工程光学习题参考答案第十一章 光的干涉和干涉系统
- 格式:doc
- 大小:703.50 KB
- 文档页数:14
光学教程课后习题答案光学教程课后习题答案光学作为物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象,是一门既有理论基础又有实践应用的学科。
在学习光学的过程中,课后习题是巩固知识、提高理解能力的重要环节。
下面我将为大家提供一些光学教程课后习题的答案,希望对大家的学习有所帮助。
1. 什么是光的折射?折射定律是什么?光的折射是指光线从一种介质传播到另一种介质时,由于介质的光密度不同,光线的传播方向发生改变的现象。
折射定律是描述光的折射现象的基本规律,它可以用一个简单的数学公式表示:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂分别表示两种介质的折射率,θ₁和θ₂分别表示光线在两种介质中的入射角和折射角。
2. 什么是光的干涉?干涉定律是什么?光的干涉是指两束或多束光线相遇时产生的明暗交替的干涉条纹的现象。
干涉定律是描述光的干涉现象的基本规律,它可以用一个简单的数学公式表示:d·sinθ = mλ,其中d表示两个光源之间的距离,θ表示干涉条纹的倾斜角,m 表示干涉条纹的序数,λ表示光的波长。
3. 什么是光的衍射?衍射定律是什么?光的衍射是指光通过一个孔或绕过一个障碍物后,发生偏折和扩散的现象。
衍射定律是描述光的衍射现象的基本规律,它可以用一个简单的数学公式表示:a·sinθ = mλ,其中a表示衍射孔的尺寸,θ表示衍射角,m表示衍射条纹的序数,λ表示光的波长。
4. 什么是光的反射?反射定律是什么?光的反射是指光线从一种介质射向另一种介质的界面时,由于介质的光密度不同,光线发生改变方向的现象。
反射定律是描述光的反射现象的基本规律,它可以用一个简单的数学公式表示:θ₁ = θ₂,其中θ₁和θ₂分别表示光线在入射介质和反射介质中的入射角和反射角。
5. 什么是光的色散?色散定律是什么?光的色散是指光通过一个介质时,由于介质的折射率与波长有关,不同波长的光线被折射的角度不同,从而产生彩虹色的现象。
光的⼲涉(有答案)光的⼲涉⼀、⼲涉的相关知识点1、双缝⼲涉:由同⼀光源发出的光经双缝后,在屏上出现明暗相间的条纹.⽩光的双缝⼲涉的条纹是中央为⽩⾊条纹,两边为彩⾊条纹,单⾊光的双缝⼲涉中相邻亮条纹间距离为Δx = Δx =l dλ 2、薄膜⼲涉:利⽤薄膜(如肥皂液薄膜) 前后两⾯反射的光相遇⽽形成的.图样中同⼀条亮(或暗)条纹上所对应的薄膜厚度相同⼆、双缝⼲涉1、⼀束⽩光在真空中通过双缝后在屏上观察到的⼲涉条纹,除中央⽩⾊亮纹外,两侧还有彩⾊条纹,其原因是 ( )A .各⾊光的波长不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同B .各⾊光的速度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同C .各⾊光的强度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同D .上述说法都不正确答案 A解析⽩光包含各种颜⾊的光,它们的波长不同,在相同条件下做双缝⼲涉实验时,它们的⼲涉条纹间距不同,所以在中央亮条纹两侧出现彩⾊条纹,A 正确.2、 (2011·北京·14)如图所⽰的双缝⼲涉实验,⽤绿光照射单缝S 时,在光屏P 上观察到⼲涉条纹.要得到相邻条纹间距更⼤的⼲涉图样,可以 ( )A .增⼤S1与S 2的间距B .减⼩双缝屏到光屏的距离C .将绿光换为红光D .将绿光换为紫光答案 C解析在双缝⼲涉实验中,相邻两条亮纹(或暗纹)间的距离Δx =l dλ,要想增⼤条纹间距可以减⼩两缝间距d ,或者增⼤双缝屏到光屏的距离l ,或者换⽤波长更长的光做实验.由此可知,选项C 正确,选项A 、B 、D 错误.3、双缝⼲涉实验装置如图所⽰,绿光通过单缝S 后,投射到具有双缝的挡板上,双缝S 1和S 2与单缝的距离相等,光通过双缝后在与双缝平⾏的屏上形成⼲涉条纹.屏上O 点距双缝S 1和S 2的距离相等,P 点是距O 点最近的第⼀条亮条纹.如果将⼊射的单⾊光换成红光或蓝光,讨论屏上O 点及其上⽅的⼲涉条纹的情况是 ( )A.O点是红光的亮条纹B.O点不是蓝光的亮条纹C.红光的第⼀条亮条纹在P点的上⽅D.