化工仪表及自动化
- 格式:doc
- 大小:1.71 MB
- 文档页数:84
化工仪表及自动化完整版化工仪表及自动化:引领化工产业迈向更高效率随着科技的不断发展,化工产业也在逐步向高效、安全、环保的方向迈进。
在这个过程中,化工仪表及自动化技术发挥着至关重要的作用。
本文将深入探讨化工仪表及自动化的应用与发展,为读者展现这一领域的美好前景。
一、化工仪表的基本概念与作用化工仪表是指在化工产业中使用的各种测量仪器和控制系统。
这些仪表在化工生产中发挥着关键作用,能够监测各种参数,如压力、温度、流量等,从而确保生产过程的安全与稳定。
此外,化工仪表还能提高生产效率,为企业的持续发展提供有力保障。
二、化工仪表的分类与应用领域1、温度仪表:在化工生产中,准确地控制温度至关重要。
温度仪表能够监测和记录物质在变化过程中的温度,为生产提供精确的数据支持。
2、压力仪表:压力仪表主要用于监测化工设备内的压力值,确保设备在安全范围内运行。
3、流量仪表:流量仪表用于测量化工生产中的流体流量,对于流体性质的化工产品,如石油、液态气体等,流量仪表的作用尤为重要。
4、液位仪表:液位仪表用于监测化工设备中的液位位置,避免因液位过高或过低导致设备运行异常。
这些化工仪表广泛应用于化学、制药、石油、轻工等行业,为各个领域的生产过程提供精确的数据支持。
三、化工仪表的自动化技术及其发展现状随着人工智能和大数据等技术的发展,化工仪表的自动化技术也在不断提升。
自动化仪表能够实现自我诊断、调整和修复等功能,大大提高了化工生产的效率和稳定性。
目前,化工仪表的自动化技术正朝着智能化、网络化和集成化的方向发展。
1、智能化:通过内置智能算法和芯片,自动化仪表能够实现自我决策和调整功能,进一步提高生产效率。
2、网络化:通过网络技术,将各个化工仪表连接起来,实现数据的实时传输和共享,为生产管理提供便利。
3、集成化:通过集成化设计,使得化工仪表具有更多的功能,减少了设备的数量和占地面积,降低了生产成本。
四、化工仪表及自动化技术面临的挑战和机遇尽管化工仪表及自动化技术取得了显著成果,但仍面临着一些挑战。
化工仪表及自动化资料ppt课件目录CATALOGUE•化工仪表概述•化工仪表的基本原理•化工仪表的选型与安装•化工自动化概述•化工仪表与自动化的关系•化工仪表及自动化的应用案例01CATALOGUE化工仪表概述用于测量、显示、记录和控制工业生产过程中各种工艺参数的装置或系统。
仪表的定义温度仪表、压力仪表、流量仪表、物位仪表等。
按测量对象分类机械式仪表、电子式仪表、智能式仪表等。
按工作原理分类实验室仪表、工业用仪表、过程控制仪表等。
按使用场合分类仪表的定义与分类高精度测量化工生产对工艺参数的精度要求较高,因此化工仪表需要具备高精度测量的能力。
宽测量范围化工生产过程中工艺参数的变化范围较大,要求化工仪表具有较宽的测量范围。
•高可靠性:化工生产环境恶劣,要求化工仪表能够在高温、高压、腐蚀等环境下稳定工作。
测量工艺参数实时测量并显示生产过程中的温度、压力、流量、物位等工艺参数。
控制生产过程根据工艺要求,通过控制阀等执行机构对生产过程进行自动控制。
保障生产安全及时发现并处理生产过程中的异常情况,保障生产安全。
化工仪表的发展历程早期阶段以机械式仪表为主,如弹簧管压力表、浮子流量计等。
这些仪表结构简单,但精度较低,功能单一。
电子化阶段随着电子技术的发展,电子式仪表逐渐取代机械式仪表。
电子式仪表具有更高的精度和更多的功能,如数字显示、远程传输等。
智能化阶段近年来,随着计算机技术和人工智能技术的发展,智能式仪表开始得到广泛应用。
智能式仪表具有自学习、自适应、自诊断等功能,能够进一步提高生产过程的自动化水平和生产效率。
02CATALOGUE化工仪表的基本原理利用弹性元件受压变形的原理,将压力转换为位移或应变进行测量。
压力测量温度测量流量测量物位测量基于热电偶、热电阻等测温元件,将温度转换为电信号进行测量。
