2020版高考数学大二轮复习1.1集合与常用逻辑用语学案(文)
- 格式:doc
- 大小:234.50 KB
- 文档页数:11
专题01 集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。
第一单元集合与常用逻辑用语第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉.(3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R.2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈B A⊆B或B⊇A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且∃x0∈B,x0∉AA B或B A相等集合A,B的元素完全相同A⊆B,B⊆AA=B空集不含任何元素的集合.空集是任何集合A的子集∀x,x∉∅,∅⊆A∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B}A∩B 并集属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B}A∪B补集 全集U 中不属于集合A 的元素组成的集合{x |x ∈U ,且x ∉A }∁U A(1)集合A 是其本身的子集,即A ⊆A ; (2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . [小题速通]1.(2018·江西临川一中期中)已知集合A ={2,0,1,8},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D. 2解析:选B 若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=8,则k =±10,显然满足条件.所以集合B 中的元素为-2,±2,±3,±10,所以集合B 中的元素之和为-2,故选B.2.(2018·河北武邑中学期中)集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y ∈N *,y ∈A 中元素的个数为( )A .1B .2C .3D .4解析:选 D A ={x |x 2-7x <0,x ∈N *}={x |0<x <7,x ∈N *}={1,2,3,4,5,6},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y∈N *,y ∈A ={1,2,3,6},则B 中元素的个数为4个. 3.(2017·黄冈三模)设集合U ={1,2,3,4},集合A ={x ∈N|x 2-5x +4<0},则∁U A 等于( )A .{1,2}B .{1,4}C .{2,4}D .{1,3,4}解析:选B 因为集合U ={1,2,3,4},集合A ={x ∈N|x 2-5x +4<0}={x ∈N|1<x <4}={2,3},所以∁U A ={1,4}.4.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R|-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C ={1,2,4}.5.(2017·衡水押题卷)已知集合A ={x |x 2-2x ≤0},B ={y |y =log 2(x +2),x ∈A },则A ∩B 为( )A .(0,1)B .[0,1]C .(1,2)D .[1,2]解析:选D 因为A ={x |0≤x ≤2},所以B ={y |y =log 2(x +2),x ∈A }={y |1≤y ≤2},所以A ∩B ={x |1≤x ≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,易忽略A =∅的情况.1.(2018·西安质检)已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( )A .8B .4C .3D .2解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个,故选B.2.已知全集U ={2,3,a 2+2a -3},A ={|a +1|,2},∁U A ={a +3},则实数a 的值为________.解析:∵∁U A ={a +3},∴a +3≠2且a +3≠|a +1|且a +3∈U , 由题意,得a +3=3或a +3=a 2+2a -3, 解得a =0或a =2或a =-3,又∵|a +1|≠2且A U ,∴a ≠0且a ≠-3,∴a =2. 答案:23.设集合A ={x |x 2-5x +6=0},集合B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A ∩B =B ,所以B ⊆A . 当m =0时,B =∅,显然成立;当m ≠0时,B =⎩⎨⎧⎭⎬⎫1m ⊆{2,3},所以1m =2或1m =3,即m =12或13.故m 组成的集合是⎩⎨⎧⎭⎬⎫0,12,13.答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年2考 集合的表示、集合元素的性质集合间的基本关系 未考查集合的基本运算 5年11考交、并、补运算,多与不等式相结合集合的基本概念[典例] (1)∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x ∈N|x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32集合间的基本关系[典例] (1)则实数a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴⎩⎪⎨⎪⎧a ≥0,a +1≤3,解得0≤a ≤2,故实数a 的取值范围为[0,2].(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,实数a 的取值范围为(-∞,-1]. [答案] (1)C (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析.[即时演练]1.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},若B ⊆A ,则m =________.解析:由已知得A ={x |x =-2或x =-1},B ={x |x =-1或x =-m }.因为B ⊆A ,当-m=-1,即m=1时,满足题意;当-m=-2,即m=2时,满足题意,故m=1或2.答案:1或22.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.答案:4集合的基本运算集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:1求交集或并集;2交、并、补的混合运算;3集合运算中的参数范围;4集合的新定义问题.1.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A 根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁U B)=( )A .(0,2]B .(-1,2]C .[-1,2]D .[2,+∞)解析:选D 因为A ={x |x >0},B ={x |-1<x <2}, 所以∁U B ={x |x ≤-1或x ≥2}, 所以A ∩(∁U B )={x |x ≥2}.4.若全集U =R ,集合A ={x |1<2x<4},B ={x |x -1≥0},则A ∪(∁U B )=________. 解析:A ={x |0<x <2},B ={x |x ≥1},则∁U B ={x |x <1},所以A ∪(∁U B )={x |x <2}. 答案:{x |x <2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A ={x ||x -2|≤3},B ={x |x <t },若A ∩B =∅,则实数t 的取值范围是________.解析:因为集合A ={x |-1≤x ≤5},B ={x |x <t },且A ∩B =∅,所以t ≤-1,即实数t 的取值范围是(-∞,-1].答案:(-∞,-1] 角度四:集合的新定义问题6.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )=( )A .PB .M ∩PC .M ∪PD .M解析:选B 设全集U ,由题意可得M -P =M ∩(∁U P ),所以M -(M -P )=M ∩P .7.对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M ,对于两个集合A ,B ,定义集合A ΔB={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A ΔB 的结果为________.解析:由题意知当x ∈A 且x ∉B 或x ∈B 且x ∉A 时,有f A (x )·f B (x )=-1成立,所以A ΔB ={1,6,10,12}.答案:{1,6,10,12} [方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键. (2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Venn图.(4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A ∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B =( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选 C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( ) A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A 将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=( ) A.∅B.{2}C.{0} D.{-2}解析:选B 因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ) A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 因为集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N},则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N},所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0},所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:x y-1 0 1 2 3 0 (0,-1) (0,0) (0,1) (0,2) (0,3) 1 (1,-1)(1,0)(1,1)(1,2)(1,3)所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}. ∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}. 若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集, 则a ≤2. 答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )min =43-14=29. 答案:①16 ②29 三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解:(1)因为m =1时,B ={x |1≤x <4}, 所以A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上所述,m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪(3,+∞).14.记函数f (x )= 2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围. 解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞). (2)由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2,∵a <1,∴12≤a <1或a ≤-2,∴实数a 的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=xe x -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞)解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=xex -1在[0,1)上是增函数,在(1,2]上是减函数,又因为f (1)=1,f (0)=0,f (2)=2e ,所以A ={x |0≤x ≤1};由题意易得B =[3-3a,3-a ], 因为[0,1]⊆[3-3a,3-a ],所以3-3a ≤0且3-a ≥1,解得1≤a ≤2.2.已知集合A ={x |x 2-2 018x +2 017<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是________.解析:由x 2-2 018x +2 017<0,解得1<x <2 017,故A ={x |1<x <2 017}.由log 2x <m ,解得0<x <2m,故B ={x |0<x <2m}.由A ⊆B ,可得2m≥2 017,因为210=1 024,211=2 048,所以整数m 的最小值为11.答案:11第2课命题及其关系__充分条件与必要条件[过双基]1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句 特点 (1)能判断真假;(2)陈述句 分类 真命题、假命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为Bp 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与p 是q 的必要不充分条件 p ⇒/q 且q ⇒p B 是A 的真子集充要条件p 是q 的充要条件p ⇔qA =B p 是q 的既不充分也不必要条件p ⇒/q 且q ⇒/pA ,B 互不包含[1.命题“若a >b ,则ac >bc ”的逆否命题是( ) A .若a >b ,则ac ≤bc B .若ac ≤bc ,则a ≤b C .若ac >bc ,则a >bD .若a ≤b ,则ac ≤bc解析:选B 由逆否命题的定义可知,答案为B.2.已知命题p :对于x ∈R ,恒有2x+2-x≥2成立;命题q :奇函数f (x )的图象必过原点,则下列结论正确的是( )A .p ∧q 为真B .(綈p )∨q 为真C .p ∧(綈q )为真D .(綈p )∧q 为真解析:选C 由指数函数与基本不等式可知,命题p 是真命题;当函数f (x )=1x时,是奇函数但不过原点,则可知命题q 是假命题,所以p ∧(綈q )是真命题,故选C.3.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞)D .(-∞,-3)解析:选A 法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B 、C ;同理,取a =-4,排除D ,选A.4.已知命题p :x ≠π6+2k π,k ∈Z ;命题q :sin x ≠12,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 令x =5π6,则sin x =12,即p ⇒/ q ;当sin x ≠12时,x ≠π6+2k π或5π6+2k π,k ∈Z ,即q ⇒p ,因此p 是q 的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.1.“若x ,y ∈R 且x 2+y 2=0,则x ,y 全为0”的否命题是( ) A .若x ,y ∈R 且x 2+y 2≠0,则x ,y 全不为0 B .若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0 C .