当前位置:文档之家› 概率知识

概率知识

概率知识
概率知识

概率知识

(一)考试要求:

1、在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

2、通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。

3、会通过实验获得事件发生的概率.并能运用概率知识解决一些实际问题。

(二)内容分析:

1、事件的类型

(1)必然事件:在一定条件下重复进行试验时,有的事件在每次试验中必然会发生,称为必然事件;

(2)不可能事件:有的事件在每次试验中都不会发生,称为不可能事件;

(3)随机事件:在一定条件下,可能发生,也可能不发生的事件,称为随机事件.

注意:①它们所对应的概率分别为:P(必然事件)=1;P(不可能事件)=0;0

2、概率的意义

一般的,在大量重复试验中,如果事件A发生的频率m

n

会稳定在某个常数p附近,那么这个常数p

就叫做事件A的概率,记作P(A)=p.

注意:概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在,它只是一个理

论值.例如,抛正方体骰子出现点数为1的概率是1

6

,但并不能保证抛6次一定有一次会出现1;又如,

中奖率是98%的摸奖,某人摸了2次但没有摸到奖,这也有可能发生,因为概率再大,它也是随机事件,要一定能摸得到,前提必须保证是必然事件.

3、概率的计算

(1)有限等可能的事件概率的计算:一般的,若在一次试验中,有n种可能的结果,且它们发生的可

能性都相等,事件A包含其中的m种结果,则事件A发生的概率为P(A)= m

n

:可见,计算概率的关键

是探寻出m和n.常用的方法有:

①直接列举法:当一次试验中涉及的因素单一时.

②列表法:就是将随机事件所有可能出现的结果用列表的方式呈现出来,这样符合条件的情况就可直

接得出.此法适合一次试验中涉及两个因素,且可能出现的结果数目较多时.

③画树形图法:它是通过画树形图的手段将所有可能的结果一一列出,给人一目了然的感觉.它适合

一次试验中涉及三个或更多的因素,用列表法显得无能为力的时候.

(2)当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,一般要通过统计频

率来估计概率.

(三)重难点分析:

1、正确区分三个事件;学习概率的有关知识,必须了解随机现象,根据事件发生可能性的大小正确

判断出给定的事件到底是什么事件.不可能事件是指每次都一定没有机会发生;必然事件是指每次一定发生;而随机事件是指有时候会发生,有时候不发生. 2、理清两个关系

(1)概率与频率的关系:频率是指每个对象出现的次数与总次数的比值;而概率是指大量重复试验中,事件A 发生的频率

m

n

稳定下来所接近的某个常数.因此说,我们可用大量重复试验时的频率来估计概率,但不能说频率等于概率.因为它们是两个不同的概念,概率伴随着随机事件客观存在着,只要有一个随机事件存在,那这个随机事件的概率就一定存在;而频率是通过试验得到的,它随试验次数的变化而变化.虽然多次实验的频率能稳定于其理论概率,但无论做多少次试验,试验频率总是理论频率的一个近似值,接近而不相等.

(2)概率与统计的关系: 概率是以频率这一统计量的稳定性为基础的,而统计又离不开概率理论的支

持(如“池塘里有多少尾鱼”等的估计方法的理论依据就是概率原理).用试验的方法估计随机事件发生的概率等活动,本身就是地地道道的一个统计活动,概率的计算实际也是一项统计工作. 3、熟练两种方法: 用列举法计算简单事件发生的概率是概率中的核心知识,而列表法和画树形图法是计算概率常用且有效的两种方法,堪称解决概率问题的“左膀右臂”,因此,需要我们通过解题实践体会两种方法各自的优越性,领悟它们的内涵,做到灵活驾驭,从而使这两种方法成为我们解题的有力武器.

(四)中考试题:

一、选择题 1、(2008年重庆市)今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )

A 、

21 B 、31 C 、41 D 、6

1 2、(2008年湖州市)一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( ) A .

15

B .2

5

C .

35

D .

23

3、(2008年永州) 6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )

A .

6

1

B .3

1

C .

2

1

D .

3

2 4、(2008年安徽省) 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,

某人到达该车站时,显示屏上正好显示火车班次信息的概率是( ) A .

16 B .15 C.14

D .

1

3

5、(2008年宁波市)甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( )

A .

16 B .

14 C .

13 D .

12 6、(2008年泰安市)在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )

A .

14

B .

16

C .

12

D .