通过测量流体流过管道截面的面积和流速,计算得到流量值。
利用浮力、静压等原理,检测容器内液体或固体的位置高度。
测量原理传输原理模拟信号传输将测量信号转换为标准模拟信号(如4-20mA),通过电缆进行传输。
化工仪表及自动化教案第一章:化工仪表概述1.1 仪表的定义和分类1.2 仪表的作用和重要性1.3 仪表的性能指标1.4 仪表的选用和安装第二章:压力仪表2.1 压力仪表的分类和原理2.2 压力仪表的选用和安装2.3 压力仪表的校验和维护2.4 压力仪表在化工中的应用案例第三章:流量仪表3.1 流量仪表的分类和原理3.2 流量仪表的选用和安装3.3 流量仪表的校验和维护3.4 流量仪表在化工中的应用案例第四章:温度仪表4.1 温度仪表的分类和原理4.2 温度仪表的选用和安装4.3 温度仪表的校验和维护4.4 温度仪表在化工中的应用案例第五章:液位仪表5.1 液位仪表的分类和原理5.2 液位仪表的选用和安装5.3 液位仪表的校验和维护5.4 液位仪表在化工中的应用案例第六章:自动化控制系统基础6.1 自动化控制系统的概念6.2 自动化控制系统的基本组成部分6.3 控制器的分类和原理6.4 控制系统的性能指标和评价第七章:模拟式控制器7.1 模拟式控制器的原理和结构7.2 模拟式控制器的参数设置和调整7.3 模拟式控制器在化工中的应用案例7.4 模拟式控制器的故障诊断和维修第八章:数字式控制器8.1 数字式控制器的原理和结构8.2 数字式控制器的编程和操作8.3 数字式控制器在化工中的应用案例8.4 数字式控制器的故障诊断和维修第九章:执行器9.1 执行器的分类和原理9.2 执行器的选用和安装9.3 执行器在化工中的应用案例9.4 执行器的故障诊断和维修第十章:自动化仪表系统的安全性和可靠性10.1 自动化仪表系统的安全防护措施10.2 自动化仪表系统的可靠性设计10.3 故障检测与诊断技术10.4 系统维护和保养的注意事项第十一章:DCS(分布式控制系统)11.1 DCS的基本概念和组成11.2 DCS的架构和工作原理11.3 DCS在化工企业中的应用案例11.4 DCS的维护与管理第十二章:现场总线与工业以太网12.1 现场总线的概念与分类12.2 工业以太网的技术特点与应用12.3 现场总线与工业以太网在化工仪表中的应用12.4 现场总线与工业以太网的故障诊断与维护第十三章:过程控制仪表与系统13.1 过程控制仪表的分类与原理13.2 过程控制系统的组成与作用13.3 常见过程控制系统在化工中的应用案例13.4 过程控制仪表与系统的故障诊断与维修第十四章:化工过程优化与先进控制14.1 化工过程优化的基本方法14.2 先进控制策略及其在化工中的应用14.3 化工过程模拟与仿真14.4 化工过程优化与先进控制在实际生产中的应用案例第十五章:仪表与自动化在化工安全生产中的应用15.1 仪表与自动化在危险化学品生产中的应用15.2 仪表与自动化在化工环境保护中的应用15.3 仪表与自动化在化工安全生产中的重要作用15.4 安全生产中仪表与自动化的案例分析与总结重点和难点解析本文教案主要涵盖了化工仪表及自动化的基础知识、各类仪表的工作原理和应用、自动化控制系统的组成和性能、执行器的选用和安装、以及仪表系统的安全性和可靠性等内容。
化工仪表及自动化第六版课后习题详细答案1. 化工自动化是化工、炼油、食品、轻工等化工类型生产过程自动化的简称。
在化工设备上,配备上一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的办法,称为化工自动化。
实现化工生产过程自动化的意义:(1)加快生产速度,降低生产成本,提高产品产量和质量。
(2)减轻劳动强度,改善劳动条件。
(3)能够保证生产安全,防止事故发生或扩大,达到延长设备使用寿命,提高设备利用能力的目的。
(4)能改变劳动方式,提高工人文化技术水平,为逐步地消灭体力劳动和脑力劳动之间的差别创造条件。