若x ,y ∈R 且x ,y 全为0,则x 2+y 2=0 D .若x ,y ∈R 且xy ≠0,则x 2+y 2=0解析:选B 原命题的条件:x ,y ∈R 且x 2+y 2=0, 结论:x ,y 全为0.否命题是否定条件和结论.即否命题:“若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0”.2.设a ,b ∈R ,函数f (x )=ax +b (0≤x ≤1),则f (x )>0恒成立是a +2b >0成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 充分性:因为f (x )>0恒成立, 所以⎩⎪⎨⎪⎧f 0=b >0,f1=a +b >0,则a +2b >0,即充分性成立;必要性:令a =-3,b =2,则a +2b >0成立,但是,f (1)=a +b >0不成立,即f (x )>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度 考查角度 四种命题的相互关系及真假判断5年1考 命题的真假判断 充分条件、必要条件5年1考充要条件的判断命题的相互关系及真假性[典例] 0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定(2)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A .真,真,真B .假,假,真C.真,真,假D.假,假,假[解析] (1)命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.(2)原命题是:“若a n+1<a n,n∈N*,则{a n}为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n}为递减数列,n∈N*,则a n+1<a n”为真命题,所以否命题也为真命题.[答案] (1)B (2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③D.①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2 C.1 D.0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.充分、必要条件的判定[典例] n S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则⎩⎪⎨⎪⎧m +1≤1,2m +4≥3,解得-12≤m ≤0.[答案] (1)C (2)⎣⎢⎡⎦⎥⎤-12,0 [方法技巧]充要条件的3种判断方法即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n ∈R ,则“mn <0”是“抛物线mx 2+ny =0的焦点在y 轴正半轴上”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 若“mn <0”,则x 2=-nm y 中的-n m>0,所以“抛物线mx 2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx 2+ny =0的焦点在y 轴正半轴上”,则x 2=-n m y 中的-n m>0,即mn <0,则“mn <0”成立,故是充要条件.根据充分、必要条件求参数的范围根据充分条件、必要条件求参数的范围是对充分条件、必要条件与集合之间关系的深层次考查.此类题的解决方法一般有两种:(1)直接法:先求出p ,q 为真命题时所对应的条件,然后表示出綈p 与綈q ,把綈p 与綈q 所对应的关系转化为綈p 与綈q 所对应集合之间的关系,列出参数所满足的条件求解;(2)等价转化法,把綈p ,綈q 的关系转化为p ,q 的关系.[典例] (2018·安徽黄山调研)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1,∴条件p 对应的集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1, ∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}. 法一:用“直接法”解题綈p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件,即B A , ∴⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,∴0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 法二:用“等价转化法”解题 ∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件. ∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.[答案] ⎣⎢⎡⎦⎥⎤0,12[方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R},q :x ∈B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.若p 是綈q 的充分条件,则实数m 的取值范围是________.解析:∵A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2},∴∁R B ={x |x <m -2或x >m +2}.∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -2>3或m +2<-1,∴m >5或m <-3.答案:(-∞,-3)∪(5,+∞)2.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________. 解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 3.(2016·北京高考)设a ,b 是向量,则“| a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选D 若|a|=|b|成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b|=|a -b|不一定成立,从而不是充分条件;反之,若|a +b|=|a -b|成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b |”是“|a +b|=|a -b |”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选 B ∵x >1⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x>1”是“log 12(x +2)<0”的充分而不必要条件.一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α=π4D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可. 所以逆否命题为:若tan α≠1,则α≠π4.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由直线y =x +b 与圆x 2+y 2=1相交可得|b |2<1,所以-2<b <2,因此,“直线y =x +b 与圆x 2+y 2=1相交”⇒/ “0<b <1”,但“0<b <1”⇒“直线y =x +b 与圆x 2+y 2=1相交”.故选C.4.命题p :“∀x >e ,a -ln x <0”为真命题的一个充分不必要条件是( ) A .a ≤1 B .a <1 C .a ≥1D .a >1解析:选B 由题意知∀x >e ,a <ln x 恒成立,因为ln x >1,所以a ≤1,故答案为B. 5.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为a 2+b 2=1,所以设a =cos α,b =sin α,则a sin θ+b cos θ=sin(α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2≤1即可,所以a 2+b 2≤1,故不满足必要性.6.若向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若“a ⊥b ”,则a ·b =(x -1,x )·(x +2,x -4)=(x -1)(x +2)+x (x -4)=2x 2-3x -2=0,则x =2或x =-12;若“x =2”,则a ·b =0,即“a ⊥b ”,所以“a⊥b ”是“x =2”的必要不充分条件.7.在△ABC 中,“sin A -sin B =cos B -cos A ”是“A =B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 在△ABC 中,当A =B 时,sin A -sin B =cos B -cos A 显然成立,即必要性成立;当sin A -sin B =cos B -cos A 时,则sin A +cos A =sin B +cos B ,两边平方可得sin 2A =sin 2B ,则A =B 或A +B =π2,即充分性不成立.则在△ABC 中,“sin A -sinB =cos B -cos A ”是“A =B ”的必要不充分条件.8.设m ,n 是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A 正确;显然,当m ⊂α时,“m ⊥β”⇒“α⊥β”;当m ⊂α时,“α⊥β”⇒/ “m ⊥β”,故B 正确;当m ⊂α时,“m ∥n ”⇒/ “n ∥α”, n 也可能在平面α内,故C 错误;当m ⊂α时,“n ⊥α”⇒“m ⊥n ”,反之不成立,故D 正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.下列命题正确的序号是________.①命题“若a >b ,则2a>2b ”的否命题是真命题;②命题“a ,b 都是偶数,则a +b 是偶数”的逆否命题是真命题; ③若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件; ④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a≤2b,则a ≤b ”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”; ⑤对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面.其中真命题的为________.(填序号)解析:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故①正确;②x =4⇒x 2-3x -4=0;由x 2-3x -4=0,解得x =-1或x =4. ∴“x =4”是“x 2-3x -4=0”的充分不必要条件,故②正确;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,是假命题,如m =0时,方程x 2+x -m =0有实根,故③错误;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故④错误;。
第一章集合与常用逻辑用语1.1集合的概念第1课时集合的概念【学习目标】一.元素与集合的相关概念1.元素:一般地,把统称为元素,常用小写的拉丁字母表示.2.集合:一些组成的总体,简称集,常用大写拉丁字母表示.3.集合相等:指构成两个集合的元素是的.4.集合中元素的特性:、和.二.元素与集合的关系1.属于:如果a是集合A的元素,就说,记作.2.不属于:如果a不是集合A中的元素,就说,记作.三.常见的数集及表示符号1.思考辨析(正确的画“√”,错误的画“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.()(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.()(3)由-1,1,1组成的集合中有3个元素.()2、用“∈”或“∉”填空:1*;5____R.2____N;-3____Z;2____Q;0____N【经典例题】题型一集合的概念例1 下列所给的对象能构成集合的是________.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2018年俄罗斯世界杯的年轻足球运动员;⑥2的近似值的全体.【跟踪训练】1 判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.题型二元素与集合的关系例2 -1给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z.其中正确命题的个数为()A.4B.3C.2 D.1例2-2集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.【跟踪训练】2用符号“∈”或“∉”填空.若A表示第一、三象限的角平分线上的点的集合,则点(0,0)________A,(1,1)______A,(-1,1)______A.题型三集合中元素的特性例3 已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.【跟踪训练】3已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2 B.3 C.0或3 D.0,2,3均可【当堂达标】1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素2.下列各组中集合P与Q,表示同一个集合的是()A.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集3.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为() A.2 B.2或4 C.4 D.04.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2 C.3 D.45.给出下列关系:①13∈Z;②5∈R;③|-5|∉N+;④|-32|∈Q;⑤π∈R.其中,正确的个数为________.6.设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2∈A,求实数x.第2课时集合的表示【学习目标】1.列举法把集合的元素出来,并用括起来表示集合的方法叫做列举法.2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)具体方法:在花括号内先写上表示这个集合元素的及,再画一条竖线,在竖线后写出这个集合中元素所具有的.【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)集合0∈{x|x>1}.()(2)集合{x|x<5,x∈N}中有5个元素.()(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.()2.大于4并且小于10的奇数组成的集合用列举法可表示为____ ____.【经典例题】题型一用列举法表示集合例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有质数组成的集合.【跟踪训练】1 用列举法表示下列集合:(1)绝对值小于5的偶数;(2)24与36的公约数;(3)方程组⎩⎨⎧x +y =2,2x -y =1的解集.题型二 用描述法表示集合 例2 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.【跟踪训练】2 用描述法表示如图所示阴影部分(含边界)点的坐标的集合.题型三 列举法与描述法的综合运用 例3 下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?【跟踪训练】3 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.【当堂达标】1.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1}D .{x 2-2x +1=0}2.下面对集合{1,5,9,13,17}用描述法表示,其中正确的是( )A .{x |x 是小于18的正奇数} B .{x |x =4s +1,s ∈N ,且s <5} C .{x |x =4t -3,t ∈N ,且t <5} D .{x |x =4s -3,s ∈N ,且s <6} 3.给出下列说法:①任意一个集合的正确表示方法是唯一的; ②集合P ={x |0≤x ≤1}是无限集; ③集合{x |x ∈N ,x <5}={0,1,2,3,4}; ④集合{(1,2)}与集合{(2,1)}表示同一集合.其中正确说法的序号是( )A .①②B .②③C .②D .①③④4.方程⎩⎨⎧x +y =2,x -y =5的解集用列举法表示为_______________________;用描述法表示为________________.5.若集合A ={-1,2},集合B ={x |x 2+ax +b =0},且A =B ,则a +b 的值为______. 6.已知集合A ={x |ax 2-3x -4=0,x ∈R},若A 中至多有一个元素,求实数a 的取值范围.1.2集合间的基本关系【学习目标】素养目标学科素养1. 理解子集、真子集、空集的概念;(重点)2. 能用符号和Venn图表示集合间的关系;(难点)3. 掌握列举有限集的所有子集的方法。