蓝光的第⼀条亮条纹在P点的上⽅答案AC解析O点处波程差为零,对于任何光都是振动加强点,均为亮条纹,故B错;红光的波长较长,蓝光的波长较短,根据Δx=ldλ可知,C正确.4、关于光的⼲涉现象,下列说法正确的是()A.在波峰与波峰叠加处,将出现亮条纹;在波⾕与波⾕叠加处,将出现暗条纹B.在双缝⼲涉实验中,光屏上距两狭缝的路程差为1个波长的某位置,将出现亮纹C.把⼊射光由黄光换成紫光,两相邻亮条纹间的距离变窄D.当薄膜⼲涉的条纹是等间距的平⾏线时,说明薄膜的厚度处处相等答案BC解析在波峰与波峰叠加处,或在波⾕与波⾕叠加处,都是振动加强区,将出现亮条纹,选项A错误;在双缝⼲涉实验中,出现亮纹的条件是光屏上某位置距两狭缝的路程差为波长的整数倍,出现暗纹的条件是光屏上某位置距两狭缝的路程差为半波长的奇数倍,选项B正确;条纹间距公式Δx=ldλ,λ黄>λ紫,选项C正确;薄膜⼲涉实验中的薄膜是“楔形”空⽓膜,选项D错误.5、关于光的⼲涉,下列说法中正确的是()A.在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是不等的B.在双缝⼲涉现象⾥,把⼊射光由红光换成紫光,相邻两个明条纹间距将变宽C.只有频率相同的两列光波才能产⽣⼲涉D.频率不同的两列光波也能产⽣⼲涉现象,只是不稳定答案 C解析在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是相等的,A错误;由条纹间距Δx=ldλ,⼊射光的波长越长,相邻两个明条纹间距越⼤,因此,把⼊射光由红光换成紫光,相邻两个明条纹间距将变窄,B错误;两列光波产⽣⼲涉时,频率必须相同,C正确,D错误.6、如图所⽰,⼀束复⾊光由真空射向半圆形玻璃砖的圆⼼,经玻璃砖后分为两束单⾊光a、b,则()A.玻璃中a光波长⼤于b光波长B.玻璃中a光折射率⼤于b光折射率C .逐渐增⼤⼊射⾓i ,a 光⽐b 光先发⽣全反射D .利⽤同⼀双缝⼲涉实验装置,a 光产⽣的⼲涉条纹间距⽐b 光⼤ad7、在双缝⼲涉实验中,双缝到光屏上P 点的距离之差Δr =0.6 µm ;分别⽤频率为f 1=5.×1014 Hz 和f 2=7.5×1014 Hz 的单⾊光垂直照射双缝,则P 点出现明、暗条纹的情况是A .⽤频率为f 1的单⾊光照射时,出现明条纹B .⽤频率为f 2的单⾊光照射时,出现明条纹C .⽤频率为f 1的单⾊光照射时,出现暗条纹D .⽤频率为f 2的单⾊光照射时,出现暗条纹答案 AD解析根据c =λf ,可得两种单⾊光波长分别为:λ1=c f 1=3×1085×1014m =0.6 µm λ2=c f 2=3×1087.5×1014m =0.4 µm 与题给条件(Δr =0.6 µm)⽐较可知Δr =λ1=32λ2,故⽤频率为f 1的光照射双缝时,P 点出现明条纹;⽤频率为f 2的光照射双缝时,P 点出现暗条纹.8、如图所⽰,在双缝⼲涉实验中,S 1和S 2为双缝,P 是光屏上的⼀点,已知P 点与S 1、S 2距离之差为2.1×10-6 m ,分别⽤A 、B 两种单⾊光在空⽓中做双缝⼲涉实验,问P 点是亮条纹还是暗条纹?(1)已知A 光在折射率为1.5的介质中波长为4×10-7 m ;(2)已知B 光在某种介质中波长为3.15×10-7 m ,当B 光从这种介质射向空⽓时,临界⾓为37°;(3)若让A 光照射S 1,B 光照射S 2,试分析光屏上能观察到的现象.解析 (1)设A 光在空⽓中波长为λ1,在介质中波长为λ2,由n =c v =λ1λ2,得λ1=nλ2=1.5×4×10-7 m =6×10-7 m 根据路程差Δr =2.1×10-6m ,所以N 1=Δr λ1=2.1×10-66×10-7=3.5 由此可知,从S 1和S 2到P 点的路程差是波长λ1的3.5倍,所以P 点为暗条纹.(2)根据临界⾓与折射率的关系sin C =1n 得n =1sin 37°=53由此可知,B 光在空⽓中波长λ3为:λ3=nλ介=53×3.15×10-7 m =5.25×10-7 m 路程差Δr 和波长λ3的关系为:N 2=Δr λ3=2.1×10-65.25×10-7=4 可见,⽤B 光做光源,P 点为亮条纹.(3)若让A 光和B 光分别照射S 1和S 2,这时既不能发⽣⼲涉,也不发⽣衍射,此时在光屏上只能观察到亮光.答案 (1)暗条纹 (2)亮条纹 (3)见解析9、如图所⽰,在双缝⼲涉实验中,已知SS 1=SS 2,且S 1、S 2到光屏上P 点的路程差Δr =1.5×10-6 m. (1)当S 为λ=0.6 µm 的单⾊光源时,在P 点处将形成______条纹.