2、化工自动化主要包括哪些内容?一般要包括自动检测、自动保护、自动操纵和自动控制等方面的内容。
1-3自动控制系统主要由哪些环节组成?解自动控制系统主要由检测变送器、控制器、执行器和被控对象等四个环节组成。
4、自动控制系统主要由哪些环节组成?自动控制系统主要由测量元件与变送器、自动控制器、执行器和被控对象等四个环节组成。
1-5题1-5图为某列管式蒸汽加热器控制流程图。
试分别说明图中PI-307、TRC-303、FRC-305所代表的意义。
题1-5图加热器控制流程图解PI-307表示就地安装的压力指示仪表,工段号为3,仪表序号为07;TRC-303表示集中仪表盘安装的,具有指示记录功能的温度控制仪表;工段号为3,仪表序号为03;FRC-305表示集中仪表盘安装的,具有指示记录功能的流量控制仪表;工段号为3,仪表序号为05。
6、图为某列管式蒸汽加热器控制流程图。
试分别说明图中PI-307、TRC-303、FRC-305所代表的意义。
PI-307表示就地安装的压力指示仪表,工段号为3,仪表序号为07;TRC-303表示集中仪表盘安装的,具有指示记录功能的温度控制仪表;工段号为3,仪表序号为03;FRC-305表示集中仪表盘安装的,具有指示记录功能的流量控制仪表;工段号为3,仪表序号为05。
化工仪表及自动化知识点整理在化工生产过程中,化工仪表及自动化技术起着至关重要的作用。
它不仅能够实时监测生产过程中的各种参数,还能实现对生产设备的自动控制,从而提高生产效率、保证产品质量、降低生产成本以及保障生产安全。
下面,我们来对化工仪表及自动化的一些重要知识点进行整理。
一、化工仪表的分类与特点化工仪表种类繁多,按照测量参数的不同,可以分为温度仪表、压力仪表、流量仪表、液位仪表等。
温度仪表用于测量化工生产中的温度,常见的有热电偶、热电阻等。
热电偶基于热电效应工作,测量范围广,但精度相对较低;热电阻则是利用电阻值随温度的变化来测量温度,精度较高,但测量范围相对较窄。
压力仪表用于测量压力,包括压力表、压力变送器等。
压力表结构简单,直接显示压力值;压力变送器则将压力信号转换为标准电信号输出,便于远程监测和控制。
流量仪表用来测量流体的流量,常见的有节流式流量计、转子流量计、电磁流量计等。
节流式流量计通过测量节流元件前后的压差来计算流量;转子流量计基于浮子在锥形管内的位置变化来反映流量;电磁流量计则是利用电磁感应原理测量导电液体的流量。
液位仪表用于测量液位,有玻璃管液位计、差压式液位计等。
玻璃管液位计直观简单,但适用范围有限;差压式液位计通过测量液位产生的压差来确定液位高度。
二、化工自动化系统的组成化工自动化系统通常由被控对象、检测仪表、控制器和执行器四部分组成。
被控对象是需要进行控制的生产设备或过程,例如化学反应器、精馏塔等。
检测仪表用于获取被控对象的各种参数信息,并将其转换为易于处理和传输的信号。
控制器是自动化系统的核心,它根据检测仪表提供的信号,按照预定的控制策略计算出控制信号。
执行器则根据控制器的输出信号,对被控对象进行操作,实现控制目的。
常见的执行器有调节阀、变频器等。
三、自动控制系统的分类根据不同的分类标准,自动控制系统可以分为多种类型。
按照给定值的形式,可分为定值控制系统、随动控制系统和程序控制系统。
化工仪表及自动化第六版的区别摘要:一、引言二、化工仪表及自动化第六版的区别概述1.内容更新2.理论与实践相结合3.行业应用拓展三、第六版的主要特点1.系统性强2.知识面广3.实用性强4.案例丰富四、第六版的改进之处1.教材结构优化2.内容详实且易懂3.紧密结合实际工程需求五、结语正文:一、引言随着科技的不断发展,化工仪表及自动化领域也迎来了新的突破。
为了适应行业发展的需求,第六版《化工仪表及自动化》教材应运而生。
本文将为您详细解析第六版与前几版的区别,以及第六版的主要特点和改进之处。
二、化工仪表及自动化第六版的区别概述1.内容更新第六版在保留前几版精华内容的基础上,对教材内容进行了全面更新。