专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点?…2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合A、B,当A∩B=时,你是否注意到“极端”情况:A=或B=?求集合的子集时是否忘记?分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.是任何集合的子集,是任何非空集合的真子集.1. A、B是非空集合,定义A×B={x|x∈A∪B,且,若A={x∈R|y=x2-3x},B={y|y=3x,x∈R},则A×B=______________.2. 已知命题P:n∈N,2n>1 000,则P为________.3. 条件p:a∈M={x|x2-x<0},条件q:a∈N={x||x|<2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题R,x2+(a-1)x+1>0”是假命题,则实数a的取值范围为________.【例1】已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若,求实数p的取值范围.【例2】设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?若存在,求出k,b的值;若不存在,请说明理由.【例3】(2011·广东)设S是整数集Z的非空子集,如果,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z且,b,c∈T,有abc∈T,,y,z∈V,有xyz∈V.则下列结论恒成立的是________.A. T,V中至少有一个关于乘法封闭B. T,V中至多有一个关于乘法封闭C. T,V中有且只有一个关于乘法封闭D. T,V中每一个关于乘法封闭【例4】已知a>0,函数f(x)=ax-bx2.(1) 当b>0时,若R,都有f(x)≤1,证明:0<a≤2b;(2) 当b>1时,证明:1],|f(x)|≤1的充要条件是b-1≤a≤2 b.1. (2011·江苏)已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________.2.(2011·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是________.3.(2009·江苏)已知集合A={x|log2x≤2},B=(-∞,a),若,则实数a的取值范围是(c,+∞),其中c=________.4.(2009·陕西)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.5.(2011·陕西)设n∈N+,一元二次方程x2-4x+n=0有正整数根的充要条件是n=________.6.(2011·福建)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a-b∈[0]”. 其中,正确结论的个数是________个.(2011·全国)(本小题满分14分)设a∈R ,二次函数f(x)=ax 2-2x -2a.若f(x)>0的解集为A ,B ={x|1<x<3},,求实数a 的取值范围.解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x 1=1a -2+1a 2,x 2=1a+2+1a2, 由此可知x 1<0,x 2>0,(3分)① 当a>0时,A ={x|x<x 1}∪{x|x>x 2},(5分)的充要条件是x 2<3,即1a +2+1a 2<3,解得a>67,(9分) ② 当a<0时, A ={x|x 1<x<x 2},(10分)的充要条件是x 2>1,即1a+2+1a2>1,解得a<-2,(13分)综上,使成立的实数a 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫67,+∞.(14分)一 集合、简单逻辑用语、函数、不等式、导数及应用第1讲 集合与简单逻辑用语1. (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足A 且的集合S 的个数为________.A. 57B. 56C. 49D. 8【答案】 B 解析:集合A 的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合S 共有56个.故选B.2. (2011·江苏)设集合A ={(x ,y)|m 2≤(x-2)2+y 2≤m 2,x ,y∈R }, B ={(x ,y)|2m≤x+y≤2m+1,x ,y∈R }, 若,则实数m 的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤12,2+2 解析:由得,,所以m 2≥m 2,m≥12或m≤0.当m≤0时,|2-2m|2=2-2m >-m ,且|2-2m -1|2=22-2m >-m ,又2+0=2>2m +1,所以集合A 表示的区域和集合B 表示的区域无公共部分;当m≥12时,只要|2-2m|2≤m 或|2-2m -1|2≤m,解得2-2≤m≤2+2或1-22≤m≤1+22,所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤12,2+2.点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m 的取值范围的相关条件.基础训练 1. (-∞,3) 解析:A =(-∞,0]∪[3,+∞),B =(0,+∞),A∪B=(-∞,+∞),A∩B=[3,+∞).N,2n≤1 0003. 充分不必要 解析:M ==(-2,2).4. a≥3或a≤-1 解析:Δ=(a -1)2-4≥0,a≥3或a≤-1. 例题选讲例1 解:由x 2-3x -10≤0得-2≤x≤5. ∴ A=[-2,5]. ① 当时,即p +1≤2p-由得-2≤p+1且2p -1≤5.得-3≤p≤3.∴ 2≤p≤3.② 当B =时,即p +1>2p -<成立.综上得p≤3. 点评:从以上解答应看到:解决有关A∩B=,A∪B=A ,A∪B=B 或等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练 设不等式x 2-2ax +a +2≤0的解集为M ,如果,求实数a 的取值范围.解: 有n 种情况:其一是M =,此时Δ<0;其二是,此时Δ≥0,分三种情况计算a 的取值范围.设f(x)=x 2-2ax +a +2,有Δ=(-2a)2-(4a +8)=4(a 2-a -2), ① 当Δ<0时,-1<a <2,M =成立; ② 当Δ=0时,a =-1或2,当a =-1时,M ={-,当a =2时,M =; ③ 当Δ>0时,a <-1或a >2.设方程f(x)=0的两根为x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],1<x 2⎩⎪⎨⎪⎧且,1≤a≤4且Δ>0.即⎩⎪⎨⎪⎧-a +3≥0,18-7a≥0,1≤a≤4,a <-1或a >2,解得:2<a≤187,综上实数a 的取值范围是⎝⎛⎦⎥⎤-1,187.例2 解: ∵ (A∪B)∩C=,∵A∩C=且B∩C=,由 ⎩⎪⎨⎪⎧y 2=x +1,y =kx +b得k 2x 2+(2bk -1)x +b 2-1=0,∵ A∩C=,∴ k≠0,Δ1=(2bk -1)2-4k 2(b 2-1)<0, ∴ 4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1,①∵ ⎩⎪⎨⎪⎧4x 2+2x -2y +5=0,y =kx +b ,∴ 4x 2+(2-2k)x +(5-2b)=0,∵ B∩C=,∴ Δ2=4(1-k)2-16(5-2b)<0,∴ k 2-2k +8b -19<0, 从而8b<20,即b<2.5, ②由①②及b∈N ,得b =2,代入由Δ1<0和Δ2<0组成的不等式组,得⎩⎪⎨⎪⎧4k 2-8k +1<0,k 2-2k -3<0,∴ k=1,故存在自然数k =1,b =2,使得(A∪B)∩C=.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.变式训练 已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫,⎪⎪⎪1-y x +1=3,B ={(x ,y)|y =kx +3},若A∩B=, 求实数k 的取值范围.解: 集合A 表示直线y =-3x -2上除去点(-1,1)外所有点的集合,集合B 表示直线y =kx +3上所有点的集合,A∩B=,所以两直线平行或直线y =kx +3过点(-1,1),所以k =2或k =-3.例3 【答案】 A 解析:由于T∪V=Z ,故整数1一定在T ,V 两个集合中的一个中,不妨设1∈T,则,b∈T,由于a ,b,1∈T,则a·b·1∈T,即ab∈T,从而T 对乘法封闭;另一方面,当T ={非负整数},V ={负整数}时,T 关于乘法封闭,V 关于乘法不封闭,故D 不对;当T ={奇数},V ={偶数}时,T ,V 显然关于乘法都是封闭的,故B ,C 不对. 从而本题就选A.例4 证明:(1) ax -bx 2≤1对x∈R 恒成立,又b >0, ∴ a 2-4b≤0,∴ 0<a≤2 b.(2) 必要性,,|f(x)|≤1恒成立,∴ bx 2-ax≤1且bx 2-ax≥-1, 显然x =0时成立,对x∈(0,1]时a≥bx-1x 且a≤bx+1x ,函数f(x)=bx -1x 在x∈(0,1]上单调增,f(x)最大值f(1)=b -1.函数g(x)=bx +1x 在⎝ ⎛⎦⎥⎤0,1b 上单调减,在⎣⎢⎡⎦⎥⎤1b ,1上单调增,函数g(x)的最小值为g ⎝⎛⎭⎪⎫1b =2b ,∴ b-1≤a≤2b ,故必要性成立; 充分性:f(x)=ax -bx 2=-b(x -a 2b )2+a 24b ,a 2b =a 2b ×1b ≤1×1b≤1,f(x)max =a24b≤1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a -b ,f(x)的最小值从f(0)=0,f(1)=a -b 中取最小的,又a -b≥-1, ∴ -1≤f(x)≤1,故充分性成立; 综上命题得证.变式训练 命题甲:方程x 2+mx +1=0有两个相异负根;命题乙:方程4x 2+4(m -2)x +1=0无实根,这两个命题有且只有一个成立,求实数m 的取值范围.解: 使命题甲成立的条件是: ⎩⎪⎨⎪⎧Δ1=m 2-4>0,x 1+x 2=-m <0>2.∴ 集合A={m|m>2}.使命题乙成立的条件是:Δ2=16(m-2)2-16<0,∴ 1<m<3.∴ 集合B={m|1<m<3}.若命题甲、乙有且只有一个成立,则有:① m∈A∩B,② m∈A∩B.若为①,则有:A∩B={m|m>2}∩{m|m≤1或m≥3}={m|m≥3};若为②,则有:B∩A={m|1<m<3}∩{m|m≤2}={m|1<m≤2};综合①、②可知所求m的取值范围是{m|1<m≤2或m≥3}.点评:明确命题为真时的充要条件,再分类确定.高考回顾1. {-1,2}2. 若f(x)不是奇函数,则f(-x)不是奇函数3. 4 解析:A=(0,4],>4, ∴ c=4.4. 8 解析:画韦恩图.设同时参加数学和化学小组的有x人,则20-x+11+x+4+9-x=36,x=8.5. 3或4 解析:令f(x)=x2-4x+n,n∈N*,f(0)=n>0, ∴ f(2)≤0即n≤4,故n =1,2,3,4,经检验,n=3,4适合,或直接解出方程的根,x=2±4-n,n∈N*,只有n=3,4适合.6. 3 解析:正确的是①③④,在②中-3∈[2]才对.。
第1讲集合与常用逻辑用语考点1集合的概念及运算集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[例1](1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(2)[2019·全国卷Ⅰ]已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}【解析】(1)本题主要考查集合的交运算与一元二次不等式的求解,考查考生的运算求解能力,考查的核心素养是数学运算.集合B={x|-1≤x≤1},则A∩B={-1,0,1}.(2)本题主要考查集合的交运算、解一元二次不等式等,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.通解∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.优解由题得N={x|-2<x<3}.∵-3∉N,∴-3∉M∩N,排除A,B;∵2.5∉M,∴2.5∉M∩N,排除D.故选C.【答案】(1)A(2)C1.解答集合问题的策略先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为:(1)若给定的集合是不等式的解集,用数轴求解.(2)若给定的集合是点集,用图象法求解.(3)若给定的集合是抽象集合,常用Venn图求解.2.[警示]忽略空集的讨论,若遇到A⊆B,A∩B=A时,要考虑A为空集的可能性.『对接训练』⎭P=Q P QP Q∩Q=解析:在集合中,x=,k∈Z k∈Z,所以P Q.故选北京延庆一模=(1} B四种命题间的关系2.命题p∧q、p∨q、綈p的真假判断p q p∧q p∨q 綈p真真真真假真假假真假【答案】(1)f(x)=sin x,x∈[0,2](答案不唯一)(2)B1.命题真假的判定方法(2)四种命题真假的判断:一个命题和它的逆否命题同真假,而其他两个命题的真假无此规律;(3)形如p∧q,p∨q,綈p命题的真假根据p,q的真假与联结词的含义判定.2.全称命题与特称命题真假的判定(1)全称命题:要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例『对接训练』充分条件与必要条件的3种判定方法定义法正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且qp,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)A判断充分、必要条件时的3个关注点『对接训练』故由|a|=|b|不一定能推出|a+b|=|a-b|.由|a+b|=|a-b|,得|a+b|2=|a-b|2,整理得a·b=0,所以a⊥b,此时不一定能得出|a|=|b|.故“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.故选D.答案:D课时作业1集合与常用逻辑用语1.[2019·全国卷Ⅱ]设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)解析:本题考查不等式的求解、集合的交运算,意在考查考生的运算求解能力,考查的核心素养是数学运算.因为A={x|x2-5x+6>0}={x|x>3或x<2},B={x|x-1<0}={x|x<1},所以A∩B={x|x<1},故选A.答案:A2.[2019·宁夏中卫一模]命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.答案:D3.[2019·四川内江、眉山等六市诊断性考试]已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3C.2 D.1解析:由A∪C=B可知集合C中一定有元素2,所以符合要求的集合C有{2},{2,0},{2,1},{2,0,1},共4种情况,所以选A.