34

7、( 2008年杭州市) 在一次质检抽测中, 随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:g ):

492 496 494 495 498 497 501 502 504 496 497

503

506

508

507

492

496

500

501

499

根据以上抽测结果,任买一袋该摊位的食盐, 质量在497.5g ~501.5g 之间的概率为( ) (A)

5

1 (B)

4

1 (C)

10

3 (D)

20

7

8、(2008年郴州市)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ) A . 12 B .13 C . 16 D .1

8

9、(2008年广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是

1

2

,则n 的值是( ) A . 6 B . 3 C . 2 D . 1

10、(2008年内江市) 如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,

两个指针同时落在奇数上的概率是( )

A .

425 B .525

C .

6

25

D .

925

11、(2008年聊城市)同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是( )

A .

1

6

B .

19

C .

112

D .

1136

12、(2008年武汉市) “祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,抽取得三张卡片中含有“祝福”“北京”“奥运”的概率是( ). A.

127 B.19 C.29 D.1

3

. 二、填空题:

13、(2008盐城)抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率为 . 14、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是

15、(2008年湖北省宜昌市)从围棋盒中抓出大把棋子,所抓出棋子的个数是奇数的概率为________. 16、(2008年武汉市)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积。进行了

大量的树木移栽。下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:

依此估计这种幼树成活的概率是 (结果用小数表示,精确到0.1).

17、(2008年益阳) 在一个袋中,装有十个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 --- ) ()()()()(A B A A P B A P A B P μμ== A B A =事件包括的基本事件(样本点)数 事件包括的基本事件(样本点)数 ③ 在几何概型中 --- ) ()()()()(A B A A P B A P A B P μμ== (,,) (,,)A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 条件概率及全概率公式 3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ). 答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令 A ={抽到一数字是3的倍数}; B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么 P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )> P (A |B 1), P (A )<P (A |B 2). 3.2.以下两个定义是否是等价的. 定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为 P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A ) 自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ). 因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.

第一章 概率统计基础知识(2)概率的古典定义与统计定义

二、概率的古典定义与统计定义 二、概率的古典定义与统计定义(p5-11) 确定一个事件的概率有几种方法,这里介绍其中两种最主要的方法,在历史上,这两种方法分别被称为概率的两种定义,即概率的古典定义及统计定义。 (一) 概率的古典定义 用概率的古典定义确定概率的方法的要点如下: (1)所涉及的随机现象只有有限个样本点,设共有n个样本点; (2)每个样本点出现的可能性相同(等可能性); 若事件含有k个样本点,则事件的概率为: (1.1-1) [例1.1-3] [例1.1-3]掷两颗骰子,其样本点可用数组(x , y)表示,其中,x与y分别表示第一与第二颗骰子出现的点数。这一随机现象的样本空间为: 它共含36个样本点,并且每个样本点出现的可能性都相同。参见教材6页图。这个图很多同学看不懂!其实就是x+y=?在坐标系反映出来的问题。 (二)排列与组合 (二)排列与组合 用古典方法求概率,经常需要用到排列与组合的公式。现简要介绍如下: 排列与组合是两类计数公式,它们的获得都基于如下两条计数原理。 (1)乘法原理: 如果做某件事需经k步才能完成,其中做第一步有m1种方法,做第二步m2种方法,做第k步有m k种方法,那么完成这件事共有m1×m2×…×m k种方法。 例如, 甲城到乙城有3条旅游线路,由乙城到丙城有2条旅游

线路,那么从甲城经乙城去丙城共有3×2=6 条旅游线路。 (2) 加法原理: 如果做某件事可由k类不同方法之一去完成,其中在第一类方法中又有m1种完成方法, 在第二类方法中又有m2种完成方法,在第k类方法中又有m k种完成方法, 那么完成这件事共有m1+m2+…+m k种方法。 例如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机,而汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10 个班次供旅游选择。 排列与组合 排列与组合的定义及其计算公式如下: ①排列:从n个不同元素中任取)个元素排成一列称为一个排列。按乘法原理,此种排列共有n×(n1) ×…×(n-r+1) 个,记为。若r=n, 称为全排列,全排列数共有n!个,记为,即:= n×(n-1) ×…×(n-r+1), = n! ②重复排列:从n个不同元素中每次取出一个作记录后放回,再取下一个,如此连续取r次所得的排列称为重复排列。按乘法原理,此种重复排列共有个。注意,这里的r允许大于n。 例如,从10个产品中每次取一个做检验,放回后再取下一个,如此连续抽取4次,所得重复排列数为。假如上述抽取不允许放回,则所得排列数为10×9×8×7=5040 。 ③组合: 从n个不同元素中任取x个元素并成一组 (不考虑他们之间的排列顺序)称为一个组合,此种组合数为: .特别的规定0!=1,因而。另外,在组合中,r个元素"一个接一个取出"与"同时取出"是等同的。例如,从10个产品中任取4个做检验,所有可能取法是从10个中任取4个的组合数,则不同取法的种数为: 这是因为取出的任意一组中的4个产品的全排列有4!=24 种。而这24种排列在组合中只算一种。所以。 注意:排列与组合都是计算"从n个不同元素中任取r个元素"的取法总数公式,他们的主要差别在于: 如果讲究取出元素间的次序,则用排列公式;如果不讲究取出元素间的次序,则用组合公式。至于是否讲究次序,应从具体问题背景加以辨别。 [例1.1-4] [例1.1-4] 一批产品共有个,其中不合格品有个,现从中随机取出n个,问:事

