第十一章 光的干涉和干涉系统
- 格式:doc
- 大小:694.00 KB
- 文档页数:14
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
1.1 (简答)为什么窗户玻璃在日常的日光照射下看不到干涉现象?而有时将两块玻璃叠在一起却会看到无规则的彩色条纹?利用干涉条件讨论这两种情况。
普通玻璃的厚度太大,是光波波长的很多倍,他们的相位差也就太大,不符合干涉条件,干涉条件为:相位相差不大,振动方向一致,频率相同。
1.2. (简答)简述光波半波损失的条件?1.反射光才有半波损失,2从光疏射向光密介质1.3. (简答)教材113页(第三行)说反射式牛顿环的中心圆斑中总是暗纹,那么有办法让中心变成亮斑吗?怎么办?将入射光和观察位置在牛顿环的两侧即可。
2. 选择题:2.1 如图,S1、S 2 是两相干光源到P 点的距离分别为r 1 和r 2,路径S 1P 垂直穿过一块厚度为t 2 ,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(D )[r 2+(n 2-1)t 2-[r 1+(n 1-1)t 1 ]2.2 将一束光分为两束相干光的方法有和法。
分振幅法和同波阵面法。
2.4 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。
如果两滚珠之间的距离L变大,则在L范围内干涉条纹的数目 ,条纹间距(填变化情况)。
数目不变,间距变大2.5. 如图所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长λ=500nm的单色光垂直照射。
看到的反射光的干涉条纹如图b所示。
有些条纹弯曲部分的顶点恰好与其右边的直线部分的切线相切。
则工件的上表面上(凸起还是缺陷),高度或深度是(A) 不平处为凸起纹,最大高度为500nm三. 计算题1 在杨氏双缝实验中,设两缝之间的距离为0.2 mm,在距双缝远的屏上观察干涉条纹,若入射光是波长为400 nm至760 nm的白光,问屏上离零级明纹20 mm 处,那些波长的光最大限度地加强?1.解:已知:d=0.2mm, D=1m, L=20mm依公式:δ=dL/D=kλ∴kλ= dL/D=4×10-3nm=4000nm故当k=10时λ1=400nm k=9 时λ2=444.4nm k=8时λ3=500nm k=7时λ4=571.4nm k=6时λ5=666.7nm 五种波长的光加强。
§11-1 相干光件及获得方法2. 能分析杨氏双缝干涉条件、条纹分布规律和位置;理解劳埃德镜光干涉规律三、教学过程:引言:什么是光的干涉现象?与机械波类似,光的干涉现象表现为在两束光的相遇区域形成稳定的、有强有弱的光强分布。
即在某些地方光振动始终加强(明条纹),在某些地方光振动始终减弱(暗条纹),从而出现明暗相间的干涉条纹图样。
光的干涉现象是波动过程的特征之一。
光的干涉:两束光的相遇区域形成稳定的、有强有弱的光强分布。
实际是满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布。
干涉条纹:所形成的均匀分布的图样。
§11-1相干光一、相干光:两束满足相干条件的光称为相干光1、相干条件(Coherent Condition):这两束光在相遇区域:①振动方向相同;②振动频率相同;③相相位同或相位差保持恒定那么在两束光相遇的区域内就会产生干涉现象。
2、相干光的获得(1)普通光源的发光机理当原子中大量的原子(分子)受外来激励而处于激发状态。
处于激发状态的原子是不稳定的,它要自发地向低能级状态跃迁,并同时向外辐射电磁波。
当这种电磁波的波长在可见光范围内时,即为可见光。
原子的每一次跃迁时间很短(10-8 s )。
由于一次发光的持续时间极短,所以每个原子每一次发光只能发出频率一定、振动方向一定而长度有限的一个波列。
由于原子发光的无规则性,同一个原子先后发出的波列之间,以及不同原子发出的波列之间都没有固定的相位关系,且振动方向与频率也不尽相同,这就决定了两个独立的普通光源发出的光不是相干光,因而不能产生干涉现象。
