∠CEF.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;=S△ABC,求点P的坐标.(3)若在y轴上有一点P,使S△ABP【解答】(1)证明:∵A(﹣1,2)、B(3,2),∴A、B的纵坐标相同,∴AB∥x轴;(2)解:如图,作CD⊥AB,∵A(﹣1,2)、B(3,2)、C(1,﹣2).∴AB=1+3=4,CD=2+2=4,∴△ABC的面积==×4×4=8;(3)解:设AB与y轴交于E点,则E(0,2),=S△ABC,∵S△ABP∴PE=CD=2,∴P(0,4)或(0,0).20.(8分)学生对小区居民的健身方式进行调查,并将调查结果绘制成如图两幅不完整的统计图.请根据所给信息解答下列问题:(1)本次共调查50人;(2)补全图(1)中的条形统计图,图(2)中“跑步”所在扇形对应的圆心角度数是36°;(3)估计2000人中喜欢打太极的大约有多少人?【解答】解:(1)18÷36%=50(人).故答案为:50;(2)球类的人数:50﹣3﹣17﹣18﹣5=7(人),“跑步”所在扇形对应的圆心角度数是:=36°,故答案为:36°;如图所示:(3)2000×=120(人).答:估计2000人中喜欢打太极的大约有120人.21.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵.若购进1棵A种树苗与2棵B种树苗共需200元;购进2棵A 种树苗与1棵B种树苗共需220元.(1)求购进A种树苗和B种树苗每棵各多少元?(2)若小区购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(3)若购进B种树苗的数量少于A种树苗的数量,请设计一种费用最省的方案,并求出该方案所需费用?【解答】解:(1)设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据题意得:,解得:.答:购进A种树苗每棵需要80元,B种树苗每棵需要60元.(2)设购进A种树苗a棵,则购进B种树苗(17﹣a)棵,根据题意得:80a+60(17﹣a)=1220,解得:a=10,∴17﹣a=7.答:购进A种树苗10棵,购进B种树苗7棵.(3)设购进A种树苗m棵,则购进B种树苗(17﹣m)棵,根据题意得:17﹣m<m,解得:m>8,∵m为整数,∴m≥9.∵购进A种树苗每棵需要80元,B种树苗每棵需要60元,∴当m=9时,总费用最少,最少费用为80×9+60×(17﹣9)=1200元.答:当购进A种树苗9棵,B种树苗8棵时,总费用最少,最少费用为1200元.五、探究题(本大题共1小题,共10分)22.(10分)一个数学小组将一个直角三角形ABC(∠ACB=90°),放进平面直角坐标系中,进行探究活动.(1)若点C与坐标原点O重合时,如图1,点A坐标为(﹣3,3),点B坐标为(5,5),这时△ABC的面积为15;(直接写出结果)(2)若点C在第三象限,且AC过坐标原点O,AB交x轴于G;作直线DM平行x轴,DM交BC于E,交AB于F.①如图2,若∠AOG=50°,求∠CEF的度数.②如图3,在AC取点N,使∠NEC+∠CEF=180°,求证:∠NEF=2∠AOG.【解答】解:(1)∵点A坐标为(﹣3,3),点B坐标为(5,5),∴OA=3,OB=5,OA⊥OB,∴S=××5=15,△ACB故答案为15.(2)①在如图2中,过C作CH∥x轴,则∠ACH=∠ACH=50°,∵∠ACB=90°,∴∠ECH=40°,∵DM∥x轴,∴CH∥DM,∴∠ECH+∠CEF=180°,∴∠CEF=180°﹣∠ECH=140°.②如图3中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°﹣∠CED),∵∠CED=∠COD=90°﹣∠AOG,∴∠AOG=90°﹣CED,∴∠NEF=2∠AOG.。
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。