答案:A4.[2019·广东广州一测]已知集合A={x|x2-2x<0},B={x|2x>1},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:A={x|0<x<2},B={x|x>0},故A⊆B,故选D.答案:D5.[2019·吉林长春模拟]设命题p:∀x∈(0,+∞),ln x≤x-1,则綈p是()A.∀x∈(0,+∞),ln x>x-1B .∀x ∈(-∞,0 ],ln x >x -1C .∃x 0∈(0,+∞),ln x 0>x 0-1D .∃x 0∈(0,+∞),ln x 0≤x 0-1解析:因为全称命题的否定是特称命题,所以命题p :∀x ∈(0,+∞),ln x ≤x -1的否定綈p :∃x 0∈(0,+∞),ln x 0>x 0-1.故选C.答案:C6.[2019·陕西西安铁一中月考]如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:解法一 (集合法)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A ,于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.解法二 (等价转化法)x =y ⇒cos x =cos y ,而cos x =cos y ⇒/ x =y .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.答案:C7.[2019·安徽芜湖四校联考]已知全集U =R ,集合A ={-2,-1,0,1,2},B ={x |x 2≥4},则图中阴影部分所表示的集合为( )A .{-2,-1,0,1}B .{0}C .{-1,0}D .{-1,0,1}解析:由韦恩图可知阴影部分对应的集合为A ∩(∁U B ),∵B ={x |x 2≥4}={x |x ≥2或x ≤-2},A ={-2,-1,0,1,2},∴∁U B ={x |-2<x <2},A ∩(∁U B )={-1,0,1},故选D.答案:D8.[2019·西藏拉萨中学月考]下列命题中是真命题的是( )A .命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2=0,则x ≠1”B .若p ∧q 为假命题,则p ,q 均为假命题C .命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1D .“φ=2k π+π2(k ∈Z )”是“函数y =sin (2x +φ)为偶函数”的充要条件解析:对于A ,命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2≠0,则x ≠1”,A 错误.对于B ,若p ∧q 为假命题,则p ,C.充分必要条件D.既不充分也不必要条件解析:本题考查函数的奇偶性,充分、必要条件的判断,以及三角函数的性质;考查学生的运算求解能力和推理论证能力;考查的核心素养是逻辑推理.当b=0时,f(x)=cos x为偶函数;若f(x)为偶函数,则f(-x)=cos(-x)+b sin(-x)=cos x-b sin x=f(x),∴-b sin x=b sin x对x∈R恒成立,∴b=0. 故“b=0”是“f(x⎭A B ,,a 2,解析:因为⎩⎨⎭⎬sin 2,a ,a =⎩⎨⎭⎬cos π2,a ,a +b , 所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b }, 所以⎩⎨⎧ b a =0,a 2=1或⎩⎨⎧b a =0,a +b =1, ⎧ a =-1,⎧a =1,。
高考数学二轮复习专题 1 第 1 讲会合与常用逻辑用语素能训练(文、理)一、选择题1.已知会合A= { x||x-2|>1}, B={ x| y= x-1+3- x},那么有()A.A∩B= ?B.A? BC. ?A D.=B A B [答案]A[分析]由 |x -2|>1得- 2<- 1,或x- 2>1,即x<1,或xx-1≥0得 1≤≤3,>3;由x3-x≥0x所以 A={ x| x<1,或 x>3}, B={ x|1≤ x≤3},所以 A∩ B=?,应选 A.2.(2014 ·浙江文, 2) 设四边形ABCD的两条对角线为AC、 BD,则“四边形ABCD为菱形”是“⊥ ”的()AC BDA.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件[答案]A[分析]菱形的对角线相互垂直,对角线相互垂直的四边形不必定是菱形.应选 A.x-13.(2014 ·银川市一中二模 ) 已知全集U=R,会合A= { x|x <0} ,B={ x| x≥1} ,则集合{ x| x≤0} 等于 ()A.A∩B B.A∪BC. ? ( A∩B)D. ? ( A∪B)U U[答案]D[分析]A={ x|0< x<1},B={ x| x≥1},则 A∪ B={ x| x>0},∴? ( A∪ B)={ x| x≤0},∴U选 D.4.(2013 ·天津理,4) 已知以下三个命题:11①若一个球的半径减小到本来的,则其体积减小到本来的;28②若两组数据的均匀数相等,则它们的标准差也相等;221③直线 x+ y+1=0与圆 x + y =相切.此中真命题的序号是()A.①②③B.①②C.①③D.②③[答案] C[ 分析 ]统计知识与直线和圆的地点关系的判断.431对于①,设球半径为R,则 V=3π R, r =2R,413πR31∴ V1=3π×(2R)=6=8V,故①正确;对于②,两组数据的均匀数相等,标准差一22般不相等;对于③,圆心(0,0) ,半径为 2 ,圆心(0,0)到直线的距离d=2,故直线和圆相切,故①、③正确.5. ( 文)(2014 ·天津文,3) 已知命题p:? x>0,总有( x+1)e x>1,则?p 为()A. ? x0≤0,使得 ( x0+ 1)e x0≤1B. ? x0>0,使得 ( x0+ 1)e x0≤1C. ? x>0,总有 ( x+ 1)e x≤1D. ? x≤0,总有 ( x+ 1)e x≤1[答案]B[ 分析 ]由命题的否认只否认命题的结论及全称命题的否认为特称( 存在性 ) 命题,“>”的否认为“ <”知选 B.( 理 ) 已知命题p:“? x∈R,x2+1≥1”的否认是“? x∈ R,x2+1≤1”;命题q:在△ABC中,“ A>B”是“sin A>sin B”的充足条件,则以下命题是真命题的是()A.p 且qB.或?pqC.?p且?q D.p或q[答案]D[分析]p 为假命题, q 为真命题,∴ p 且 q 为假命题, p 或?q 为假命题,? p 且?q 为假命题, p 或 q 为真命题.6.( 文) 若会合A= { x|2< x<3} ,B={ x|( x+2)( x-a)<0} ,则“a=1”是“A∩B=?”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件[答案]A[分析]当 a=1时, B={ x|-2<x<1},∴ A∩ B=?,则“ a=1”是“ A∩ B=?”的充足条件;当∩= ?时,得≤2,则“a =1”不是“∩= ?”的必需条件,故“ =1”是“ ∩A B a A B a A B =?”的充足不用要条件.( 理)(2013 ·沈阳模拟) 已知条件p:| x+1|>2,条件 q: x>a,且?p 是?q 的充足不用要条件,则 a 的取值范围是()A.a≥1B.a≤1C.a≥- 1D.a≤- 3[答案]A[ 分析 ]条件p:x>1或x<-3,所以?p:-3≤ x≤1;条件 q: x>a,所以?q: x≤ a,因为?p 是?q 的充足不用要条件,所以a≥1,应选 A.7.已知会合A= {1,2,3,4},B={2,4,6,8},定义会合 A× B={( x, y)| x∈ A, y∈ B},则会合×中属于会合 {(x ,)|log x∈N} 的元素个数是 ()A B y yA. 3B. 4C. 8D. 9[答案]B[分析]用列举法求解.由给出的定义得A× B={(1,2),(1,4),(1,6) ,(1,8) ,(2,2) ,(2,4) ,(2,6), (2,8) ,(3,2),(3,4),(3,6),(3,8) ,(4,2),(4,4) ,(4,6) ,(4,8)} .其中 log 22= 1,log 24= 2,log 28= 3, log 44= 1,所以,一共有 4 个元素,应选 B.8.( 文)(2014 ·湖南理,5) 已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题① ∧ ;② ∨;③p ∧(?q);④(? )∨q中,真命题是 ()p qp q pA.①③B.①④C.②③D.②④[答案]C[分析]当 x>y 时,两边乘以- 1 可得-x<-y,所以命题p为真命题,当x=1,y=-2 时,因为x2<y2,所以命题q为假命题,所以②③为真命题,应选 C.( 理)(2014 ·重庆理,6) 已知命题xp:对随意 x∈R,总有 2 >0;q:“ x>1”是“ x>2”的充足不用要条件,则以下命题为真命题的是()A.p∧q B.?p∧?qC.?p∧q D.p∧?q[答案] D[ 分析 ]命题p是真命题,命题q 是假命题,所以选项 D 正确.判断复合命题的真假,要先判断每一个命题的真假,而后做出判断.9.命题“若 f ( x)是奇函数,则 f (- x)是奇函数”的否命题是()A.若f ( x) 是偶函数,则 f (- x)是偶函数B.若f ( x) 不是奇函数,则 f (- x)不是奇函数C.若f ( -x) 是奇函数,则 f ( x)是奇函数D.若f ( -x) 不是奇函数,则 f ( x)不是奇函数[ 剖析 ]依据四种命题的关系判断.[答案]B[ 分析 ]“若p则q”的否命题为“若? p则?q”,应选 B.10.(2014 ·陕西理, 8) 原命题为“若z1、z2互为共轭复数,则| z1| = | z2| ”,对于其逆命题,否命题,逆否命题真假性的判断挨次以下,正确的选项是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假[答案]B[ 分析 ]若z1=a+b i,则z2=a-b i.∴| z1| =| z2| ,故原命题正确、逆否命题正确.其抗命题为:若 | z1| = | z2| ,则z1、z2互为共轭复数,若 z1= a+ b i, z2=- a+ b i,则| z1|=| z2|,而 z1、 z2不为共轭复数.∴抗命题为假,否命题也为假.二、填空题x11.设p:<0,q:0<x<m,若p是q建立的充足不用要条件,则m的取值范围是 ________.x-2[答案](2 ,+∞)x[分析]由x-2<0 得 0<x<2,∵p是q建立的充足不用要条件,∴ (0,2)(0 ,m) ,∴m>2.12.设会合A={5,log2( a+3)}, B={ a, b},若 A∩ B={2},则 A∪ B=________.[ 答案 ]{1,2,5}[ 分析 ]∵ A∩ B={2},∴ 2∈ A,∴ log2(a+3)=2,∴a=1,∴ b=2,∴ A∪ B={1,2,5}.一、选择题13.(2014 ·哈三中一模 ) 会合A= {1,2}, B={1,2,3}, P={ x| x=ab, a∈ A,b∈ B},则会合 P 的元素个数为()A. 3B. 4C. 5D. 6[答案]C[分析]由题意知 P={1,2,4,3,6},∴选 C.14.(文 ) 已知会合={(,)|y = 2x,∈R} ,={(x, )|= 2x,∈R} ,则∩的A x y xB y y x A B元素数量为 ()A. 0B. 1C. 2D.无量多[答案]C[分析]函数= 2x与y = 2的图象的交点有 2 个,应选 C.y x( 理 ) 设全集U=R,会合M= { x| y=3- 2x} ,N= { y| y= 3- 2x } ,则图中暗影部分表示的会合是 ()A. { x|3B. { x|3<x≤3}<x<3} 2233C. { x| 2≤x<2}D. { x| 2<x<2} [答案]B3[分析]M={ x| x≤2} ,N= { x| x<3} ,U) = {|x <3} ∩{ |x3}= {x|3∴暗影部分∩(< <3}.N M x x22x15.(2013 ·重庆理, 2) 命题“对随意x∈R,都有 x2≥0”的否认为()A.对随意x∈R,都有 x2<0B.不存在x∈R,使得 x2<02C.存在x0∈ R,使得x0≥0D.存在x0∈ R,使得x20<0[答案]D[分析]依据全称命题的否认是特称命题,应选 D.16. ( 文)(2013 ·西城区模拟) 已知函数 f ( x)=x2+ bx+ c,则“ c<0”是“? x0∈R,使)f ( x )<0”的(A.充足不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件[答案]A[分析]c<0 时,f(0) =<0;当>0b2>4 >0 时,存在x0∈R,使f(x0)<0,例即c cc>0,如取 b=3, c=1,此时, f ( x)= x2+3x+1=( x+32)2-54,其最小值-54<0.应选A.x+y≥1( 理)(2014 ·新课标Ⅰ理,9) 不等式组的解集记为D.有下边四个命题:x-2y≤4p1:? ( x, y)∈ D,x+2y≥-2,p2:? ( x, y)∈ D,x+2y≥2,p3:? ( x, y)∈ D,x+2y≤3,p4:? ( x, y)∈ D,x+2y≤-1.此中真命题是 ()A.p2,p3B.p1,p4C.p1,p2D.p1,p3[答案]C[分析 ]x+ y≥1不等式组表示的平面地区如图所x-2y≤4示.x+ y=1,由得交点 A(2,-1),x-2y=4,1∵目标函数u=x+2y 的斜率 k=-,2∴当直线 x+2y= u 过 A时, u 取最小值0.应选项 p1, p2正确,所以选 C.17.(2014 ·辽宁理, 5) 设a、b、c是非零向量,已知命题p:若 a·b=0, b·c=0,则·= 0;命题:若∥,∥,则a ∥,则以下命题中真命题是 ()a c qab bc cA.p∨q B.p∧qC.(? p) ∧(? q)D.p∨(? q)[答案]A[分析]取 a=c =(1,0),b=(0,1)知, a· b=0, b· c=0,但 a·c≠0,∴命题 p 为假命题;∵a∥b,b∥ c,∴?λ,μ∈R,使 a=λ b, b=μc,∴a=λμ c,∴ a∥c,∴命题 q 是真命题.∴ p∨q 为真命题.18.已知命题:“?x ∈ R,2+2+≤0”为假命题,则实数a的取值范围是 ()p x ax aA. (0,1)B. (0,2) C. (2,3)D. (2,4)[答案] A[分析]由p 为假命题知, ?x∈ R , 2+ 2 + >0 恒建立, ∴Δ= 4 2-4 <0,∴ 0< <1,xax aaaa应选 A.x 2y 219.设 x 、 y ∈R ,则“|x | ≤4且 | y | ≤3”是“ 16+ 9 ≤1”的 () A .充足而不用要条件 B .必需而不充足条件C .充足必需条件D .既不充足也不用要条件[答案] B[分析]“| | ≤4且|y | ≤3”表示的平面地区为矩形地区,“x 2+y 2 ≤1”表示的平M9 16x 2 y 2面地区 N 为椭圆 16+ 9= 1 及其内部,明显NM ,应选 B.x20. ( 文 ) 在 R 上定义运算 ?: x ?y =2- y ,若对于 x 的不等式 ( x - a ) ?( x + 1- a )>0 的解集是会合 { x | -2≤ x ≤2} 的子集,则实数 a 的取值范围是 ()A .- 2≤ a ≤2B .- 1≤ a ≤1C .- 2≤ a ≤1D .1≤ a ≤2[答案]Cx - a[ 分析 ]因为 ( x - a ) ?( x + 1- a )>0 ,所以 1+a - x >0,即 a <x <a + 1,则 a ≥- 2 且 a +1≤2,即- 2≤ a ≤1.( 理)(2014 ·中原名校联考 ) 以下命题正确的个数是 ()①“在三角形 ABC 中,若 sin A >sin B ,则 A >B ”的抗命题是真命题;②命题p : x ≠2或32y ≠3,命题 q :x + y ≠5则 p 是 q 的必需不充足条件;③“ ? x ∈R ,x - x +1≤0”的否认是“? x ∈ R ,x 3- x 2+1>0”;④若随机变量 x ~ B ( n ,p ) ,则 DX = np . ⑤回归剖析中,回归方程能够是非线性方程.A .1B . 2C .3D . 4[答案]C[ 分析 ]在△ ABC 中,A >B ? a >b ? 2R sin A >2R sin B ? sin A >sin B ( 此中 R 为△ ABC 外接圆半径) .