(2)当S 为λ=0.5 µm 的单⾊光源时,在P 点处将形成______条纹.(均选填“明”或“暗”)答案 (1)暗 (2)明解析 (1)当λ=0.6 µm =0.6×10-6 m 时, Δr =1.5×10-6 m =212λ.在P 点处将形成暗条纹. (2)当λ=0.5 µm =0.5×10-6 m 时,Δr =1.5×10-6 m =3λ,在P 点处将形成明条纹10、如图所⽰,a 、b 为两束不同频率的单⾊光,以45°的⼊射⾓射到玻璃砖的上表⾯,直线OO ′与玻璃砖垂直且与其上表⾯交于N 点,⼊射点A 、B 到N 点的距离相等,经玻璃砖上表⾯折射后两束光相交于图中的P 点,则下列说法正确的是 ( )A .在真空中,a 光的传播速度⼤于b 光的传播速度B .在玻璃中,a 光的传播速度⼩于b 光的传播速度C .同时增⼤⼊射⾓(⼊射⾓始终⼩于90°),则a 光在下表⾯先发⽣全反射D .对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽答案 D解析各种光在真空中的光速相同,选项A 错误;根据题图,⼊射⾓相同,a 光的折射⾓较⼤,所以a 光的折射率较⼩,由光在介质中的光速v =c n得,a 光在介质中的传播速度较⼤,选项B 错误;根据临界⾓公式C =arcsin 1n可知,a 光的临界⾓较⼤,b 光在下表⾯先发⽣全反射,选项C 错误;a 光的折射率较⼩,波长较长,根据公式Δx =l dλ可知,对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽,选项D 正确.三、薄膜⼲涉11、劈尖⼲涉是⼀种薄膜⼲涉,其装置如图7甲所⽰.将⼀块平板玻璃放置在另⼀平板玻璃之上,在⼀端夹⼊两张纸⽚,从⽽在两玻璃表⾯之间形成⼀个劈形空⽓薄膜.当光垂直⼊射后,从上往下看到的⼲涉条纹如图⼄所⽰,⼲涉条纹有如下两个特点:图7(1)任意⼀条明条纹或暗条纹所在位置下⾯的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去⼀张纸⽚,则当光垂直⼊射到新劈形空⽓薄膜后,从上往下观察到的⼲涉条纹将如何变化?答案见解析解析光线在空⽓膜的上下表⾯上反射,并发⽣⼲涉,形成⼲涉条纹,设空⽓膜顶⾓为θ,d 1、d 2处为两相邻明条纹,如图所⽰,则两处光的路程差分别为Δx 1=2d 1,Δx 2=2d 2,因为Δx 2-Δx 1=λ,所以d 2-d 1=12λ. 设条纹间距为Δl ,则由⼏何关系得d 2-d 1Δl =tan θ,即Δl =λ2tan θ.当抽去⼀张纸⽚时,θ减⼩,Δl 增⼤,即条纹变疏.12、甲所⽰,在⼀块平板玻璃上放置⼀平凸薄透镜,在两者之间形成厚度不均匀的空⽓膜,让⼀束单⼀波长的光垂直⼊射到该装置上,结果在上⽅观察到如图⼄所⽰的同⼼内疏外密的圆环状⼲涉条纹,称为⽜顿环,以下说法正确的是 ( )A .⼲涉现象是由于凸透镜下表⾯反射光和玻璃上表⾯反射光叠加形成的B .⼲涉现象是由于凸透镜上表⾯反射光和玻璃上表⾯反射光叠加形成的C .⼲涉条纹不等间距是因为空⽓膜厚度不是均匀变化的D .⼲涉条纹不等间距是因为空⽓膜厚度是均匀变化的答案 AC解析由于在凸透镜和平板玻璃之间的空⽓形成薄膜,所以形成相⼲光的反射⾯是凸透镜的下表⾯和平板玻璃的上表⾯,故A 正确,由于凸透镜的下表⾯是圆弧⾯,所以形成的薄膜厚度不是均匀变化的,形成不等间距的⼲涉条纹,故C 正确,D 错.。
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
十一章光学经典题型鸡答案一、简答题1、相干光产生的条件是什么?答:相干光产生的条件:两束光频率相同,振动方向相同,相位差恒定2、何谓光程?其物理意义是什么?答:介质折射率n和光在介质内走过的几何路程L的乘积nL叫光程,其物理意义是光程就是把光在媒质中通过的几何路程按相位差相等折合为真空中的路程.使用凸透镜不能引起附加的光程差。
3、什么是菲涅尔衍射、夫琅禾费衍射,两者的区别是什么?答:菲涅耳衍射:在这种衍射中,光源或显示衍射图样的屏,与衍射孔(或障碍物)之间距离是有限的,若光源和屏都距离衍射孔(或障碍物)有限远,也属于菲涅耳衍射。
夫琅禾费衍射:当把光源和屏都移到无限远处时,这种衍射叫做夫琅禾费衍射。
前者是光源—衍射屏、衍射屏—接收屏之间的距离均为有限远或是其中之一是有限远的场合;后者是衍射屏与两者的距离均是无穷远的场合。