概率初步知识点总结

概率初步知识点总结 一、可能性: 1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件; 2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件; 3.确定事件:必然事件和不可能事件都是确定的; 4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。 5.一般来说,不确定事件发生的可能性是有大小的。. 二、概率: 1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0 3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平

谈条件概率常见问题解题方法

谈条件概率常见问题解题法 摘要:条件概率是高中概率知识较难学的知识点之一,本文在于如何通过条 件概率的概念及性质来总结和概括条件概率的解题方法和常见的应用问题,以利于教师和学生更好地学习条件概率知识。 关键词:条件概率,事件、样本空间 1.条件概率的概念 一般地,设B A ,为两个事件,且0)(>A P ,称=)|(A B P ) ()(A P AB P 为在事件A 发生的条件下,事件B 发生的条件概率。 关于条件概率,有下面的定理: 定理1:设事件A 的概率0)(>A P ,则在事件A 已经发生的条件下事件B 的 条件概率等于事件AB 的概率除以事件A 的概率所得的商: =)|(A B P ) ()(A P AB P 推论:二事件的交的概率等于其中一事件的概率与另一事件在前一事件已发生的条件概率的乘积: )|()()|()()(B A P B P A B P A P AB P == 性质:1. ()P B A =1- )|(A B P 2.条件概率P(B ∣A)与积事件P(AB)概率的区别 )|(A B P 与)(AB P 这是两个截然不同的事件概率.设B A ,是随机试验对应的样本空间Ω中的两个事件,)(AB P 是事件B A ,同时发生的概率,而)|(A B P 是在事件A 已经发生的条件下事件B 的概率。从样本空间的角度看,这两种事件所对应的样本空间发生了改变, 求)(AB P 时,仍在原来的随机试验中所对应的样本空间Ω中进行讨论;而求)|(A B P 时,所考虑的样本空间就不是Ω了,这是因为前提条件中已经知道了一个条件(即A 已经发生),这样所考虑的样本空间的范围必然缩小了,当然乘法公式)(AB P =)|(A B P )(A P )0)((>A P 给出了它们之间的联系。 3.条件概率的解题方法: 解答条件概率问题,首先要判明问题的性质,确定所解的问题是不是条件概率问题。如果所要考虑的事件是在另一事件发生的前提下出现的,那么这一事件的概率,必须按条件概率来处理。求解简单条件概率问题,有五种基本方法: (1) 化为古典概型解决 )()(n )()()(A n B A A P B A P A B P ==A B A =事件包括的基本事件(样本点)数事件包括的基本事件(样本点)数 (2) 化为几何概型解决 )()()()()(A B A A P B A P A B P μμ==(,,)(,,) A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 (3) 条件概率公式法 如果0)(>A P ,则先在原样本空间Ω中计算)(AB P 和)(A P ,再按公式 =)|(A B P ) ()(A P AB P 计算