(2)获得相干光源的两种方法a.原理:将同一光源上同一点或极小区域(可视为点光源)发出的一束光分成两束,让它们经过不同的传播路径后,再使它们相遇,这时,这一对由同一光束分出来的光的频率和振动方向相同,在相遇点的相位差也是恒定的,因而是相干光。
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
图11-47 习题2 图解:设气体折射率为n ,则光程差改变()0n n h ∆=- ()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
解:c λν= λνλν∆∆∴=对于632.8cnm λνλ=⇒=C图11-1889841821010310 1.49810632.8632.810c Hz λλννλλλ---∆∆⨯⨯⨯⨯∴∆=⋅=⋅==⨯⨯⨯ 218417632.810210210L m λλ--⨯===⨯∆⨯6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于1mm ,双孔必须与灯相距离多少? 解:设钨灯波长为λ,则干涉孔径角bcλβ=又∵横向相干宽度为1d mm =∴孔、灯相距0.182dd bcl mβλ⋅=== 取550nm λ=7. 在等倾干涉实验中,若照明光波的波长nm 600=λ,平板的厚度mm h 2=,折射率5.1=n ,其下表面涂上某种高折射率介质(5.1>H n ),问(1)在反射光方向观察到的圆条纹中心是暗还是亮?(2)由中心向外计算,第10个亮纹的半径是多少?(观察望远镜物镜的焦距为20cm )(3)第10个亮环处的条纹间距是多少? 解:(1)0H n n n <<,∴光在两板反射时均产生半波损失,对应的光程差为22 1.50.0020.006nh m ∆==⨯⨯=∴中心条纹的干涉级数为64061010600m λ∆⨯===为整数,所以中心为一亮纹(2)由中心向外,第N 个亮纹的角半径为N θ=100.067rad θ∴==半径为10100.06720013.4r f mm mm θ=⋅=⨯= (3)第十个亮纹处的条纹角间距为 31010 3.358102n rad hλθθ-∆==⨯ ∴间距为10100.67r f mm θ∆=⋅∆=8. 用氦氖激光照明迈克尔逊干涉仪,通过望远镜看到视场内有20个暗环且中心是暗斑。
然后移动反射镜1M ,看到环条纹收缩,并且一一在中心消失了20环,此刻视场内只有10个暗环,试求(1)1M 移动前中心暗斑的干涉级次(设干涉仪分光板1G 不镀膜);(2)1M 移动后第5个暗环的角半径。
解:(1)设移动前暗斑的干涉级次为0m ,则移动后中心级次为020m - 移动前边缘暗纹级次为020m -,对应角半径为1θ=移动后边缘暗纹级次为030m -,对应角半径2θ=()12211020.............................1h h θθ∴=⇒= 又∵()1210 (22)N h h h λλ∆=-== (条纹收缩,h 变小) 1220,10h h λλ== ∴1022h m λλλ+=040.5m =(2)移动后 252cos '2h m λθλ+=()210cos 20.552λλθλ⨯+=-3cos 4θ=∴角半径541.40.72rad θ=︒=9. 在等倾干涉实验中,若平板的厚度和折射率分别是h=3mm 和n=1.5,望远镜的视场角为06,光的波长,450nm =λ问通过望远镜能够看到几个亮纹? 解:设有N 个亮纹,中心级次34022 1.53101222102nh m λλλλ-+⨯⨯⨯+===⨯-12q ∴=最大角半径0.0524θ=12.68N ≤∴可看到12条亮纹10. 用等厚干涉条纹测量玻璃楔板的楔角时,在长达5cm 的范围内共有15个亮纹,玻璃楔板的折射率n=1.52,所用光波波长,600nm =λ求楔角。
解:9560010 5.9100.0522 1.5215rad ne λα--⨯==⨯⨯⨯ 11. 土11-50所示的装置产生的等厚干涉条纹称牛顿环。
证明λN r R 2=,N 和r 分别表示第N 个暗纹和对应的暗纹半径。
λ为照明光波波长,R 为球面 曲率半径。