理论上夫琅禾费衍射是菲涅耳衍射的一种特殊情形,当场点的距离逐渐增大时,由菲涅耳衍射向夫琅禾费衍射过渡。
4、简述何谓自然光、何谓偏振光、何谓部分偏振光?答:一般光源发出的光,包含着各个方向的光矢量,没有哪一个方向占优势,即在所有可能的方向上,E的振幅都相等,这样的光叫做自然光。
振动只在某一固定方向上的光,叫做线偏振光,简称偏振光。
若某一方向的光振动比与之相垂直方向上的光振动占优势,那么这种光叫做部分偏振光。
5、简述布儒斯特定律的主要内容及发生该现象的条件是什么?答:入射角i 改变时,反射光的偏振化程度也随之改变,当入射角B i 满足12tan n n i B =时,反射光中就只有垂直入射面的光振动,而没有平行于入射面的光振动,这时反射光为偏振光,而折射光仍为部分偏振光,这种规律叫做布儒斯特定律。
条件是入射角B i 满足12tan n n i B =时,可发生。
二、选择题1、杨氏双缝干涉实验是( A ):(A) 分波阵面法双光束干涉 (B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉 (D) 分振幅法多光束干涉2、来自不同光源的两束白光,例如两束手电筒光照射在同一区域内,是不能产生干涉图样的,这是由于( C ):(A) 白光是由不同波长的光构成的 (B) 两光源发出不同强度的光(C) 两个光源是独立的,不是相干光源 (D) 不同波长的光速是不同的3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C ):(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是( C ):(A) 波长不变,介质中的波速减小 (B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小 (D) 介质中的频率减小,波速不变5、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到示意图中的S '位置,则( B )(A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大(D) 中央明纹向下移动,且条纹间距不变6、如图所示,折射率分别为2n ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,且21n n <,32n n >,若用波长为λ的单色光平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( B ):(A) e n 22 (B) 222λ−e n (C) λ−e n 22 (D) 2222n e n λ−7、在杨氏双缝干涉实验中,正确的叙述是( B ):(A) 增大双缝间距,干涉条纹间距也随之增大(B) 增大缝到观察屏之间的距离,干涉条纹间距增大(C) 频率较大的可见光产生的干涉条纹间距较大(D) 将整个实验装置放入水中,干涉条纹间距变大8、由两块玻璃片(7511.n =)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm ,现用波长为7000 Å的单色平行光,从入射角为30︒角的方向射在劈尖的表面,则形成的干涉条纹数为( A ):(A) 27 (B) 56 (C) 40 (D) 1009、光波从光疏媒质垂直入射到光密媒质,当它在界面反射时,其( C ):(A) 相位不变 (B) 频率增大 (C) 相位突变 (D)频率减小10、如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面反射的两束光发生干涉。
第十一章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。
第十一章 光的干涉1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=- DPxS 2S 1R 1 R 2hP 0图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