它反映了化工仪表及自动化领域最新的技术发展动态,使学生和从业人员能够及时了解行业前沿。
2.理论与实践相结合第六版更加注重理论与实践的紧密结合,通过丰富的案例分析,帮助读者将所学知识应用于实际工程中。
这将有助于提高读者的实际操作能力和解决问题的能力。
3.行业应用拓展第六版在阐述基本原理和应用的基础上,拓展了行业应用领域。
它不仅涵盖了传统的化工、石化、制药等行业,还涉及新能源、环保等新兴领域,为读者提供了更广泛的就业方向。
三、第六版的主要特点1.系统性强第六版教材在内容编排上注重系统性,使读者能够从整体上把握化工仪表及自动化领域的知识体系。
2.知识面广第六版涵盖了化工仪表及自动化的基本原理、各类仪表设备、控制系统、工程应用等方面的内容,知识面广泛。
3.实用性强第六版在阐述理论知识的同时,注重实用性。
它提供了大量实际工程案例,帮助读者学以致用,提高实际操作能力。
4.案例丰富第六版教材提供了丰富的案例分析,使读者能够通过实际工程案例加深对理论知识的理解,提高解决问题的能力。
四、第六版的改进之处1.教材结构优化第六版在教材结构上进行了优化,使知识体系更加系统、清晰。
2.内容详实且易懂第六版教材在保留前几版精华内容的基础上,对文字表述进行了优化,使内容更加详实且易懂。
化工仪表及自动课程设计一、课程目标知识目标:1. 理解化工仪表及自动化基本原理,掌握常见仪表的工作原理及使用方法。
2. 学会分析化工过程中自动化控制系统的需求,能够正确选择和配置仪表。
3. 掌握自动化控制系统的设计原则,能够运用相关知识进行简单的控制系统设计。
技能目标:1. 能够独立操作常见化工仪表,进行数据采集、处理和传输。
2. 具备分析和解决化工自动化控制系统故障的能力。
3. 能够运用计算机辅助设计软件进行自动化控制系统的设计和仿真。
情感态度价值观目标:1. 培养学生对化工仪表及自动化技术的兴趣,激发学习热情。
2. 增强学生的团队合作意识,培养协同解决问题的能力。
3. 提高学生的环保意识,使学生认识到化工自动化技术在节能减排方面的重要性。
课程性质:本课程为实践性较强的学科,要求学生将理论知识与实际操作相结合,提高解决实际问题的能力。
学生特点:学生具备一定的化工基础知识和动手能力,对新技术和新设备充满好奇。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和创新能力。
通过课程学习,使学生能够达到上述具体的学习成果。
二、教学内容1. 化工仪表原理:介绍压力、流量、温度、液位等常见仪表的测量原理、结构及特点,结合教材第1章内容。
2. 自动化控制系统:讲解自动化控制系统的基本概念、组成及分类,分析典型控制系统的原理,对应教材第2章。
3. 控制仪表及设备:学习控制器、执行器等控制仪表的原理与选型,操作和维护方法,参考教材第3章。
4. 控制系统设计:阐述控制系统设计的原则、步骤和方法,结合实际案例进行分析,依据教材第4章。
5. 计算机辅助设计:教授运用CAD等软件进行自动化控制系统设计的方法,结合教材第5章。
6. 实践操作与仿真:组织学生进行化工仪表操作、控制系统搭建及仿真实验,巩固理论知识,锻炼动手能力,对应教材第6章。
教学内容安排和进度:1. 第1-2周:学习化工仪表原理及自动化控制系统基本概念。
化工仪表及自动化论文在化工生产领域,化工仪表及自动化技术发挥着至关重要的作用。
它们不仅能够实时监测生产过程中的各种参数,还能实现对生产过程的精确控制,从而提高生产效率、保障产品质量、确保生产安全。
化工仪表是用于测量、显示、控制和记录化工生产过程中各种物理量和化学量的仪器设备。
常见的化工仪表包括温度仪表、压力仪表、流量仪表、液位仪表、成分分析仪表等。
这些仪表通过传感器将被测量的物理量或化学量转换为电信号或其他易于处理和传输的信号,然后经过信号处理和转换,最终以直观的数字、图形或指针形式显示出来。
温度仪表是化工生产中常用的仪表之一。
根据测量原理的不同,温度仪表可以分为热电偶温度计、热电阻温度计和红外线温度计等。