∴①为真命题;∵ x = 2 且 y = 3 时, x + y = 5 建立, x + y = 5 时, x = 2 且 y = 3 不建立, ∴“ x + y =5”是“ x = 2 且 y =3”的必需不充足条件, 进而“ x ≠2或 y ≠3”是“ x +y ≠5”的必需不充足条件,∴②为真命题;∵全称命题的否认是特称命题,7由二项散布的方差知④为假命题.⑤明显为真命题,应选C.二、填空题21.设 p :对于 x 的不等式 a x >1 的解集为 { x | x <0} ,q :函数 y = lg( ax 2-x + a ) 的定义域为 R ,若 p 或 q 为真命题, p 且 q 为假命题,则a 的取值范围是 ________.[答案]1(0 , ] ∪[1 ,+∞)2[分析]p 真时, 0<a <1;q 真时, ax 2- x +a >0 对 x ∈ R 恒建立,则a >0,= 1-4 a 2<0,10<a <1,即 a >2. 若 p ∨ q 为真, p ∧ q 为假,则 p 、q 应一真一假:①当 p 真 q 假时, a ≤1 ?21 a ≤0或 a ≥1,? a ≥ 1.0<a ≤ ;②当 p 假 q 真时,12a >21综上, a ∈ (0 , ] ∪ [1 ,+∞ ) .222.给出以下命题:①已知线性回归方程^个单位,其预告值均匀增添4 个单位;y = 3+ 2x ,当变量 x 增添 2 ②在进制计算中, 100(2) = 11(3) ;③若 ξ~ N (3 ,σ2) ,且 P (0 ≤ ξ≤3) = 0.4 ,则 P ( ξ<6) = 0.1 ;④“ a =件;1 1- x 2dx ”是“函数 y = cos 2(ax) - sin 2(ax) 的最小正周期为 4”的充要条2014 x +1+ 2013π π⑤设函数 f(x) =2014 x +1+ 2014sin x(x ∈[ - 2 , 2 ]) 的最大值为 M ,最小值为 m ,则 M + m = 4027,此中正确命题的个数是________个.[答案] 4[分析]①明显正确; 100(2)211=1×2 +0×2+0×2= 4,11 (3)=1×3+1×3 = 4,∴②正21确;∵ξ <N(3,σ ) ,∴ P(ξ>6) = 2(1 -2P(0≤ξ≤ 3)) = 0.1 ,∴③错误;由数形联合法,1 2 π 2 2 πx 依照定积分的几何意义得a =1- x dx = 4 ,y =cos ax - sin ax = cos 2ax = cos 2 ,最小2π正周期 T = π = 4,∴④正确.2x + 1a+ a-1设 a=2014,则 f(x)=a x+1+a sin x1=a+ a sin x-a x+1,易知 f(x) 在 [ -ππ] 上单一递加,,22πππ111 a 2∴M+ N= f( 2 )+ f(-2 ) = 2a-π-π= 2a-π-π= 2a- 1=a + 1a-+ 1 a + 11+ a22224027,∴⑤正确.。
第一讲集合与常用逻辑用语[高考导航]1.高考对集合的考查主要是集合的含义、集合之间的基本关系和集合的运算,并且以集合的运算为主.试题往往与不等式的解集、函数的定义域、方程的解集、平面上的点集等相互交汇,试题难度不大.2.高考对常用逻辑用语的考查主要是命题、充要条件、逻辑联结词和量词,并且以充要条件的判断、命题真假的判断为主,对含有量词的命题的否定也是一个值得注意的考点.考点一集合的概念与运算1.集合间的基本关系A B或B A2.集合的运算(1)若已知A∩B=∅,要注意到特殊情况:A=∅或B=∅;(2)若已知A⊆B时,要注意不要漏掉“A=∅”这种情况;(3)若有限集合A有n个元素,则A的子集个数是2n,A的真子集个数是2n-1.1.(2019·全国卷Ⅰ)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}[解析]∵N={x|x2-x-6<0}={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.[答案]C2.(2019·郑州模拟)已知全集U=R,集合A={x|y=log2(-x2+2x)},B={y|y=1+x},那么A∩(∁U B)=()A.{x|0<x<1} B.{x|x<0}C.{x|x>2} D.{x|1<x<2}[解析]由-x2+2x>0得0<x<2,所以集合A={x|0<x<2},因为集合B为函数y=1+x的值域,所以B={y|y≥1},则∁U B={y|y<1},所以A∩(∁U B)={x|0<x<1},故选A.[答案]A3.(2019·兰州模拟)R表示实数集,集合M={x|0≤x≤2},N={x|x2-2x-3>0},则下列结论正确的是()A.M⊆(∁R N) B.(∁R M)⊆NC.M⊆N D.(∁R M)⊆(∁R N)[解析]由题意得N={x|x<-1或x>3},所以∁R N={x|-1≤x≤3}.又知M={x|0≤x≤2},所以M是∁R N的子集,故选A.[答案]A4.(2019·湖南衡阳八中一模)已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则集合B的子集个数为()A.3 B.4 C.7 D.8[解析]∵x∈A,y∈A,A={0,1},∴x=0或x=1,y=0或y=1,∴z=x+y=0或1或2,∴B={0,1,2},∴集合B的子集个数为23=8.故选D.[答案]D5.(2019·许昌一模)设集合S={A0,A1,A2,A3},在S上定义运算⊕:A i⊕A j=A k,k为i+j除以4的余数(i,j=0,1,2,3),则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为()A.4 B.3C .2D .1[解析] 因为x ∈S ={A 0,A 1,A 2,A 3},故x 的取值有四种情况.若x =A 0,根据定义A i ⊕A j =A k ,其中k 为i +j 除以4的余数(i ,j =0,1,2,3),则(x ⊕x )⊕A 2=A 0⊕A 2=A 2,不符合题意,同理可以验证x =A 1,x =A 2,x =A 3三种情况,其中x =A 1,x =A 3符合题意,故选C.[答案] C6.(2019·长春四校联考)已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1}.若A ∪B =A ,则实数m 的取值范围是________.[解析] 由A ∪B =A 知B ⊆A .因为A ={x |-2≤x ≤5},①若B =∅,则m +1>2m -1,即m <2,此时A ∪B =A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A 得⎩⎨⎧ -2≤m +1,2m -1≤5,解得-3≤m ≤3.又因为m ≥2,所以2≤m ≤3.由①②知,当m ≤3时,A ∪B =A .[答案] m ≤3解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论.(3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.考点二充分与必要条件的判断1.充分条件与必要条件(1)若p⇒q且q p,则p是q的充分非必要条件.(2)若q⇒p且p q,则p是q的必要非充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.2.充要条件的判断方法1.(2019·云南昆明4月质检)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,⎝ ⎛⎭⎪⎫0,π6⎝⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z , ∴“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] A2.(2019·湖北宜昌三校5月模拟)已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈pD 綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] A3.(2019·山东日照3月联考)“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当m <0时,由图象的平移变换可知,函数f (x )必有零点;当函数f (x )有零点时,m ≤0,所以“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的充分不必要条件,故选A.[答案] A4.(2019·北京卷)设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] |AB →+AC →|>|BC →|⇔|AB →+AC →|>|AC →-AB →|⇔AB →2+AC →2+2AB →·AC →>AB →2+AC →2-2AB →·AC →⇔AB →·AC →>0,由点A ,B ,C 不共线,得〈AB →,AC 〉→∈⎝ ⎛⎭⎪⎫0,π2,故AB →·AC →>0⇔AB →,AC →的夹角为锐角.故选C. [答案] C5.(2019·山西五校联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为________________.[解析] p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B A ,∴m ≥1或m +3≤-4,即m ≥1或m ≤-7.[答案] m ≥1或m ≤-76.(2019·湖南浏阳三校联考)设p :实数x 满足x 2-4ax +3a 2<0,a ∈R ;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.若a <0且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由p 得(x -3a )(x -a )<0,当a <0时,3a <x <a .由q 得x 2-x -6≤0或x 2+2x -8>0,则-2≤x ≤3或x <-4或x >2,则x <-4或x ≥-2.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件.设A =(3a ,a ),B =(-∞,-4)∪[-2,+∞),可知A B ,∴a ≤-4或3a ≥-2,即a ≤-4或a ≥-23.又∵a <0,∴a ≤-4或-23≤a <0,即实数a 的取值范围为(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0. [答案] (-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0(1)解决根据充要条件求参数取值范围的问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的包含、相等关系列出关于参数的不等式(组)求解;有时也采用等价转化思想把复杂、疑难问题转化为简单、熟悉的问题来解决.(2)在解求参数的取值范围的题目时,一定要注意区间端点值的检验,在利用集合关系列不等式时,不等式是否能取到等号直接决定着端点值的取舍,在这里容易增解或漏解.考点三 命题及逻辑联结词1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p ∨q ”有真则真,其余为假;“p ∧q ”有假则假,其余为真;“綈p ”与“p ”真假相反.3.全称量词与存在量词(1)全称命题p :∀x ∈M ,p (x ),它的否定綈p :∃x 0∈M ,綈p (x 0).(2)特称命题p :∃x 0∈M ,p (x 0),它的否定綈p :∀x ∈M ,綈p (x ).1.(2019·河南郑州一模)下列说法正确的是( )A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1”B .“若am 2<bm 2,则a <b ”的逆命题为真命题C .存在x 0∈(0,+∞),使3x 0>4x 0成立D .“若sin α≠12,则α≠π6”是真命题[解析] 对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x ,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,该逆否命题为真命题,所以原命题为真命题,故选D.[答案] D2.(2019·河北衡水二中模拟)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数[解析] 将原命题的条件和结论互换的同时进行否定即得逆否命题,因此“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是“若x +y 不是偶数,则x ,y 不都是偶数”,所以选C.[答案] C3.(2019·四川成都一诊)“∀x ∈R ,x 2-πx ≥0”的否定是( )A .∀x ∈R ,x 2-πx <0B .∀x ∈R ,x 2-πx ≤0C .∃x 0∈R ,x 20-πx 0≤0D .∃x 0∈R ,x 20-πx 0<0[解析] 全称命题的否定是特称命题,所以“∀x ∈R ,x 2-πx ≥0”的否定是“∃x 0∈R ,x 20-πx 0<0”.故选D.[答案] D4.(2019·陕西师大附中模拟)已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x <x ,则下列命题为真命题的是( ) A .p ∧q B .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )[解析] 因为当x <0时,⎝ ⎛⎭⎪⎫23x>1,即2x >3x ,所以命题p 为假命题,从而綈p 为真命题;因为当x ∈⎝ ⎛⎭⎪⎫0,π2时,x >sin x ,所以命题q 为真命题,所以(綈p )∧q 为真命题,故选C.[答案] C5.(2019·豫西南五校联考)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________.[解析] 由x ∈⎣⎢⎡⎦⎥⎤-π4,π3可得-1≤tan x ≤3,∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1.[答案] 16.(2019·石家庄质检)已知命题p :∀x ∈[2,4],log 2x -a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧綈q ”是真命题,则实数a 的取值范围是________.[解析] 命题p :∀x ∈[2,4],log 2x -a ≥0⇒a ≤1.命题q :∃x 0∈R ,x 20+2ax 0+2-a =0⇒a ≤-2或a ≥1,由p ∧綈q 为真命题,得-2<a <1.[答案] -2<a <1解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.1.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=() A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}[解析]化简A={x|x<-1或x>2},∴∁R A={x|-1≤x≤2}.故选B.[答案]B2.(2019·浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}[解析]∵∁U A={-1,3},∴(∁U A)∩B={-1},故选A.[答案]A3.(2019·浙江卷)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析] 由a >0,b >0,得4≥a +b ≥2ab ,即ab ≤4,充分性成立;当a =4,b =1时,满足ab ≤4,但a +b =5>4,不满足a +b ≤4,必要性不成立,故“a +b ≤4”是“ab ≤4”的充分不必要条件,选A.[答案] A4.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由⎪⎪⎪⎪⎪⎪x -12<12得-12<x -12<12,解得0<x <1.由x 3<1得x <1.当0<x <1时能得到x <1一定成立;当x <1时,0<x <1不一定成立.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.[答案] A5.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.[解析] 根据函数单调性的概念,只要找到一个定义域 为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0)即可,除所给答案外,还可以举出f (x )=⎩⎪⎨⎪⎧0,x =0,1x ,0<x ≤2等.