工程光学考试题及答案高中一、选择题1. 光学成像的基本条件是什么?A. 物体必须在焦点以内B. 物体必须在焦点以外C. 物体必须在焦点上D. 物体必须在焦距以内答案:B2. 凸透镜成像的规律是什么?A. 物远像近像变小B. 物近像远像变大C. 物远像远像变大D. 物近像近像变小答案:B3. 以下哪种情况不属于光的折射现象?A. 光从空气进入水中B. 光从水中进入空气中C. 光从玻璃进入空气中D. 光从空气直接传播答案:D4. 光的三原色是什么?A. 红、绿、蓝B. 红、黄、蓝C. 红、橙、绿D. 蓝、绿、紫答案:A5. 以下哪种光学仪器是利用光的反射原理制成的?A. 望远镜B. 放大镜C. 显微镜D. 潜望镜答案:D二、填空题6. 凸透镜的焦距越短,其成像能力越________。
答案:强7. 当物体位于凸透镜的焦点上时,成像情况是________。
答案:不成像8. 光的折射定律中,入射角和折射角的关系是________。
答案:入射角越大,折射角越大9. 光的干涉现象是指两个或两个以上的________相互叠加的现象。
答案:光波10. 光的衍射现象是指光绕过障碍物继续传播的现象,这种现象说明了光具有________。
答案:波动性三、简答题11. 请简述光的干涉条件。
答案:光的干涉条件包括:光波的频率相同、光波的相位差恒定、光波的振动方向相同。
12. 什么是全反射现象?请简述其产生条件。
答案:全反射现象是指当光从光密介质射向光疏介质,且入射角大于临界角时,光将完全反射回光密介质中。
产生全反射的条件包括:光从光密介质进入光疏介质,入射角大于临界角。
四、计算题13. 已知凸透镜的焦距为10cm,物体距离透镜15cm,求像的性质和位置。
答案:根据凸透镜成像公式1/f = 1/u + 1/v,其中f为焦距,u为物距,v为像距。
代入数据得1/10 = 1/15 + 1/v,解得v = 30cm。
由于物距大于焦距,像距大于物距,所以成像为倒立、放大的实像。
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏 上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).题11-1 图11-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题11-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ). 11-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题11-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )11-4 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( )(A ) 2 个 (B ) 3 个 (C ) 4 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.由题意23sin /λθ=b ,即对应第1 级明纹,单缝分成3 个半波带.正确答案为(B ).11-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,02dsin =±=k λk θ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,答案为(D ). 11-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为45°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) I 0/16 (B ) 3I 0/8 (C ) I 0/8 (D ) I 0/4分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成45°,所以偏振光透过P 2 后光强由马吕斯定律得445cos 0o 212/I I I ==.而P 2和P 3 的偏振化方向也成45°,则透过P 3 后光强变为845cos 0o 223/I I I ==.故答案为(C ).11-7 一束自然光自空气射向一块平板玻璃,如图所示,设入射角等于布儒斯特角i B ,则在界面2 的反射光( )(A ) 是自然光(B ) 是线偏振光且光矢量的振动方向垂直于入射面(C ) 是线偏振光且光矢量的振动方向平行于入射面(D ) 是部分偏振光题11-7 图分析与解 由几何光学知识可知,在界面2 处反射光与折射光仍然垂直,因此光在界面2 处的入射角也是布儒斯特角,根据布儒斯特定律,反射光是线偏振光且光振动方向垂直于入射面.答案为(B ).11-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5 条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x 。