热电偶温度计利用两种不同金属材料组成的热电偶在温度变化时产生的热电势来测量温度,其测量范围广,适用于高温环境。
热电阻温度计则是利用金属材料的电阻值随温度变化的特性来测量温度,具有测量精度高、稳定性好等优点。
红外线温度计则通过测量物体表面发出的红外线能量来确定温度,适用于非接触式测量和快速测温。
压力仪表用于测量化工生产过程中的压力参数。
常见的压力仪表有弹簧管式压力表、压力变送器和差压变送器等。
弹簧管式压力表通过弹簧管的变形来测量压力,结构简单、使用方便,但测量精度相对较低。
压力变送器和差压变送器则将压力信号转换为标准的电信号输出,便于远程传输和自动控制,具有测量精度高、可靠性强等优点。
流量仪表用于测量化工生产过程中流体的流量。
常见的流量仪表有节流式流量计、电磁流量计、涡街流量计和质量流量计等。
节流式流量计基于流体通过节流装置时产生的压差来测量流量,具有结构简单、成本低等优点,但测量范围较窄。
电磁流量计利用电磁感应原理测量导电液体的流量,测量精度高、适用范围广,但对介质的导电性有一定要求。
涡街流量计通过检测流体流经漩涡发生体时产生的漩涡频率来测量流量,适用于气体和液体的测量。
质量流量计则直接测量流体的质量流量,不受流体温度、压力和密度等因素的影响,测量精度高,但价格相对较高。
化工仪表及自动化绪论内容提要⏹化工自动化的意义及目的⏹化工自动化的发展概况⏹化工仪表及自动化系统的分类化工自动化的意义及目的⏹加快生产速度、降低生产成本、提高产品产量和质量。
⏹减轻劳动强度、改善劳动条件。
⏹能够保证生产安全,防止事故发生或扩大,达到延长设备使用寿命,提高设备利用率、保障人身安全的目的。
⏹生产过程自动化的实现,能根本改变劳动方式,提高工人文化技术水平,以适应当代信息技术革命和信息产业革命的需要。
化工自动化的发展情况⏹20世纪40年代以前➢绝大多数化工生产处于手工操作状况,操作工人根据反映主要参数的仪表指示情况,用人工来改变操作条件,生产过程单凭经验进行。
低效率,花费庞大。
⏹20世纪50年代到60年代➢人们对化工生产各种单元操作进行了大量的开发工作,使得化工生产过程朝着大规模、高效率、连续生产、综合利用方向迅速发展。
⏹20世纪70年代以来,化工自动化技术水平得到了很大的提高⏹20世纪70年代,计算机开始用于控制生产过程,出现了计算机控制系统⏹20世纪80年代末至90年代,现场总线和现场总线控制系统得到了迅速的发展化工仪表及自动化系统的分类按功能不同,分四类:检测仪表 (包括各种参数的测量和变送)显示仪表(包括模拟量显示和数字量显示)控制仪表(包括气动、电动控制仪表及数字式控制器)执行器(包括气动、电动、液动等执行器)图0-1 各类仪表之间的关系1.自动检测系统利用各种仪表对生产过程中主要工艺参数进行测量、指示或记录的部分。
作用:对过程信息的获取与记录作用。
图0-2 热交换器自动检测系统示意图自动检测系统中主要的自动化装敏感元件传感器显示仪表敏感元件对被测变量作出响应,把它转换为适合测量的物理量。
传感器对检测元件输出的物理量信号作进一步信号转换显示仪表将检测结果以指针位移、数字、图像等形式,准确地指示、记录或储存。
2.自动信号和联锁保护系统对某些关键性参数设有自动信号联锁保护装置,是生产过程中的一种安全装置。
自动信号联锁保护电路按主要构成元件不同分类:有触点式、无触点式两类3.自动操纵及自动开停车系统自动操纵系统可以根据预先规定的步骤自动地对生产设备进行某种周期性操作。
自动开停车系统可以按照预先规定好的步骤,将生产过程自动地投入运行或自动停车。
4.自动控制系统对生产中某些关键性参数进行自动控制,使它们在受到外界干扰的影响而偏离正常状态时,能自动地调回到规定的数值范围内。