[答案] f (x )=sin x ,x ∈[0,2](答案不唯一)1.集合作为高考必考内容,多年来命题较稳定,多以选择题形式在前3题的位置进行考查,难度较小.命题的热点依然会集中在集合的运算方面,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等内容命题.专题强化训练(七)一、选择题1.(2019·衡水二中模拟)已知集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .1B .2C .3D .4[解析] a =1时,A ={0,2,1},B ={1,1},不合题意;a =2时,A ={0,2,2},B ={1,4},不合题意;a =3时,A ={0,2,3},B ={1,9},A ∪B ={0,1,2,3,9},不合题意;a =4时,A ={0,2,4},B ={1,16},A ∪B ={0,1,2,4,16},符合题意.故选D.[答案] D2.(2019·长沙一中三模)已知函数g (x )=lg(2x 2-x ),集合A ={x |g (x )≤0},B ={g (x )|-2≤x ≤-12},则A ∩(∁R B )=( )A.⎣⎢⎡⎦⎥⎤-12,0∪{1}B.⎣⎢⎡⎭⎪⎫-12,0C.⎝⎛⎦⎥⎤12,1 D.⎣⎢⎡⎦⎥⎤-12,1 [解析] ∵g (x )=lg(2x 2-x )≤0,∴0<2x 2-x ≤1,∴-12≤x <0或12<x ≤1,∴A =⎣⎢⎡⎭⎪⎫-12,0∪⎝ ⎛⎦⎥⎤12,1.∵x ∈⎣⎢⎡⎦⎥⎤-2,-12,∴2x 2-x ∈[1,10],0≤g (x )≤1,故B =[0,1],∴∁R B =(-∞,0)∪(1,+∞),∴A ∩(∁R B )=⎣⎢⎡⎭⎪⎫-12,0,故选B. [答案] B3.(2019·河南开封模拟)设集合U =R ,A ={x |2x (x -2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 易知A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.[答案] B4.(2019·福建福州模拟)下列命题中,假命题是( ) A .∀x ∈R,2x -1>0 B .∃x 0∈N *,(x 0-1)2>0 C .∀x ∈R ,lg x <1 D .∃x 0∈R ,tan x 0=2[解析] 对于C ,x =10时,lg10=1,是假命题. [答案] C5.(2019·山东日照期中)设向量a =(x -1,1),b =(3,x +1),则“a ∥b ”是“x =2”的( )A .充分不必要条件B .充分必要条件C.必要不充分条件D.既不充分也不必要条件[解析]∵a∥b,∴x2-1=3,即x=±2,∴“a∥b”是“x=2”的必要不充分条件.故选C.[答案]C6.(2019·江西抚州七校联考)若命题“∃x0∈R,x20+2mx0+m+2<0”为假命题,则m的取值范围是()A.(-∞,-1)∪[2,+∞)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-2,1)[解析]命题的否定是“∀x∈R,x2+2mx+m+2≥0”,该命题为真命题,所以Δ=4m2-4(m+2)≤0,解得-1≤m≤2.[答案]C7.(2019·郑州二模)已知集合A={1,2,3,4,5},B={x|5<x<52,x∈Z},M={x|x∈A∪B,x∉A∩B},则M=()A.{1,2} B.{6,7}C.{1,2,6,7} D.{3,4,5}[解析]由题意知,B={3,4,5,6,7},A∪B={1,2,3,4,5,6,7},A∩B ={3,4,5},∴M={1,2,6,7}.[答案]C8.(2019·江西红色七校联考)已知直线m,n,平面α,β,命题p:若α∥β,m∥α,则m∥β;命题q:若m∥α,m∥β,α∩β=n,则m ∥n.下列是真命题的是()A.p∧q B.p∨(綈q)C.p∧(綈q) D.(綈p)∧q[解析] 对于命题p ,若α∥β,m ∥α,则还需m ⊄β才能推出m ∥β,所以命题p 为假命题,命题綈p 为真命题;对于命题q ,若m ∥α,m ∥β,α∩β=n ,则由线面平行的性质可推出m ∥n ,所以命题q 为真命题,命题綈q 为假命题.所以(綈p )∧q 为真命题,故选D.[答案] D9.(2019·陕西西安二模)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 24-y 23=1,B ={y |y =x 2},则A ∩B =( )A .[-2,2]B .[0,2]C .{(-2,4),(2,4)}D .[2,+∞)[解析] 由A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 24-y 23=1,得A =(-∞,-2]∪[2,+∞).由B ={y |y =x 2},知集合B 表示函数y =x 2的值域,即B =[0,+∞),所以A ∩B =[2,+∞).故选D. [答案] D10.(2019·江西南昌二中4月月考)已知命题p :∀x ∈[1,2],x 2-a ≥0;命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围是( )A .{a |a ≤-2或a =1}B .{a |a ≥1}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}[解析] ∵“p 且q ”是真命题,∴p 真q 真,∴⎩⎨⎧a ≤1,a ≤-2或a ≥1,∴a ≤-2或a =1.[答案]A11.(2019·山西五校联考)下列四个结论:①命题“∃x0∈R,sin x0+cos x0<1”的否定是“∀x∈R,sin x+cos x≥1”;②若p∧q是真命题,则綈p可能是真命题;③“a>5且b>-5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确的是()A.①④B.②③C.①③D.②④[解析]①根据特称命题的否定是全称命题,可知结论正确;②p∧q是真命题,则p是真命题,綈p是假命题,故结论不正确;③取a=4,b=-3,满足a+b>0,故结论不正确;④根据幂函数的图象与性质,可知结论正确.故选A.[答案]A12.(2019·广东八校联考)下列命题中真命题的个数是()①“在三角形ABC中,若sin A>sin B,则A>B”的逆命题是真命题;②p:x≠2或y≠3,q:x+y≠5,则p是q的必要不充分条件;③“∀x∈R,x3-x2+1≤0”的否定是“∀x∈R,x3-x2+1>0”;④“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.A.1 B.2 C.3 D.4[解析]①逆命题为“在三角形ABC中,若A>B,则sin A>sin B”,在同一三角形中有A>B,则a>b,由正弦定理可得sin A>sin B,所以①正确;②因为命题“若x=2且y=3,则x+y=5”为真命题,所以逆否命题“若x+y≠5,则x≠2或y≠3”为真命题,所以“x≠2或y≠3”是“x+y≠5”的必要不充分条件,所以②正确;③“∀x ∈R,x3-x2+1≤0”的否定是“∃x0∈R,x30-x20+1>0”,所以③错误;④“若a>b,则2a>2b-1”的否命题是“若a≤b,则2a≤2b-1”,所以④正确.故选C.[答案] C 二、填空题13.(2019·成都模拟)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ⊆B ,则实数a 的取值范围为________.[解析] 由log 2(x -1)<1,得0<x -1<2,即1<x <3,所以A =(1,3),由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2),因为A ⊆B ,所以⎩⎨⎧a -2≤1a +2≥3,解得1≤a ≤3,所以实数a 的取值范围为[1,3].[答案] [1,3]14.设命题p :c 2<c 和命题q :∀x ∈R ,x 2+4cx +1<0,且p ∨q 为真,p ∧q 为假,则实数c 的取值范围是________.[解析] 解不等式c 2<c ,得0<c <1,即命题p :0<c <1,所以命题綈p :c ≤0或c ≥1.又由(4c )2-4<0,得-12<c <12,即命题q :-12<c <12,所以命题綈q :c ≤-12或c ≥12,由p ∨q 为真,知p 与q 中至少有一个为真, 由p ∧q 为假,知p 与q 中至少有一个为假, 所以p 与q 中一个为真命题,一个为假命题. 当p 真q 假时,实数c 的取值范围是12≤c <1. 当p 假q 真时,实数c 的取值范围是-12<c ≤0.综上所述,实数c 的取值范围是-12<c ≤0或12≤c <1.[答案] ⎣⎢⎡⎭⎪⎫-12,0∪⎝ ⎛⎦⎥⎤12,115.(2019·江西南昌一模)已知r >0,x ,y ∈R ,p :“x 2+y 2≤r 2”,q :“|x |+|y |≤1”,若p 是q 的充分不必要条件,则实数r 的取值范围是________.[解析] 如图,x 2+y 2≤r 2(r >0)表示的平面区域是以原点为圆心,r 为半径的圆上和圆内的部分,|x |+|y |≤1表示的平面区域是正方形ABCD 及其内部,其中A (1,0),B (0,1),C (-1,0),D (0,-1),因为p 是q 的充分不必要条件,所以由图可知,原点到直线x +y -1=0的距离d =|-1|12+12=22≥r ,所以r 的取值范围是⎝ ⎛⎦⎥⎤0,22.[答案] ⎝⎛⎦⎥⎤0,2216.(2019·东北三校联考)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“Ω集合”.给出下列4个集合:①M =⎩⎨⎧⎭⎬⎫(x ,y )|y =1x ;②M ={}(x ,y )|y =e x -2; ③M ={(x ,y )|y =cos x };④M={(x,y)|y=ln x}.其中是“Ω集合”的所有序号为________.[解析]对于①,若x1x2+y1y2=0,则x1x2+1x1·1x2=0,即(x1x2)2=-1,可知①错误;对于④,取(1,0)∈M,且存在(x2,y2)∈M,则x1x2+y1y2=1×x2+0×y2=x2>0,可知④错误.同理,可证得②和③都是正确的.[答案]②③。
2019-2020年高考数学二轮复习专题1.1集合与简易逻辑与数学文化教学案一.考场传真1. 【xx课标1,理1】已知集合A={x|x<1},B={x|},则A. B. C.D.【答案】A【解析】由可得,则,即,所以{|1}{|0}{|0}A B x x x x x x=<<=<I I,{|1}{|0}{|1}A B x x x x x x=<<=<U U,故选A. 2.【xx课标3,理1】已知集合A=,B=,则AB中元素的个数为A.3 B.2 C.1 D.0【答案】B3.【xx课标II,理】设集合,。
若,则()A. B. C. D.【答案】C4.【xx天津,理4】设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】【解析】πππ||012126θθ-<⇔<<,但,不满足,所以是充分不必要条件,选A.5.【xx课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B6.【xx 北京,理6】设m ,n 为非零向量,则“存在负数,使得”是“”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】若,使,即两向量反向,夹角是,那么0cos1800m n m n m n ⋅==-<r r r rr rT ,若,那么两向量的夹角为 ,并不一定反向,即不一定存在负数,使得,所以是充分不必要条件,故选A.7.【xx 浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积, . 【答案】 【解析】二.高考研究 【考纲解读】 1.考纲要求1.了解集合的含义,元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法、描述法)描述不同的具体问题.了解“若则”形式的逆命题,否命题和逆否命题,会分析四种命题的相互关系.了解逻辑联接词“或”、“且”、“非”的含义.2.理解集合之间的包含与相等的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 能使用韦恩(Venn )图表达集合的关系与运算. 理解命题的概念.理解充分条件、必要条件、充要条件的意义.理解全称量词和存在量词的意义.3.体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.能正确地对含有一个量词的命题进行否定.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.4.解决问题的创新题常分三步:①信息提取,确定划归方向;②对所提取的信息进行加工,探求解决方法;③将涉及到的知识进行转换,有效地输出,其中信息的提取与划归是解题的关键,也是解题的难点.5.增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.2.命题规律从近几年高考题来看,集合的运算考查比较频繁,新课标用韦恩图表达集合的关系与运算,集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大,对数学文化应结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式.3.学法导航1.活用“定义法”解题,重视“数形结合”涉及本单元知识点的高考题,综合性大题不多,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了. 定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.2.有意识地在各模块复习中渗透数学思维方法数学是理性思维的学科,高考尤其强调“全卷要贯穿思维能力的考查”简易逻辑用于可以和各章融合命题,正是这一理性思维的体现,学生只有在思维能力上有所提高才能让数学学习有一个质的飞跃。
2019-2020年高考数学二轮复习专题01集合与简易逻辑教学案文一.考场传真1.【xx 年全国新课标1】已知集合,,则( ) A. B. C. D.2.【xx 年安徽】已知{}{}|10,2,1,0,1A x x B =+>=--,则( )A.B.C.D.3.【xx 年福建】若集合,则的子集个数为( )A .2B .3C .4D .164.【xx 年陕西】设全集为, 函数的定义域为, 则为( ) A. [-1,1] B. (-1,1) C. D.5.【xx 年四川】设,集合是奇数集,集合是偶数集.若命题,则( ) A. B. C. D.6.【xx 年陕西】设, 为向量, 则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件二.高考研究【考纲解读】1.了解集合的含义,元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法、描述法)描述不同的具体问题.了解“若则”形式的逆命题,否命题和逆否命题,会分析四种命题的相互关系.了解逻辑联接词“或”、“且”、“非”的含义.2.理解集合之间的包含与相等的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 能使用韦恩(Venn)图表达集合的关系与运算. 理解命题的概念.理解充分条件、必要条件、充要条件的意义.理解全称两次和存在量词的意义.3.体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.能正确地对含有一个量词的命题进行否定.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.【命题规律】从近几年高考题来看,集合的运算考查比较频繁,新课标用韦恩图表达集合的关系与运算,高考试卷中的相应内容页明显增加,应引起足够的重视. 有时也会出现一块创新的“试验田”.全称命题与特称命题,是新课标教材的新增内容,是考查的重点.高考题型是选择题或填空题. 有时在大题的条件或结论中出现.一.基础知识整合(一)集合的概念及表示1.集合:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).2.集合中元素的3个性质:互异性、确定性、无序性.3.集合的3种表示方法:列举法、描述法、图像法.4.集合的分类:无限集、有限集。
