滚压工艺在大型曲轴修复中的应用
- 格式:pdf
- 大小:118.90 KB
- 文档页数:2
1曲轴滚压校直原理曲轴滚压校直是根据曲轴的滚压变形规律,针对被校直曲轴的具体变形情况,在计算机专家系统指导下对该曲轴的轴颈圆角的某些部位施加适当的压力进行滚压,使其产生与原变形方向相反的变形,以达到校直的目的[1]。
实践证明,滚压校直后的工件基本上克服了变形回复的缺点,而且使被滚压的轴颈圆角部分得到了表面强化处理,提高了工件的疲劳强度和承载能力。
多缸发动机曲轴的轴颈和曲拐较多,弯曲刚度较低,而且在圆周方向上各向异性,加上材料的不均匀性,以及冷热加工中变形和残余应力等综合因素的影响,使得曲轴的弯曲变形十分复杂,其轴线是一条任意的空间曲线。
因而在应用滚压校直这一新技术时,建立科学的校直专家系统来指导滚压加工是问题的关键所在。
专家系统根据被测曲轴的具体情况,通过分析,解决如下问题:在曲轴的哪些轴颈、轴颈的哪个部位施加滚压力;施加滚压力的角度范围,以及在各角度下该施加多大的滚压力;施加滚压力的滚压圈数。
滚压校直后需要对曲轴再进行测量,如果仍然超差,则进行新一轮的滚压校直,直到合格为止。
22)滚压力和滚压圈数的影响。
在确定了需要滚压的轴颈及其角度范围后,还要确定在各滚压区域该施加多大的滚压力。
各主轴颈的径向跳动量与滚压力的大小有关,但两者之间并不成线性关系,而且存在较大的不确定性。
分析产生这一现象的原因,除了材料本身在塑性范围内的受力与变形不成线性比例外,还与工件的残余应力、缺陷、材质不均以及工件的结构尺寸偏差等因素有关。
因此,难以用简单的数学公式对滚压力与曲轴的弯曲变形之间的关系进行精确的表达。
另外,是用较大的滚压力、较少的滚压圈数,还是反之,二者之间为辨证关系。
从提高工效的角度考虑,前者为好;从减少回复变形量出发,后者为佳。
滚压工艺在曲轴生产中的问题解决实例
何军;刘勇;梁德重;张雯君
【期刊名称】《装备制造技术》
【年(卷),期】2013(000)011
【摘要】曲轴是发动机动力输出的主要元件,它的强度直接影响着发动机的性能.滚压工艺作为提升曲轴强度的主要手段,在发动机制造业中得到广泛应用.对曲轴滚压工艺进行总结,并结合工作中遇到的问题及解决措施,对其在生产中的应用进行阐述.【总页数】4页(P145-148)
【作者】何军;刘勇;梁德重;张雯君
【作者单位】上汽通用五菱汽车股份有限公司发动机制造部,广西柳州545007;上汽通用五菱汽车股份有限公司发动机制造部,广西柳州545007;上汽通用五菱汽车股份有限公司发动机制造部,广西柳州545007;上汽通用五菱汽车股份有限公司发动机制造部,广西柳州545007
【正文语种】中文
【中图分类】TK426
【相关文献】
1.曲轴滚压变形分析与滚压校直工艺研究 [J], 宁甲亮
2.基于Deform和BP神经网络的曲轴圆角滚压工艺参数研究 [J], 阮景奎;倪帆;周学良
3.曲轴深滚压工艺及滚压力异常分析和处理 [J], 梁海波;吴启峰
4.乘用车曲轴圆角滚压工艺与设备的应用实践 [J], 叶宗茂; 贺晋兵
5.曲轴圆角滚压加工机理及滚压工艺参数设计 [J], 李锁牢;薛隆泉;边宝丽
因版权原因,仅展示原文概要,查看原文内容请购买。
滚压强化工艺在地铁车辆轮对维修中的应用探讨摘要:针对地铁轮对维修存在的车轴圆弧部位存在应力集中导致疲劳裂纹问题,研究应用滚压强化工艺的效果,探讨运用滚压强化工艺提高表面质量解决地铁车辆轮对生产质量难点的方法。
1 引言在地铁轮对生产过程中,车轴机加工修整后,受结构和工艺局限,圆弧部位的表面质量很难提高,容易出现应力集中,导致车轴疲劳强度降低产生裂纹,对列车安全运营构成安全隐患。
为解决车轴圆弧部位加工质量问题,笔者比较表面高频淬火、喷丸强化、喷涂强化及滚压强化等常用表面强化工艺,重点分析和验证滚压强化这种投入成本低、设备简单的工艺的可行性。
2 滚压强化工艺研究2.1 设备条件研究滚压工艺设备条件,主要考虑两个问题。
一是强化部位,车轴表面强化是要解决外圆弧与圆柱过渡部位的问题。
其次,利用现有的设备条件,避免增加额外投资。
滚轮滚压工具常用于外圆滚压和大直径浅孔滚压,分刚性及弹性两类,工艺验证选用结构相对简单的单滚刚性滚压轮,配合CW6163型卧式车床使用。
滚轮安装在车床刀架上,中心与工件回转中心相平行,考虑车轴钢材牌号为EA1N,笔者采用直径100mm高速钢材质的滚轮,热处理硬度HRC60-65之间。
2.2工艺要点车轴滚压强化工艺主要包括预处理及主要工序。
2.2.1预处理工序(1)无损检测滚压工艺能消除和掩盖部分材料缺陷,影响无损检测的结果,滚压前需要完成车轴组件的无损检测。
(2)控制表面粗糙度车轴滚压部位的加工后表面粗糙度要不大于Ra3.2um,并抛光处理。
(3)清洁滚压接触部件及工具用干净的白棉布和专用清洁剂清洁和检查滚轮和带滚压部位的表面,不得有附着物及凹坑、擦伤和其他微小的表面缺陷。
2.2.2 主要工序(1)将滚轮牢固安装在刀架上,与车轴中心线形成一定的接触夹角(见图1),接触夹角决定滚压量的大小,滚压量在0.005-0.01mm范围之间,硬度增加效果较显著。
图1滚压的接触夹角(2)在车轴的待滚压表面上涂抹薄薄一层无添加剂润滑油,可以降低摩擦系统和滚压温度,提高滚压精度。