第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。
解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。
试求注入气室内气体的折射率。
解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。
解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。
解:c λν= λνλν∆∆∴=对于632.8cnm λνλ=⇒=89841821010310 1.49810632.8632.810c Hz λλννλλλ---∆∆⨯⨯⨯⨯∴∆=⋅=⋅==⨯⨯⨯ C图11-18218417632.810210210L m λλ--⨯===⨯∆⨯6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于1mm ,双孔必须与灯相距离多少? 解:设钨灯波长为λ,则干涉孔径角bcλβ=又∵横向相干宽度为1d mm =∴孔、灯相距0.182dd bcl mβλ⋅=== 取550nm λ=7. 在等倾干涉实验中,若照明光波的波长nm 600=λ,平板的厚度mm h 2=,折射率5.1=n ,其下表面涂上某种高折射率介质(5.1>H n ),问(1)在反射光方向观察到的圆条纹中心是暗还是亮?(2)由中心向外计算,第10个亮纹的半径是多少?(观察望远镜物镜的焦距为20cm )(3)第10个亮环处的条纹间距是多少? 解:(1)0H n n n <<,∴光在两板反射时均产生半波损失,对应的光程差为22 1.50.0020.006nh m ∆==⨯⨯=∴中心条纹的干涉级数为64061010600m λ∆⨯===为整数,所以中心为一亮纹(2)由中心向外,第N 个亮纹的角半径为N θ=100.067rad θ∴==半径为10100.06720013.4r f mm mm θ=⋅=⨯= (3)第十个亮纹处的条纹角间距为 31010 3.358102n rad hλθθ-∆==⨯ ∴间距为10100.67r f mm θ∆=⋅∆=8. 用氦氖激光照明迈克尔逊干涉仪,通过望远镜看到视场内有20个暗环且中心是暗斑。
然后移动反射镜1M ,看到环条纹收缩,并且一一在中心消失了20环,此刻视场内只有10个暗环,试求(1)1M 移动前中心暗斑的干涉级次(设干涉仪分光板1G 不镀膜);(2)1M 移动后第5个暗环的角半径。
解:(1)设移动前暗斑的干涉级次为0m ,则移动后中心级次为020m - 移动前边缘暗纹级次为020m -,对应角半径为1θ=移动后边缘暗纹级次为030m -,对应角半径2θ=()12211020.............................1h h θθ∴=⇒= 又∵()1210 (22)N h h h λλ∆=-== (条纹收缩,h 变小) 1220,10h h λλ== ∴1022h m λλλ+=040.5m =(2)移动后 252cos '2h m λθλ+=()210cos 20.552λλθλ⨯+=-3cos 4θ=∴角半径541.40.72rad θ=︒=9. 在等倾干涉实验中,若平板的厚度和折射率分别是h=3mm 和n=1.5,望远镜的视场角为06,光的波长,450nm =λ问通过望远镜能够看到几个亮纹? 解:设有N 个亮纹,中心级次34022 1.53101222102nh m λλλλ-+⨯⨯⨯+===⨯-12q ∴=最大角半径0.0524θ=≤12.68N ≤∴可看到12条亮纹10. 用等厚干涉条纹测量玻璃楔板的楔角时,在长达5cm 的范围内共有15个亮纹,玻璃楔板的折射率n=1.52,所用光波波长,600nm =λ求楔角。
解:9560010 5.9100.0522 1.5215rad ne λα--⨯==⨯⨯⨯ 11. 土11-50所示的装置产生的等厚干涉条纹称牛顿环。
证明λN r R 2=,N 和r 分别表示第N 个暗纹和对应的暗纹半径。