初中简单事件的概率知识点

概率的简 单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

概率统计基础训练题

第一章基础训练题 一、填空 1、设}1),({},4),({2222>+=≤+=y x y x B y x y x A ,则=?B A 。 2、事件A 、B 、C 至少有一个发生可表示为 ,至少有两个发生 ,三个都不发生 。 3、设}6,5,4,3,2,1{},7,5,3,1{==B A ,则=-B A 。 4、设事件A 在10次试验中发生了4次,则事件A 的频率为 。 5、设,)(),()(p A p B A p AB p ==则=)(B p 。 6、A 、B 二人各抛一枚硬币3次,则出现国徽一面次数相同的概率是 。 7、筐中有4个青苹果和5个红元帅,随机地从中取出2个,则取出的苹果为同一品种的概 率为 ,恰好取出2个青苹果的概率为 ,恰好取出1个青苹果和1个红元帅的概率 为 。 8、从一批由45件正品,5件次品组成的产品中任取3件产品,其中恰有一件次品的概率为 ,至少有一件正品的概率为 。 9、从一筐装有95个一等品,5个二等品的苹果中,每次随机取一个,记录它的等级后放回 原筐搅匀后再取一个,共取50次,则无二等品的概率为 。 10、已知,3.0)(,4.0)(==B p A p 5.0)(=?B A p ,则=)(B A p 。 11、已知,8.0)(,6.0)(,5.0)(===A B p B p A p 则=)(AB p ,=?)(B A p 。 12、对任意二事件B A ,,=-)(B A p 。 13、已知,3.0)(,4.0)(==B p A p (1)当A ,B 互不相容时,=?)(B A p ,=)(AB p (2)当A ,B 相互独立时,=?)(B A p ,=)(AB p ;(3)当A B ?时,=)(A p , =)(A B p ,=?)(B A p ,=)(AB p ,=-)(B A p 。 14、设C B A ,,为三事件,A 与B 都发生而C 不发生,则用C B A ,,的运算关系可表示 为 。设A ,B ,C 都发生,则用C B A ,,的运算关系可表示为 。 15、设B A ,为互斥事件,且,8.0)(=A p 则)(B A p = 。 16、从一批由10件正品,3件次品组成的产品中,任取一件产品,取得次品的概率为 。 17、设B A ,为两事件,则=)(AB p 。若B A ,为互斥事件,则=?)(B A p 。 18、设2.0)(,5.0)(=-=A B p A p ,则=?=)()(B A p B A p 。 (7.0)()()(),()()(=?=-+-=-B A p A B p A p AB p B p A B p )

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

数学必修三概率的知识点及试

数学必修三概率的知识点及试

————————————————————————————————作者:————————————————————————————————日期:

第三章 概率 3.1随机事件的概率 1.随机事件的概念——在一定的条件下所出现的某种结果叫做事件。 (1)随机事件:在一定条件下可能发生也可能不发生的事件; (2)必然事件:在一定条件下必然要发生的事件; (3)不可能事件:在一定条件下不可能发生的事件。 2. 频数与频率,概率:事件A 的概率 ——在大量重复进行同一试验时,事件A 发生的频率n m 总接近于某个常数, 在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。——由定义可知0≤P (A )≤1 3.事件间的关系 (1)互斥事件:不能同时发生的两个事件叫做互斥事件; (2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件; (3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A ); 4.事件间的运算 (1)并事件()P A B ?或)(P B A +(和事件)若某事件发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。——P (A+B )=P (A )+P (B )(A.B 互斥);且有P (A+A )=P (A )+P (A =1。 交事件)()(AB P B A P 或I (积事件)若某事件发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。 【典型例题】 1、指出下列事件是必然事件,不可能时间,还是随机事件: (1)“天上有云朵,下雨”; (2)“在标准大气压下且温度高于0οC 时,冰融化”; (3)“某人射击一次,不中靶”; (4)“如果b a >,那么0>-b a ”; 2、判断下列各对事件是否是互斥事件,并说明道理。 某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中: (1)恰有1名男生和恰有2名男生; (2)至少有1名男生和至少有1名女生; (3)至少有1名男生和全是男生; (4)至少有1名男生和全是女生 3、给出下列命题,判断对错: (1)互斥事件一定对立;(2)对立事件一定互斥;(3)互斥事件不一定对立。 4、(1)抛掷一个骰子,观察出现的点数,设事件A 为“出现 1点”,B 为“出现2点”。已知6 1P(B)P(A)= =,求出现1点或2点的概率。