曲轴圆角滚压工艺的介绍一、深滚压工艺知识背景Deep rollingDuring deep rolling, a deep-rolling roller moves in circumferentialdirection along the groove using contact pressure which causesa partially plastic deformation of the groove.(在深滚压时,深滚压轮在接触压力下在沟槽中沿着圆周方向移动,这会导致在沟槽的局部发生塑性变形)Deep rolling causes in the marginal layer of the groove(在沟槽边缘层的深滚压导致如下结果)−an improvement of surface hardness,(表面硬度改善)−the creation of internal pressure stress and(产生压应力)−an improvement of surface quality(表面质量提高)This increases the fatigue strength of the deep-rolled components.(这些导致深滚压部件的疲劳强度提高)The increase in fatigue strength is caused by the internal pressure stress effect. (内部的压应力导致了疲劳强度的增加)The internal pressure stress(内部压应力)−delay the growth of cracks up to a stop of crack formation(延缓裂纹的生长,直至裂纹矩阵的停止)and−result in higher endurable oscillation amplitudes due to the mean stress displacement.(由于平均应力的抵消导致工件可以承受更高的振幅)During deep rolling in the crankshaft recess, the hydraulic contact pressure of the deep rollers is applied to the entire circumference of the diameter to be processed, and, independent on the actual angle, between preselectable minimum and maximum pressures.(在曲轴沟槽的的深滚压时,深滚压轮的液压接触压力作用到需要处理直径的整个圆周上,可以在不同的角度上预选最大和最小压力)The number of seamings (workpiece rotations for deep rolling) can be preselected.(深滚压的滚压圈数可以预先选择)Advantages of deep rolling crankshaft main and pin bearing fillet radii(曲轴主轴颈和连杆轴颈圆角滚压的好处)1. Maximum improvement of fatigue strength against other technologies.(和其他技术比较具有对疲劳强度最大的改善)2. Improvement of total indicator runout value after deep rolling by roll straightening.(滚压校直改善总的跳动示值)3. Greater round true errors do not influence the fatigue strength generated by deep rolling and roll straightening, but the machining time of the workpieces may differ.(较大的圆度误差不会影响到由滚压校直产生的疲劳强度,但是工价的加工时间可能会不同)4. Economic technology by:经济的工艺−low tool wear(低刀具磨损)−low energy consumption(低能量消耗)−small floor space(小的战地空间)−low noise level(低噪音)−low influence of temperature(小的环境影响)−clean technology without emission of the surrounding influencing ruinous material.