λ为照明光波波长,R 为球面 曲率半径。
证明:在O 点空气层厚度为0,此处为一暗斑,设第N 暗斑半径为N r ,由图 ()22222N r R R h Rh h =--=-Rh 22N r Rh ∴≈又∵第N 暗纹对应空气层()22122h N λλ+=+ 2N h λ=2r R N λ∴=12. 试根据干涉条纹清晰度的条件(对应于光源中心和边缘点,观察点的光程差∆δ必h图11-50 习题12图须小于4λ),证明在楔板表面观察等厚条纹时,光源的许可角度为p θ='1n hn λ,其中h 是观察点处楔板厚度,n 和'n 是板内外折射率。
证明:如图,扩展光源12s s 照明契板W ,张角为2θ,设中心点0s 发出的光线在两表面反射交于P ,则P 点光程差为12nh ∆=(h 为对应厚度),若板极薄时,由1s 发出的光以角1θ入射也交于P 点附近,光程差222cos nh θ∆=(2θ为折射角)222222cos 212sin 2122nh nh nh θθθ⎛⎫⎛⎫∴∆==-≈- ⎪ ⎪⎝⎭⎝⎭由干涉条纹许可清晰度条件,对于10,s s 在P 点光程差小于4λ21224nh λθ∴∆-∆=≤1'4n nh n θλ⎛⎫≤ ⎪⎝⎭∴许可角度12θ≤证毕。
13. 在图11-51中,长度为10cm 的柱面透镜一端与平面玻璃相接触。
另一端与平面玻璃相间隔0.1mm ,透镜的曲率半径为1m 。
问:(1)在单色光垂直照射下看到的条纹形状怎样?(2)在透镜长度方向及于之垂直的方向上,由接触点向外计算,第N 个暗条纹到接触点的距离是多少?设照明广博波长nm 500=λ。
解:(1)沿轴方向为平行条纹,沿半径方向为间距增加的圆条纹,如图(2)∵接触点光程差为2λ∴为暗纹 沿轴方向,第N 个暗纹有2h N λ=⋅高0.1mm图11-51 习题14图∴距离93500100.252210hN Nd Nmm λθθ--⨯====⨯沿半径方向N r ===14. 假设照明迈克耳逊干涉仪的光源发出波长为1λ和2λ的两个单色光波,1λ=2λ+λ∆,且<<∆λ1λ,这样,当平面镜M 1移动时,干涉条纹呈周期性地消失和再现,从而使条纹可见度作周期性变化,(1)试求条纹可见度随光程差的变化规律;(2)相继两次条纹消失时,平面镜M 1移动的距离∆h ;(3)对于钠灯,设1λ=589.0nm 和2λ=589.6nm 均为单色光,求∆h 的值。
解:(1)当1λ的亮纹与2λ的 亮纹重合时,太欧文可见度最好,1λ与2λ的亮暗纹重合时条纹消失,此时光程差相当于1λ的整数倍和2λ的半整数倍(反之亦然),即11212'()2h m m λλ∆=+∆==+式中假设2cos 1θ=,'∆为附加光程差(未镀膜时为2λ) ∴()21211212'2'2'............12h h h m m λλλλλ+∆+∆+∆-+=-=⋅∆ 当1M 移动时干涉差增加1,所以()211212()'1............................22h h m m λλλ+∆+∆-++=⋅∆ (1)(2)式相减,得到122h λλλ∆=∆ (2) 0.289h mm ∆=15. 图11-52是用泰曼干涉仪测量气体折射率的示意图,其中D 1和D 2是两个长度为10cm 的真空气室,端面分别与光束II I 和垂直。
在观察到单色光照明(λ=589.3nm )产生的干涉条纹后,缓慢向气室D 2充氧气,最后发现条纹移动了92个,(1)计算氧气的折射率;(2)若测量条纹精度为101条纹,求折射率的测量精度。
解:(1)条纹移动92个,相当于光程差变化92λ∆=设氧气折射率为n 氧, ()210.192n λ∴-⨯=氧 n 氧=1.000271(2)若条纹测量误差为N ∆,周围折射率误差有9720.1589.310 2.9510220.1l n N N n l λλ--∆=∆⋅∆⋅⨯⨯∆===⨯⨯ 16. 红宝石激光棒两端面平行差为10'',将其置于泰曼干涉仪的一支光路中,光波的波长为632.8nm,棒放入前,仪器调整为无干涉条纹,问应该看到间距多大的条纹?设红宝石棒的折射率n=1.76.解:契角为α,光经激光棒后偏转()21n α-∴两光波产生的条纹间距为()8.621e mm n λα==-17. 将一个波长稍小于nm 600的光波与一个波长为nm 600的光波在F-P 干涉上比较,当F-P 干涉仪两镜面间距改变mm 5.1时,两光波的条纹就重合一次,试求未知光波的波长。