本学科的作用通过本门课程的学习,应能了解主要工艺参数(温度、压力、流量及物位)的检测方法及其仪表的工作原理及特点;能根据工艺要求,正确地选用和使用常见的检测仪表及控制仪表;能了解化工自动化的初步知识,理解基本控制规律,懂得控制器参数是如何影响控制质量的;能根据工艺的需要,和自控设计人员共同讨论和提出合理的自动控制方案;能为自控设计提供正确的工艺条件和数据;能在生产开停车过程中,初步掌握自动控制系统的投运及控制器的参数整定;能了解检测技术和控制技术的发展趋势和最新发展动态。
第一章检测仪表基本知识内容提要:测量过程与测量误差测量仪表的品质指标测量系统中的常见信号类型检测系统中信号的传递形式检测仪表与测量方法的分类化工检测的发展趋势 一、测量过程与测量误差测量是用实验的方法,求出某个量的大小。
间接测量测量实质:是将被测参数与其相应的测量单位进行比较的过程。
测量误差: (测量值)与被测参数的真实值之间的差距。
测量误差按其产生原因的不同,可以分为三类: 系统误差疏忽误差 偶然误差绝对误差:x I :仪表指示值 x t :被测量的真值由于真值无法得到相对误差:二、检测仪表的品质指标 1.测量仪表的准确度(精确度)qVQ =举例测一段导线的长度tI x x -=∆0x x -=∆x :被校表的读数值,x 0 :标准表的读数值t t Ix x x x x x x --=∆=Λ或00说明:仪表的测量误差可以用绝对误差Δ来表示。
但是,仪表的绝对误差在测量范围内的各点不相同。
因此,常说的“绝对误差”指的是绝对误差中的最大值Δm ax 。
三、检测仪表的品质指标小结:仪表的δ允越大,表示它的精确度越低;反之,仪表的δ允越小,表示仪表的精确度越高。
将仪表的允许相对百分误差去掉“±”号及“%”号,便可以用来确定仪表的精确度等级。
目前常用的精确度等级有0.005,0.02,0.05,0.1,0.2,0.4,0.5,1.0,1.5,2.5,4.0等。
举例:例1-1 某台测温仪表的测温范围为200~700℃,校验该表时得到的最大绝对误差为±4℃,试确定该仪表的相对百分误差与准确度等级。
解: 该仪表的相对百分误差为如果将该仪表的δ去掉“±”号与“%”号,其数值为0.8。
由于国家规定的精度等级中没有0.8级仪表,同时,该仪表的误差超过了0.5级仪表所允许的最大误差,所以,这台测温仪表的精度等级为1.0级。
仪表的准确度等级是衡量仪表质量优劣的重要指标之一。
准确度等级数值越小,就表征该仪表的准确度等级越高,仪表的准确度越高。
工业现场用的测量仪表,其准确度大多在0.5级以下。
仪表的精度等级一般可用不同的符号形式标志在仪表面板上。
注意:在工业上应用时,对检测仪表准确度的要求,应根据生产操作的实际情况和该参数两大影响因素 绝对误差和仪表的标尺范围%100max⨯-∆=标尺下限值标尺上限值δ相对百分误差δ允许误差%100⨯-±=标尺下限值标尺上限值差值仪表允许的最大绝对误允δ举例1.51.0如:%8.0%1002007004±=⨯-±=δ对整个工艺过程的影响程度所提供的误差允许范围来确定,这样才能保证生产的经济性和合理性。
2.检测仪表的恒定度变差是指在外界条件不变的情况下,用同一仪表对被测量在仪表全部测量范围内进行正反行程(即被测参数逐渐由小到大和逐渐由大到小)测量时,被测量值正行和反行所得到的两条特性曲线之间的差值。
仪表的变差不能超出仪表的允许误差,否则应及时检修。
3.灵敏度与灵敏限仪表的灵敏度是指仪表指针的线位移或角位移,与引起这个位移的被测参数变化量的比值。
即式中,S为仪表的灵敏度;Δα为指针的线位移或角位移;Δx为引起Δα所需的被测参数变化量。
仪表的灵敏限是指能引起仪表指针发生动作的被测参数的最小变化量。
通常仪表灵敏限的数值应不大于仪表允许绝对误差的一半。
注意:上述指标仅适用于指针式仪表。
在数字式仪表中,往往用分辨率表示。
4.反应时间反应时间就是用来衡量仪表能不能尽快反映出参数变化的品质指标。
反应时间长,说明仪表需要较长时间才能给出准确的指示值,那就不宜用来测量变化频繁的参数。
仪表反应时间的长短,实际上反映了仪表动态特性的好坏。