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ①只须将无条件概率P(B)替换为条件概率P(B A),即可类比套用概率满足 的三条公理及其它性质 ②在古典概型中--- P(B A) P( AB) (AB) P(A) (A) ③在几何概型中--- P(B A) P( AB) (AB) P(A) (A) 事件AB包括的基本事件(样本点)数事件A包括的基本事件(样本点)数 区域AB的几何度量(长度,面积,体积等) 区域A的几何度量(长度,面积,体积等) 条件概率及全概率公式 .对任意两个事件A B,是否恒有P(A) > P(A| B). 答:不是?有人以为附加了一个B已发生的条件,就必然缩小了样本空间,也就缩小了概率,从而就一定有P(A) > P(A| B), 这种猜测是错误的?事实上, 可能P(A) > P(A| B),也可能P(A) < P(A|B),下面举例说明. 在0,1,…,9这十个数字中,任意抽取一个数字,令 A={抽到一数字是3的倍数}; B={抽到一数字是偶 数}; B2={抽到一数字大于8},那么 P(A)=3/10, P(A| B i)=1/5, P(AB)=1. 因此有P(A) > P(A| B i), P(A) v P(AB). .以下两个定义是否是等价的? 定义1. 若事件A、B满足P(A^=P(A)P(B), 则称A、B相互独立. 定义2.若事件A、B满足P(A|B)=P(A)或P(B|A)=P(B),则称A、B相互独立?答:不是的?因为条件概率的定义为 P(A B)=P(AB?/ P(B)或P(B| A)=P(A^/ P(A) 自然要求P(A)丰0, P(B)丰0,而定义1不存在这个附加条件,也就是说,P(AB=P(A)P(B)对于P(A)=0或P(B)=0也是成立的.事实上,若P(A)=0 由0W P(AB) < P(A)=0 可知P(AB=0 故P(AB=P(A)P(B). 因此定义1与定义2不等价,更确切地说由定义2可推出定义1, 但定义1 不能推出定义2,因此一般采用定义1更一般化. . 对任意事件 A 、B, 是否都有P(AB < P(A < P(A+B) < P(A)+P(B). 答:是的.由于P(A+B)=P(A)+P(B)- P(AB (*)

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

初中物理知识结构图全

初中物理知识结构示意图 1 / 12

3 / 12 即一切发声的物体都在振动 :固、液、气。(真空不能传声) V 固>V 液>V 气 :由声源振动的频率决定。影响弦音调的因素即弦越短越紧越细则音调越高。 :由声源振动的振幅决定。 1、 定义:浸在液体中的物体,受到液体对它向___上_______的托力。 2、 浮力产生原因:物体受到液体对它上、下表面的压力差。 阿基米德原理:(1)探究过程及内容:________________________________(2)公式:_ F 浮=ρ液gV 排由公式可知,浮力只与__液体的密度__和__排开液体的体积___有关,而与放入液体中的物体的重力、密度、体积、形状、所处位置和全部浸没时的深度均无关。 4、浮沉条件 漂浮:_________ F 浮=G 物______________________ 悬浮:__________ F 浮=G 物_____________________ 上浮:__________ F 浮>G 物_____________________ 下沉:__________ F 浮<G 物_____________________ 5、浮力的应用:轮船、潜水艇、气球、飞艇、密度计 浮力 1.称重法:F 浮=G-F 拉 2.压力差法:F 浮=F 上-F 下 3.阿基米德原理:F 浮=G 排=ρ液gV 排 4.利用浮沉条件(平衡法) 6、计算浮力的方法

例:影子的形成、日食、月食、小孔成像等都是光的直线传播现象 光速是不变的 红、绿、蓝(RGB) 例:平面镜成像、水中倒影都是光的反射现象 注:漫反射也遵循光的反射定律 规律(或特点):1、像与物等大2、正立3、虚像4、物距等于像距例:装水杯中的勺子弯曲、河中叉鱼(真鱼在观察到的正下方) :能使被照射的物体发热,具有热效应 :能使荧光物质发光 4 / 12

2017高考理科数学第一轮基础知识点复习教案概率与统计1

(此文档为word格式,下载后您可任意编辑修改!) 第十二编概率与统计 §12.1 随机事件的概率 1.下列说法不正确的有 . ①某事件发生的频率为P(A)=1.1 ②不可能事件的概率为0,必然事件的概率为1 ③小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件 ④某事件发生的概率是随着试验次数的变化而变化的 答案①③④ 2.给出下列三个命题,其中正确命题有个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率. 答案0 3.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为, . 答案0.97 0.03 4.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是 . 答案 5.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率之和为 . 答案

例1盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少? 解(1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这位射击运动员射击一次,击中10环的概率为多少? 解(1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9. 例3(14分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示: 求该射击队员射击一次 (1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率. 解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥. 2分