证明:在O 点空气层厚度为0,此处为一暗斑,设第N 暗斑半径为N r ,由图()22222N r R R h Rh h =--=-Rh 22N r Rh ∴≈又∵第N 暗纹对应空气层 ()22122h N λλ+=+2N h λ=h图11-50 习题12图2r R N λ∴=12. 试根据干涉条纹清晰度的条件(对应于光源中心和边缘点,观察点的光程差∆δ必须小于4λ),证明在楔板表面观察等厚条纹时,光源的许可角度为p θ='1n hn λ,其中h 是观察点处楔板厚度,n 和'n 是板内外折射率。
证明:如图,扩展光源12s s 照明契板W ,张角为2θ,设中心点0s 发出的光线在两表面反射交于P ,则P 点光程差为12nh ∆=(h 为对应厚度),若板极薄时,由1s 发出的光以角1θ入射也交于P 点附近,光程差222cos nh θ∆=(2θ为折射角)222222cos 212sin 2122nh nh nh θθθ⎛⎫⎛⎫∴∆==-≈- ⎪ ⎪⎝⎭⎝⎭由干涉条纹许可清晰度条件,对于10,s s 在P 点光程差小于4λ21224nh λθ∴∆-∆=≤1'4n nh n θλ⎛⎫≤ ⎪⎝⎭∴许可角度12θ≤证毕。
13. 在图11-51中,长度为10cm 的柱面透镜一端与平面玻璃相接触。
另一端与平面玻璃相间隔0.1mm ,透镜的曲率半径为1m 。
问:(1)在单色光垂直照射下看到的条纹形状怎样?(2)在透镜长度方向及于之垂直的方向上,由接触点向外计算,第N 个暗条纹到接触点的距离是多少?设照明广博波长nm 500=λ。
高0.1mm图11-51 习题14图解:(1)沿轴方向为平行条纹,沿半径方向为间距增加的圆条纹,如图(2)∵接触点光程差为2λ∴为暗纹 沿轴方向,第N 个暗纹有2h N λ=⋅∴距离93500100.252210hN Nd Nmm λθθ--⨯====⨯沿半径方向N r ===14. 假设照明迈克耳逊干涉仪的光源发出波长为1λ和2λ的两个单色光波,1λ=2λ+λ∆,且<<∆λ1λ,这样,当平面镜M 1移动时,干涉条纹呈周期性地消失和再现,从而使条纹可见度作周期性变化,(1)试求条纹可见度随光程差的变化规律;(2)相继两次条纹消失时,平面镜M 1移动的距离∆h ;(3)对于钠灯,设1λ=589.0nm 和2λ=589.6nm 均为单色光,求∆h 的值。
解:(1)当1λ的亮纹与2λ的 亮纹重合时,太欧文可见度最好,1λ与2λ的亮暗纹重合时条纹消失,此时光程差相当于1λ的整数倍和2λ的半整数倍(反之亦然),即11212'()2h m m λλ∆=+∆==+式中假设2cos 1θ=,'∆为附加光程差(未镀膜时为2λ) ∴()21211212'2'2'............12h h h m m λλλλλ+∆+∆+∆-+=-=⋅∆ 当1M 移动时干涉差增加1,所以()211212()'1............................22h h m m λλλ+∆+∆-++=⋅∆(1)(2)式相减,得到122h λλλ∆=∆ (2) 0.289h mm ∆=15. 图11-52是用泰曼干涉仪测量气体折射率的示意图,其中D 1和D 2是两个长度为10cm 的真空气室,端面分别与光束II I 和垂直。
在观察到单色光照明(λ=589.3nm )产生的干涉条纹后,缓慢向气室D 2充氧气,最后发现条纹移动了92个,(1)计算氧气的折射率;(2)若测量条纹精度为101条纹,求折射率的测量精度。
解:(1)条纹移动92个,相当于光程差变化92λ∆=设氧气折射率为n 氧, ()210.192n λ∴-⨯=氧 n 氧=1.000271(2)若条纹测量误差为N ∆,周围折射率误差有9720.1589.310 2.9510220.1l n N N n l λλ--∆=∆⋅∆⋅⨯⨯∆===⨯⨯ 16. 红宝石激光棒两端面平行差为10'',将其置于泰曼干涉仪的一支光路中,光波的波长为632.8nm,棒放入前,仪器调整为无干涉条纹,问应该看到间距多大的条纹?设红宝石棒的折射率n=1.76.解:契角为α,光经激光棒后偏转()21n α-∴两光波产生的条纹间距为()8.621e mm n λα==-17. 将一个波长稍小于nm 600的光波与一个波长为nm 600的光波在F-P 干涉上比较,当F-P 干涉仪两镜面间距改变mm 5.1时,两光波的条纹就重合一次,试求未知光图11-52 习题16图波的波长。