(江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数高考热点追踪(一)学案文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数高考热点追踪(一)学案文苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2020版高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数高考热点追踪(一)学案文苏教版的全部内容。
高考热点追踪(一)函数中的新定义问题用数学符号或文字叙述给出一个新定义,利用这个新定义和已学过的知识解决题目给出的问题,叫新定义题.求解此类问题,首先应明确新定义的实质,利用新定义中包含的内容,结合所学知识,将问题向熟悉的、已掌握的知识进行转化.(2019·无锡市高三上学期期末考试)若函数f(x)在[m,n](m<n)上的值域恰好是[m,n],则称[m,n]为函数f(x)的一个“等值映射区间”.下列函数:①y=x2-1;②y =2+log2x;③y=2x-1;④y=错误!,其中,存在唯一一个“等值映射区间”的函数有________个.【解析】根据新定义可知,存在唯一一个“等值映射区间”的函数与另一函数y=x的图象有两个交点,且在[m,n](m<n)上的值域恰好为[m,n],可见两函数在[m,n]上均单调递增.对于①y=x2-1,根据新定义可得,x2-1=x,方程有两个解,即函数y=x2-1与函数y =x的图象有两个交点,但在同一增区间上只有一个交点,故①不满足题意;对于②y=2+log2x,根据新定义可得,2+log2x=x,方程有两个解,即函数y=2+log2x 与函数y=x的图象有两个交点,且在定义域内两函数都单调递增,故②满足题意;对于③y=2x-1,根据新定义可得,2x-1=x,方程有两个解,即函数y=2x-1与函数y=x的图象有两个交点,且在定义域内两函数都单调递增,故③满足题意;对于④y=1x-1,根据新定义可得,x2-x=1(x≠1),方程有两个解,即函数y=错误!与函数y=x的图象有两个交点,但y=错误!不单调递增,故④不满足题意.所以存在唯一一个“等值映射区间”的函数有2个.【答案】2[名师点评] 创新题型在高考中常出现,考查学生对新定义的理解能力,只有明确新定义的实质,才能使问题得以解决.不等式恒成立问题的解题策略恒成立问题在高考中经常出现,由于涉及的知识面广,制约条件复杂,参变量的潜在约束比较隐晦,考生在解题时,不易理清思路,抓不住关键,往往半途而废.下面谈谈解决此类问题的常用方法.一、反客为主——更换主元有些数学问题构思新颖,同时有其实际背景,按固有的习惯思维,把注意力集中在某些醒目的“主元”上,往往陷入困境.如果打破思维定式,反“客”为“主”,把原来处于相对次要地位的“客元”突显出来,常常能收到出人意料的效果.对任意的|m|≤2,函数f(x)=mx2-2x+1-m恒负,则x的取值范围为________.【解析】设g(m)=(x2-1)m-2x+1,则有错误!即错误!解得错误!〈x〈错误!.【答案】错误![名师点评]当一个题中有多个变量时,要敢于把其中的一个变量作为自变量,其余的变量作为参数处理,逐步减少参数使问题获得解决.二、分离参数——巧妙转化有些问题,是需要将参变量分离出来,单独放在不等式的一侧,将另一侧视作为新函数,则可以将问题转化为新函数的最值问题.(2019·江苏省高考命题研究专家原创卷(十))已知实数x,y满足x+2y+3=xy,且对任意的实数x∈(2,+∞),y∈(1,+∞),不等式(x+y-3)2-a(x+y-3)+1≥0恒成立,则实数a的取值范围是________.【解析】因为x∈(2,+∞),y∈(1,+∞),所以x+y-3〉0,所以不等式(x+y-3)2-a(x+y-3)+1≥0可转化为(x+y-3)+1x+y-3≥a.令t=x+y-3,t>0,则f(t)=t+错误!≥a,且函数f(t)在区间[1,+∞)上单调递增.等式x+2y+3=xy可化为(x-2)(y-1)=5,令m=x-2,n=y-1,则m〉0,n〉0,且mn=5,则t=m+n≥2错误!=2错误!,当且仅当m=n,即x=y+1,即x=2+错误!,y=1+错误!时等号成立,故f(t)≥f(25)=2错误!+错误!=错误!,所以a≤错误!.【答案】(-∞,错误!][名师点评] 若对于x取值范围内的任何一个数都需要f(x)≥g(a)恒成立,则g(a)≤f (x)的最小值;若对于x取值范围内的任何一个数,都有f(x)≤g(a)恒成立,则g(a)≥f(x)的最大值.三、变量替换——避繁就简根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.此法应用往往简便快捷,可以避开烦琐的运算.(2019·宁波质检)当x∈(0,1)时,不等式错误!≥m-错误!恒成立,则m的最大值为________.【解析】由已知不等式可得m≤错误!+错误!.设f(x)=1x+错误!=错误!=错误!,令t=3x+1,则x=错误!,t∈(1,4),f(x)可化为g(t)=错误!=错误!=错误!,因为t∈(1,4),所以5〉t+错误!≥4,0<-错误!+5≤1,错误!≥9,即f(x)∈[9,+∞),故m的最大值为9.【答案】9[名师点评]本题使用换元法起到了沟通问题的条件和结论的中介作用,并使运算得以简化,令人耳目一新.四、数形结合-—以“形”代算数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性、形象性,使问题化难为易,化抽象为具体.通过“形"往往可以解决用“数”很难解决的问题.当x∈错误!时,x2<log a x恒成立,则a的取值范围是__________.【解析】由图形可知,0<a〈1,因为当x∈错误!时,x2〈log a x恒成立,所以log a 错误!≥错误!错误!,所以a ≥错误!,又因为0〈a <1,所以错误!≤a 〈1.【答案】 错误![名师点评] 以“形”代算,虽然有一定的技巧性,但通过图形的直观显现,答案直接跃然纸上.1.(2019·常州期末)曲线y =x -cos x 在点错误!处的切线方程为________.[解析] y ′=1+sin x ,故曲线y =x -cos x 在点错误!处的切线的斜率为2.由点斜式方程可得切线方程为2x -y -错误!=0.[答案] 2x -y -错误!=02.函数y =错误!的定义域为集合A ,函数y =ln (2x +1)的定义域为集合B ,则A ∩B =________.[解析] 由1-2x ≥0得x ≤12,故A =错误!,由2x +1〉0得x >-错误!,故B =错误!,故A ∩B =错误!.[答案] 错误!3.函数f (x )=错误!错误!(0≤x ≤2)的值域为________.[解析] 因为函数f (x )=错误!错误!(0≤x ≤2)是减函数,又知错误!错误!=1,错误!错误!=19,从而值域为错误!. [答案] 错误!4.不等式-1<x 2+2x -1≤2的解集是________.[解析] 原不等式等价于:错误!即错误!所以不等式的解集是{x |-3≤x <-2或0<x ≤1}.[答案] {x|-3≤x<-2或0<x≤1}5.(2019·南京模拟)设函数f(x)=错误!则f(3)+f(-错误!)=________.[解析] f(3)+f(-2)=(2+log3错误!)+(3-log2错误!)=2+错误!+3-错误!=5.[答案] 56.已知函数f(x)为奇函数,函数f(x+1)为偶函数,f(1)=1,则f(3)=________.[解析]因为f(x)为奇函数且f(x+1)为偶函数,故f(x+1)=f(-x+1),令x=2,得f(3)=f(-1)=-f(1)=-1,即f(3)=-1.[答案]-17.(2019·深圳质检)在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=错误!x3+bx2+(a2+c2-ac)x+1有极值点,则∠B的范围是________.[解析] 由题意得f′(x)=x2+2bx+a2+c2-ac,Δ=4b2-4a2-4c2+4ac>0,cos B=错误!〈错误!,则∠B的范围是错误!.[答案] 错误!8.若a>0,b〉0,且12a+b+错误!=1,则a+2b的最小值为________.[解析]由已知等式得2a+2b+1=2ab+2a+b2+b,从而,a=错误!,a+2b=错误!+2b=错误!+错误!b+错误!≥错误!+2错误!=错误!,当且仅当错误!b=错误!时等号成立,故有最小值错误!.[答案] 错误!9.(2019·淮安调研)已知函数f(x)=x-错误!,g(x)=x2-2ax+4,若对任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是__________.[解析] 由于f′(x)=1+错误!〉0,因此函数f(x)在[0,1]上单调递增,所以x∈[0,1]时,f(x)min=f(0)=-1.根据题意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1,即x2-2ax+5≤0,即a≥x2+错误!能成立,令h(x)=x2+错误!,则要使a≥h(x)在x∈[1,2]能成立,只需使a≥h(x)min,又函数h(x)=错误!+错误!在x∈[1,2]上单调递减,所以h(x)min=h(2)=错误!,故只需a≥错误!.[答案] 错误!10.(2019·南京、盐城高三模拟)已知函数f(x)=ln x+(e-a)x-b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则错误!的最小值为________.[解析]由不等式f(x)≤0恒成立可得f(x)max≤0.f′(x)=错误!+e-a,x>0,当e-a≥0,即a≤e时,f′(x)>0,f(x)在(0,+∞)上单调递增,且x趋近于+∞,f(x)趋近于+∞,此时f(x)≤0不可能恒成立;当e-a<0,即a>e时,由f′(x)=0得x=错误!,当x∈错误!时,f′(x)>0,f(x)单调递增,当x∈错误!时,f′(x)<0,f(x)单调递减,此时f(x)max=f错误!=-ln(a-e)-1-b≤0,则b≥-ln(a-e)-1,又a>e,所以错误!≥错误!,a>e,令a-e=t>0,则ba≥-ln t-1t+e,t>0.令g(t)=错误!,t>0,则g′(t)=错误!,由g′(t)=0得t=e,且当t∈(0,e)时,g′(t)<0,g(t)单调递减,当t∈(e,+∞)时,g′(t)>0,g(t)单调递增,所以g(t)min=g(e)=-错误!,即错误!≥错误!≥-错误!,故错误!的最小值为-错误!.[答案] -错误!11.(2019·江苏省高考命题研究专家原创卷(九))2018年6月,国家发改委发布了《关于完善国有景区门票价格形成机制降低重点国有景区门票价格的指导意见》,推动了旅游业的转型升级和健康发展.某景区积极响应指导意见,拟实行门票新政,将每张50元的景区门票价格降低来吸引更多的游客,以增加门票的收入,同时投入资金对景区进行升级改造,实现由门票经济向产业经济的转型升级,提高门票收入之外的旅游收入的增加值.据市场调研,若每张门票的价格降低x元,则每年的门票收入增加值为p(x)万元,且满足p(x)=-25x2+ax-5(5≤x≤50);若景区的升级改造投入10x万元,则每年旅游收入的增加值为q(x)万元,且满足q(x)=bx-20ln错误!.已知2017年该景区的游客量为1 000人,且q(25)=270.(1)求a,b的值并将该景区实行门票新政后景区年收入的净增加值表示为x的函数;(2)求该景区实行门票新政后景区年收入的净增加值的最大值.(注:年收入的净增加值=门票年收入增加值+门票年收入之外的旅游收入的增加值-升级改造投入费用)[解] (1)设景区实行门票新政后景区年收入的净增加值为f(x)万元.由题意知2017年的门票收入为50×1 000=50 000(元),则p(50)=-5,所以p(50)=-错误!×502+50a-5=-5,可得a=20.由q(x)=bx-20ln错误!及q(25)=270得25b-20ln 1=270,所以b=错误!,所以f(x)=p(x)+q(x)-10x=错误!x-错误!x2-20ln错误!-5(5≤x≤50).(2)f′(x)=错误!-错误!x-错误!=错误!=错误!(5≤x≤50),显然f(x)在[5,25)上单调递增,在(25,50]上单调递减,所以f(x)max=f(25)=265.答:该景区实行门票新政后景区年收入的净增加值的最大值为265万元.12.(2019·江苏名校高三入学摸底)已知函数f(x)=x ln x-x.(1)求函数f(x)的单调递减区间;(2)令g(x)=f(x)-m2(x2-2)(m∈R),若函数g(x)在(0,+∞)内有两个不相等的极值点x1和x2,且x1<x2.①求实数m的取值范围;②已知λ>0,若不等式e1+λ〈x1·xλ,2恒成立,求实数λ的取值范围.[解] (1)函数f(x)的定义域为(0,+∞),且f′(x)=ln x,令f′(x)=ln x 〈0,得0〈x〈1,故函数f(x)的单调递减区间为(0,1).(2)①依题意,函数g(x)=x ln x-错误!x2-x+m的定义域为(0,+∞),所以方程g′(x)=0在(0,+∞)内有两个不相等的实根,即方程ln x-mx=0在(0,+∞)内有两个不相等的实根,所以函数y=ln x与函数y=mx的图象在(0,+∞)内有两个不同的交点.在同一平面直角坐标系内作出两个函数的图象如图所示,若令过原点且切于函数y=ln x 图象的直线斜率为k,只需0〈m<k.设切点为A(x0,ln x0),所以k=y′|x=x0=错误!,又k=错误!,所以错误!=错误!,解得x=e,于是k=错误!,所以0<m<错误!.②e1+λ<x1·x错误!等价于1+λ<ln x1+λln x2.由①可知x1,x2分别是方程ln x-mx=0的两个根,即ln x1=mx1,ln x2=mx2,所以原不等式等价于1+λ<mx1+λmx2=m(x1+λx2),因为λ>0,0<x1<x2,所以原不等式等价于m>1+λx1+λx2.由ln x1=mx1,ln x2=mx2作差得,ln 错误!=m(x1-x2),即m=错误!,所以原不等式等价于错误!〉错误!,因为0<x1〈x2,原不等式恒成立,所以ln错误!〈错误!恒成立.令t=错误!,t∈(0,1),则不等式ln t<错误!在t∈(0,1)上恒成立.令h(t)=ln t-错误!,又h′(t)=错误!-错误!=错误!,当λ2≥1时,可知当t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调递增,又h(1)=0,所以h(t)〈0在t∈(0,1)上恒成立,符合题意.当λ2〈1时,可见当t∈(0,λ2)时,h′(t)>0,当t∈(λ2,1)时,h′(t)<0,所以h(t)在t∈(0,λ2)上单调递增,在t∈(λ2,1)上单调递减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1·x错误!恒成立,只需λ2≥1,又λ>0,所以λ≥1.13.(2019·南京模拟)设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于点M (1,4).(1)求y=f(x)在区间(0,4]上的最大值与最小值;(2)是否存在两个不等正数s,t(s〈t),使得当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t]?若存在,求出所有这样的正数s,t;若不存在,请说明理由.[解] (1)f′(x)=3x2+2ax+b,依题意,得错误!即错误!解得错误!所以f(x)=x3-6x2+9x.令f′(x)=3x2-12x+9=0,解得x=1或x=3.当x变化时,f′(x),f(x)在区间(0,4]上的变化情况如下表:故函数f((2)由s,t为正数,知s〉0,故极值点x=3不在区间[s,t]上.(ⅰ)若极值点x=1在区间[s,t]上,此时0〈s≤1≤t<3(s〈t),在此区间上f(x)的最大值是4,不可能等于t,故在区间[s,t]上没有极值点;(ⅱ)若f(x)=x3-6x2+9x在[s,t]上单调递增,即0<s<t≤1或3<s<t,则错误!即错误!解得错误!不符合要求;(ⅲ)若f(x)=x3-6x2+9x在[s,t]上单调递减,即1〈s〈t<3,则错误!两式相减并除s-t,得(s+t)2-6(s+t)-st+10=0,①两式相除,可得[s(s-3)]2=[t(t-3)]2,即s(3-s)=t(3-t),整理并除以s-t,得s+t=3,②由①、②可得错误!即s,t是方程x2-3x+1=0的两根,即s=错误!,t=错误!,不合要求.综上所述,不存在满足条件的s,t.14.(2019·江苏省高考名校联考)已知直线y=xe是曲线f(x)=错误!的切线.(1)求函数f(x)的解析式.(2)记F(x)=f(x)-x+错误!,试问函数F(x)在(0,+∞)上是否存在零点x0∈(k,k+1),k∈N?若存在,求k的值;若不存在,请说明理由.(3)用min{m,n}表示m,n中的较小者,设函数g(x)=min错误!(x>0),若函数h(x)=g(x)-tx2在(0,+∞)上单调递增,试求实数t的最大值.[解](1)由题意得f′(x)=错误!=错误!,设切点为(x1,y1),则错误!,解得错误!,故函数f(x)的解析式为f(x)=错误!.(2)由(1)得F(x)=错误!-x+错误!,则F′(x)=错误!-1-错误!,显然,当x≥2时,F′(x)<0,当0<x<2时,F′(x)=错误!-1-错误!<-错误!<0,故F(x)在(0,+∞)上单调递减.又F(1)=错误!>0,F(2)=错误!-错误!<0,所以F(1)·F(2)<0,由零点存在性定理可知,F(x)在(0,+∞)上存在零点x0,且x0∈(1,2),故k=1.(3)由(2)可知,当0<x≤x0时,F(x)≥0,即f(x)≥x-1 x ,当x>x0时,F(x)<0,即f(x)<x-错误!.故g(x)=错误!,从而h(x)=错误!,则h′(x)=错误!.又在(0,+∞)上,h′(x)≥0恒成立,当x∈(0,x0]时,由h′(x)=1+错误!-2tx≥0得t≤错误!错误!,所以t≤错误!错误!.当x∈(x0,+∞)时,由h′(x)=错误!-2tx≥0得t≤错误!,记u(x)=错误!,则由u′(x)=错误!可知当x=3时,u(x)min=-错误!,从而t≤-错误!.综上所述,实数t的最大值为-错误!.。