1条件概率

§2.2.1条件概率 知识点 1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,记作“)(A B P ”。 2.由事件A 和B 所构成的事件D ,称为事件A 和B 的交(或积),记作 3.条件概率计算公式:)(A B P 数发生的条件下基本事件在包含的基本事件数发生的条件下在A B A =包含的基本事件数 包含的基本事件数A B A = 总数 包含的基本事件数总数包含的基本事件数A B A =)()(A P B A P = )0)((>A P 一 问题分析 问题1:抛掷红、蓝两颗骰子,设事件=A “蓝色骰子的点数为3或6”,事件=B “两颗骰子的点数之和大于8”,求: (1)事件A 发生的概率; (2)事件B 发生的概率; (3)已知事件A 发生的情况下,事件再B 发生的概率。 问题2:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,思考: (1) 三名同学中奖的概率各是多少?是否相等? (2) 若已知第一名同学没有中奖,那么第二名同学中奖的概率各是多少? (3) 在(1)和(2)中第二名同学中奖的概率是否相等?为什么? 二 典型例题分析 例1:抛掷一颗骰子,观察出现的点数 =A {出现的点数是奇数}=}531{,,,=B {出现的点数不超过3}=}3,2,1{,若已知出现的点数不超过3,求出现的点数是奇数的概率。 例2:一个家庭中有两个小孩。假定生男、生女是等可能的,已知这个家庭有一个是女孩,问这时 另一个小孩是男孩的概率是多少? 例3:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1) 乙地为雨天时甲地也为雨天的概率是多少? (2) 甲地为雨天时乙地也为雨天的概率是多少? 例4: 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

条件概率知识点、例题、练习题(1)

条 件概率专题 一、知识点 ① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 --- ③ 在几何概型中 --- 条件概率及全概率公式 3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ). 答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能 P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令 A ={抽到一数字是3的倍数}; B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么 P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>P (A |B 1), P (A )< P (A |B 2). 3.2.以下两个定义是否是等价的. 定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为 P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A ) 自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ). 因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化. 3.3.对任意事件A 、B , 是否都有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B ). 答:是的.由于 P (A +B )=P (A )+P (B )-P (AB ) (*) 因为 P (AB )≥0, 故 P (A +B )≤P (A )+P (B ). 由P (AB )=P (A )P (B |A ), 因为0≤P (B |A )≤1,故 P (AB )≤P (A ); 同理P (AB )≤P (B ), 从而 P (B )-P (AB )≥0, 由(*)知 P (A +B )≥P (A ). 原命题得证. 3.4.在引入条件概率的讨论中, 曾出现过三个概率: P (A |B ), P (B |A ), P (AB ). 从事件的角度去考察, 在A 、B 相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?

(完整)初中物理知识框架图

单位: 基本工具:刻度尺 基本工具:停表 运动和静止的相对性 描述: 运动的快慢 速度 定义:路程与时间之比叫做速度 常用单位:千米/小时(km/h) 主单位:米/秒(m/s) 公式: t s v= 变速运动:速度变化的运动叫做变速运动,用平均速度表示变速运动的快慢 匀速直线运动:物体沿着直线速度不变的运动 测量平均速度 实验原理: t s v= 机 械 运 动 长度和时间的测量 长度的测量 时间的测量 长度的主单位:米(m),其他单位:千米(km)、分米(dm)、厘米(cm)、毫米(mm) 时间的主单位:秒(s),其他单位:小时(h)、分钟(min) 运动的描述 定义:物体位置的变化叫做机械运动 参照物:假定为不动的物体 实验器材:刻度尺、秒表 第一章机械运动

第二章声现象 声现象声音的产生与传播 声音的产生条件:发声体在振动 (3)声音在不同的介质中传播的速度一般不同(一般来说在固体 中传播速度最快、液体较慢、气体最慢) 声音的传播特点 (1)需要介质 (2)真空不能传播 (4)声音在同一介质中传播速度还与温度有关 (5)声音以波的形式向外传播 声音的三个特征 音调 音调表示声音的高低 音调与发声体的振动频率有关,频率越高,音调越高 响度 响度表示声音的强弱,用分贝来表示 响度与发声体的振幅有关,振幅越大,响度越大 决定于发声体的材料、结构 音色 又叫做音品,反映声音的品质与特色 噪声 噪声的来源和危害 在传播过程中减弱 减弱噪声的途径 在声源处减弱 在人耳处减弱 次声波:频率低于20Hz的声音被称为次声波 超声波和次声波 超声波:频率高于20KHz的声音被称为超声波 声音的利用 声音能传递信息:例如B超检查身体、回声定位等 声音能传递能量:例如超声波碎石

相关主题
文本预览
相关文档 最新文档