(清洁的技术,不会泄漏对环境有破坏性的物质)5. High production safety(高的生产保险)−machine up time > 97 %(开动率大于97%)−reject rate < 0.05 %(剔除率小于0.05%)−quality controlled components 100 %(100%质量监控)−tool monitoring system(刀具监控系统)−rolling force monitoring system which guarantees that only correct deep rolled parts will be transferred to the next operation(滚压力监控系统,确保只有正确的深滚压工件会传送到下一工位)−on request each deep rolled part will be marked by stamping unit (每一个滚压合格的工件会打上标记)6. Cost saving by undercut design of fillet radii in finish grinding operations because bearing widths – except center thrust bearing - will be finished to tolerance by turn broaching or turn - turn broaching in previous operations. Further for finish grinding bearing diameter of crankshafts with T.I.R. < 0,12 mm lower grinding capacity will berequired.(因为轴颈的宽度,除了止推轴颈,会在前面的工序由车拉或车车拉完成,精磨工序就不用磨侧面和圆角,从而节约成本。
曲轴圆角滚压加工的方法和作用曲轴的强化,常用的有圆角滚压、喷丸、圆角淬火、氮化等,而圆角滚压工艺具有以下的优点:提升疲惫强度的幅度为30%-200%;加工成本低,可使用强度较低的材料;加工时间短(<3分钟/根);工艺简单;设备价格低。
该工艺已在国外广泛应用于汽车内燃机曲轴的制造,尤其在中小功率内燃机及轿车发动机曲轴上使用更加普遍。
典型切线滚压沉割圆角加工时滚轮与曲轴的位置关系,滚轮和曲轴分别绕自身轴线旋转并在圆角处对滚曲轴滚压显著提高曲轴疲劳强度的机理在于:①滚压后形成沿一定层深分布的残余压缩预应力,曲轴滚压强化本质上属于一种预应力强化手段,滚轮在滚压力的作用下,使金属表层产生塑性变形,并产生长久的残余压应力,这种残余压应力可以抵消部分在交变弯曲力矩作用下的拉应力和冲击力,部分或全部消除拉应力,使疲劳强度大幅度提高,一般认为残余压缩预应力是曲轴强度提高的主要原因;·②表层形貌的改变和表层材料的硬化,由于滚轮以较大的滚压力作用在曲轴圆角表面,使表面微观不平度减小,降低圆角粗糙度,减小金属表面的应力集中,使裂纹萌生时的疲劳寿命大大地增加,从而达到提高零件疲劳强度的目的。
另外,滚压后表面微观组织结构发生了变化,如组织硬化、位错密度提高等,从而提高了防疲劳裂纹扩展的能力,使其扩展速率下降。
特别是对于球铁曲轴,由于磨削后在轴颈表面形成铁素体毛刺,这些毛刺用其他加工方法很难完全消除,使轴瓦磨损加大。
而滚压时支撑轮辗过轴颈表面,将毛刺压入轴颈表面,有利于提高轴瓦的寿命,这是球墨铸铁曲轴尤其适合滚压强化的主要原因。
上述分析表明,曲轴滚压强化效果的改善需要从两个方面考虑,即合理控制滚压载荷以获得数值大小适中、分布合理的滚压残余压应力;合理设计并选择滚压运动及结构参数以改善被滚压表面的形貌、消除微观裂纹。
2怎样更好的运用曲轴连杆轴机体、曲轴连杆机构是发动机的主要部分,是发动机产生动力和输出动力的机构,可使活塞的直线往复运动转变为旋转运动。
曲轴圆角滚压强化工艺介绍曲轴圆角滚压强化工艺是提高曲轴疲劳强度最有效的手段之一,是实现曲轴“以铁代钢”的关键工艺。
经圆角滚压后的曲轴产品,由于内部应力的重新分布,必然存在较大的物理变形,工艺过程参数如不加以优化,很容易造成批量的不合格品。
解决形变问题是发挥曲轴圆角滚压工艺优势的门槛。
曲轴是发动机中的主要零件之一,在发动机五大件中是最难保证加工质量的零件。
曲轴服役工况条件恶劣,其失效形式一般是轴颈磨损和疲劳断裂。
疲劳断裂往往是破坏性的,涉及安全方面,必须高度重视。
提高曲轴疲劳强度常见的强化工艺大致有以下五种:1.氮化:曲轴氮化包括气体软氮化、离子氮化和盐浴氮化等。
氮化能提高曲轴疲劳强度的20%-60%,适用于各类曲轴。
2.喷丸:曲轴经喷丸处理后能提高疲劳强度的20%-40%,但因喷丸时须保护轴颈表面,故采用较少。
3.圆角与轴颈同时感应淬火:该强化方式应用于球铁曲轴时,能提高疲劳强度的20%,而应用于钢轴时,则能提高100%以上,故在钢轴中应用比较普遍。
4.圆角滚压:由于国内只有少数厂家实现了曲轴圆角滚压强化工艺,且大多数采用的相关工艺设备是国外引进的,故无具体数据。
根据统计资料:球铁曲轴经圆角滚压后寿命可提高80%-200%,钢轴经圆角滚压后寿命可提高70%-150%。
5.复合强化:就是应用多种强化工艺对曲轴进行强化处理,例如曲轴轴颈氮化加圆角滚压工艺等。
由以上可知,圆角滚压对提高曲轴疲劳强度有显著作用。
目前汽车曲轴以及工程机械用发动机曲轴越来越多的采用圆角滚压强化工艺,国外轿车发动机曲轴几乎全部采用圆角滚压工艺。
由于圆角滚压可大幅度提高疲劳强度,因此它成为曲轴“以铁代钢”的关键工艺。
就目前而言,曲轴圆角滚压强化工艺已成为提高产品竞争力的重要手段。
曲轴圆角滚压强化机理1.曲轴疲劳断裂的原因曲轴在发动机中工作时承受很大的弯曲应力和扭转应力。
如图1所示,曲拐顶部受压力P时,曲拐两内侧圆角过渡处表现为拉应力,主轴圆角过渡处则为压应力;另外,曲轴还承受惯性力矩、输出扭矩、扭振力矩,受力情况十分复杂。