图1-1 测量仪表的变差%100⨯-=标尺下限值标尺上限值最大绝对差值变差x S ∆∆=α5.线性度线性度是表征线性刻度仪表的输出量与输入量的实际校准曲线与理论直线的吻合程度。
通常总是希望测量仪表的输出与输入之间呈线性关系。
式中,δf为线性度(又称非线性误差);Δfmax 为校准曲线对于理论直线的最大偏差(以仪表示值的单位计算)。
6.重复性重复性表示检测仪表在被测参数按同一方向作全量程连续多次变动时所得标定特性曲线不一致的程度。
若标定的特性曲线一致,重复性就好,重复性误差就小。
仪表的反应时间有不同的表示方法当输入信号突然变化一个数值后,输出信号将由原始值逐渐变化到新的稳态值。
仪表的输出信号由开始变化到新稳态值的63.2%(95%)所用的时间,可用来表示反应时间。
图1-2 线性度示意图%100max⨯∆=仪表量程f f δ%100max⨯∆=仪表量程Z Z δ三、检测系统中的常见信号类型作用于检测装置输入端的被测信号,通常要转换成以下几种便于传输和显示的信号类型: 1.位移信号2.压力信号 3.电气信号 4.光信号四、检测系统中信号的传递形式 1. 模拟信号在时间上是连续变化的, 即在任何瞬时都可以确定其数值的信号。
2. 数字信号数字信号是一种以离散形式出现的不连续信号,通常用二进制数“0”和“1”组合的代码序列来表示。
3. 开关信号用两种状态或用两个数值范围表示的不连续信号。
五、检测仪表与测量方法的分类 1.检测仪表的分类①依据所测参数的不同,可分成压力 (包括差压、负压)检测仪表、流量检测仪表、物位 (液位)检测仪表、温度检测仪表、物质成分分析仪表及物性检测仪表等。
②按表达示数的方式不同,可分成指示型、记录型、讯号型、远传指示型、累积型等。
③按精度等级及使用场合的不同,可分为实用仪表、范型仪表和标准仪表,分别使用在现场、实验室和标定室。
2.测量方法的分类图1-3 重复性示意图(1)直接测量利用经过标定的仪表对被测参数进行测量,直接从显示结果获得被测参数的具体数值的测量方法。
根据被测参数获得方式的不同,直接测量又有偏差法与平衡法(零位法)之分。
(2)间接测量当被测量不宜直接测量时,可以通过测量与被测量有关的几个相关量后,再经过计算来确定被测量的大小。
六、化工检测的发展趋势 1.检测技术的现代化2.检测仪表的集成化、数字化、智能化 3.软测量技术和虚拟仪器七、例题分析1. 某台具有线性关系的温度变送器,其测温范围为 0~200℃,变送器的输出为 4~20mA 。
对这台温度变送器进行校验,得到下列数据: 输入信号标准温度/℃ 0 输出信号/mA正行程读数x 正正行程读数x 反4 4.02 88.10 12.01 12.1016.01 16.09 20 20.01试根据以上校验数据确定该仪表的变差、准确度等级与线性度。
解:该题的解题步骤如下。
(1)根据仪表的输出范围确定在各温度测试点的输出标准值x 标。
任一温度值的标准输出信号(m A)为直接测量 间接测量按照测量结果的获得过程 4+--=输入下限值输入上限值输出下限值)温度值(输出上限值I例如,当温度为50℃时,对应的输出应为 其余类推。
(2)算出各测试点正、反行程时的绝对误差Δ正与Δ反 ,并算出正、反行程之差Δ变 ,分别填入下表内(计算Δ变时可不考虑符号,取正值)。
输入信号/℃ 0输出信号/mA正行程读数x正 反行程读数x 反 标准值4 4.02 48 8.10 812.0112.10 1216.01 16.09 16 2020.01 20绝对误差/m A正行程Δ正 反行程Δ反0 0.02 0 0.10 0.010.100.01 0.090 0.01 正反行程之差Δ变 0.020.10 0.09 0.080.01 (3)由上表找出最大的绝对误差Δmax ,并计算最大的相对百分误差δma x。
由上表可知去掉δmax 的“±”号及“%”号后,其数值为0.625 ,数值在0.5~1.0之间,由于该表的δmax 已超过0.5级表所允许的δ允,故该表的准确度等级为1.0级。