层级一第一练集合与常用逻辑用语、算法[考情考向·高考导航]1.集合作为高考必考内容,多年来命题较稳定,多以选择题形式在前3题的位置进行考查,难度较小.命题的热点依然会集中在集合的运算方面,常与简单的一元二次不等式结合命题.2.常用逻辑用语:重点考查含有量词的命题的否定,充分必要条件的判断,常与不等式、平面向量等交汇.3.算法:重点考查程序框图、循环结构和算法思想,难度为中低档.[真题体验]1.(2019·全国Ⅲ卷)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}解析:A [本题考查了集合交集的求法,是基础题.由题意得,B={x|-1≤x≤1},则A∩B ={-1,0,1}.故选A.]2.(山东卷)已知命题p:∃x∈R, x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是( )A.p∧q B.p∧qC.p∧q D.p∧q解析:B [由x=0时x2-x+1≥0成立知p是真命题,由12<(-2)2,但1>(-2)可知q 是假命题,故选B.]3.(2019·北京卷)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:C [本题较易,注重重要知识、基础知识、逻辑推理能力的考查.b=0时,f(x)=cos x+b sin x=cos x,f(x)为偶函数;f(x)为偶函数时,f(-x)=f(x)对任意的x恒成立,f(-x)=cos(-x)+b sin(-x)=cos x-b sin xcos x+b sin x=cos x-b sin x,得b sin x=0对任意的x恒成立,从而b=0.从而“b=0”是“f(x)为偶函数”的充分必要条件,故选C.]4.(2019·全国Ⅰ卷)如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC .A =11+2AD .A =1+12A解析:A [∵k =1,A =12+12,k =2,A =12+12+12,故A =12+A,选A.] [主干整合]1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.充分条件与必要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q p)A Bp是q的必要不充分条件(q⇒p,p q)B Ap是q的充要条件(p⇔q)A=BA与B互不包含p是q的既不充分也不必要条件(p q,q p)3.(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真才为真;p和p为真假对立的命题.(2)命题p∨q的否定是(p)∧(q);命题p∧q的否定是(p)∧(q).4.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定为p:∃x0∈M,p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定为 p:∀x∈M, p(x).5.程序框图的三种基本逻辑结构(1)顺序结构:如图(1)所示.(2)条件结构:如图(2)和图(3)所示.(3)循环结构:如图(4)和图(5)所示.热点一集合的关系与运算[题组突破]1.(2020·安徽皖东名校联盟联考)已知集合A={x|-2<x<2},B={x|(x-1)(3-x)>0},则A∩(∁R B)=( )A.(-2,3) B.(-2,1)C.(-2,1] D.(1,2)解析:C [由题意知,B={x|1<x<3},∁R B={x|x≤1或x≥3},则A∩(∁R B)=(-2,1].] 2.(2020·河北九校联考)已知集合M={x|x<2},N={x|x2-x<0},则下列结论正确的是( )A.M∪N=R B.M∪(∁R N)=RC.N∪(∁R M)=R D.M∩N=M解析:B [因为N={x|x2-x<0}={x|0<x<1},所以∁R N={x|x≤0,或x≥1},所以M∪(∁R N)=R.故选B.]3.(2020·湖北六校联考)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则图中阴影部分表示的集合为( )A.{x|x<3} B.{x|-3<x≤1}C.{x|x<2} D.{x|-2<x≤1}解析:D [依题意得A={x|x≤1},B={x|-2<x<3},题图中阴影部分表示的集合为A∩B={x|-2<x≤1},选D.]4.(2019·兰州三模)已知集合A={x|x2≥16},B={m},若A∪B=A,则实数m的取值范围是( )A.(-∞,-4) B.[4,+∞)C.[-4,4] D.(-∞,-4]∪[4,+∞)解析:D [A∪B=A⇔B⊆A,集合A=(-∞,-4]∪[4,+∞),所以m≤-4或者m≥4,即m的取值范围是(-∞,-4]∪[4,+∞).故选D.]5.(2020·衡水模拟)已知集合A={1,2,3,4},B={2,4,6,8},定义集合A×B={(x,y)|x∈A,y∈B},则集合A×B中属于集合{(x,y)|log x y∈N}的元素个数是( )A.3 B.4C.8 D.9解析:B[根据给出的新定义A×B中属于集合{(x,y)|log x y∈N}的元素有:(2,2),(2,4),(2,8),(4,4)共4个,此时log22=1,log24=2,log28=3,log44=1均为自然数,共4个.]6.(双空填空题)已知U={x|x是三角形},A={x|x是锐角三角形},B={x|x是等腰三角形},则∁U A=______,∁U B=________.答案:{x|x是直角三角形或钝角三角形} {x|x是不等腰三角形}集合运算的常用方法(1)若给定的集合是不等式的解集,则用数轴求解; (2)若给定的集合是点集,则用数形结合法求解; (3)若已知的集合是抽象集合,则用Venn 图求解.在写集合的子集时,易忽略空集:在应用A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,易忽略A =∅的情况.热点二 常用逻辑用语命题的真假判断与否定[例1] (1)(2020·西安模拟)已知命题p :∃x ∈R ,log 2(3x+1)≤0,则( ) A .p 是假命题;p :∀x ∈R ,log 2(3x +1)≤0 B .p 是假命题;p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题; p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;p :∀x ∈R ,log 2(3x +1)>0[解析] B [(1)∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题;p :∀x ∈R ,log 2(3x+1)>0.故应选B.](2)(2020·贵阳模拟)已知:命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0;命题q :∀m ∈(0,+∞),关于x 的方程mx 2-2x +1=0有解,在①p ∨q ;②p ∧q ;③(p )∧q ;④(p )∨(q )中,为真命题的是( )A .②③B .②④C .③④D .①④[解析] D [因为f (-x )=f (x ),所以1+|a +1|=1+|a -1|,解得a =0,故命题p 为真命题;又因为当Δ=4-4m ≥0,即m ≤1时,方程有解,所以q 为假命题.所以p ∨q 与(p )∨( q )为真命题,故选D.](3)(2018·北京卷)能说明“若a >b ,则1a<1b”为假命题的一组,a ,b 的值依次为________.[解析] 使“若a >b ,则1a <1b”为假命题,则使“若a >b ,则1a ≥1b”为真命题即可只需让a =1,b =-1即可满足所以满足条件的一组a ,b 的值为1,-1(答案不唯一) [答案] 1,-11.全称命题与特称命题真假的判定(1)全称命题:要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例即可;(2)特称命题:要判定一个特称命题为真命题,只要在限定集合M中至少能找到一个元素x0,使得p(x0)成立即可;否则,这一特称命题就是假命题.2.对含有量词的命题进行否定时注意:只改全称量词为存在量词、存在量词为全称量词,并否定结论,特别注意不要否定量词后面的内容,如本例(1)中不要否定∃x∈R中的x∈R .充分、必要条件的判断逻辑推理素养充要条件问题中常涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面[解析] B [若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A,C,D均不是充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之成立.因此B中条件是α∥β的充要条件.故选B.](2)(2020·泉州调研)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析] C [法一:∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.法二:∵S4+S6>2S5⇔S4+S4+a5+a6>2(S4+a5)⇔a6>a5⇔a5+d>a5⇔d>0,∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.](3)(2019·潍坊三模)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析] A [因为p:x+y≠-2,q:x≠-1,或y≠-1,所以 p:x+y=-2,q:x=-1,且y=-1,因为 q⇒ p但 p q,所以 q是 p的充分不必要条件,即p是q的充分不必要条件.]充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题,如 p是 q的必要不充分条件⇔p是q的充分不必要条件; p是 q的充要条件⇔p是q的充要条件.(1)(2020·陕西西安中学质检)下列命题中,假命题是( )A.∀x∈R,2x-1>0 B.∃x0∈N*,(x0-1)2>0C.∀x∈R,lg x<1 D.∃x0∈R,tan x0=2解析:C [对于C,x=10时,lg 10=1,是假命题.](2)(2019·日照三模)设向量a=(x-1,1),b=(3,x+1),则“a∥b”是“x=2”的( )A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件解析:C [∵a∥b,∴x2-1=3,即x=±2,∴“a∥b”是“x=2”的必要不充分条件.故选C.](3)(2020·江西抚州七校联考)若命题“∃x0∈R,x20+2mx0+m+2<0”为假命题,则m的取值范围是( )A.(-∞,-1)∪[2,+∞)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-1,2)解析:C [命题的否定是“∀x∈R,x2+2mx+m+2≥0”,该命题为真命题,所以Δ=4m2-4(m+2)≤0,解得-1≤m≤2.](4)(双空填空题)已知集合{a,b,c}={-1,0,1},且下列三个关系:①a≠1;②b=1;③c≠-1有且只有一个正确,则b=________,c=________.解析:依题意可分下列三种情况:(1)若只有①正确,则a≠1,b≠1,c=-1,此时a=b=0,与集合中元素的互异性矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=1,a=1,c=-1,此时a=b=1,与集合中元素的互异性矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠-1,a=1,b≠1,此时b=-1,c=0,所以满足题意.答案:-1 0热点三算法[题组突破]1.(2019·全国Ⅲ卷)执行如图所示的程序框图,如果输入的ε为0.01,则输出s的值等于( )A.2-124B.2-125C.2-126D.2-127解析:C [循环运算,何时满足精确度成为关键,加大了运算量,输出前项数需准确,此为易错点.x =1,S =0,S =0+1,x =12<0.01?不成立S =0+1+12,x =14<0.01?不成立……S =0+1+12+…+126,x =1128=0.0078125<0.01?成立 输出S =1+12+…+126=1-1271-12=2-126,故选C.]2.(2020·长春调研)执行两次如图所示的程序框图,若第一次输入的x 值为7,第二次输入的x 值为9,则第一次、第二次输出的a 的值分别为( )A .0,0B .1,1C .0,1D .1,0解析:D [第一次x =7,22<7,b =3,32>7,a =1;第二次x =9,22<9,b =3,32=9,a =0.] 3.(2020·开封模拟)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .i <7?S =S -1i,i =2iB .i ≤7?,S =S -1i,i =2iC .i <7?,S =s2,i =i +1D .i ≤7?,S =s2,i =i +1解析:D [由题意可得:第一次剩下12,第二次剩下122,…由此得出第7次剩下127,可得①为i ≤7?,②s =s2,③i =i +1.故选D.]4.(2020·石家庄模拟)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5B .16C .5或32D .4或5或32解析:C [若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i=4;n=2,i=5;n=1,i=6,结束循环,输出的i=6.当n=4或16时,检验可知不正确,故输入的n=5或32,故选C.]程序框图的解题策略(1)要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体.(2)要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化.(3)要明确循环体终止的条件是什么,会判断什么时候终止循环体.限时40分钟满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·全国Ⅰ卷)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( ) A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}解析:C [∵x2-x-6<0,∴-2<x<3,即N={x|-2<x<3},∴M∩N={x|-2<x<2},故选C.]2.(2020·开封定位考试)已知集合M={-1,0,1},N={x||x|≤1},则( )A.M=N B.N⊆∁R MC.M∩N=M D.M∪N=M解析:C [由|x|≤1得-1≤x≤1,即N=[-1,1],又M={-1,0,1},所以M∩N=M,故选C.]3.(2020·湖北部分重点中学起点考试)已知p:∃x0∈R,3x0<x30,那么p为( ) A.∀x∈R,3x<x3B.∃x0∈R,3x0>x30C.∀x∈R,3x≥x3D.∃x0∈R,3x0≥x30解析:C [因为特称命题的否定为全称命题,所以 p:∀x∈R,3x≥x3,故选C.]4.(2020·南昌重点中学段考)设集合A={x∈Z||x|≤2},B={y|y=1-x2},则A∩B的子集个数为( )A.4 B.8C.16 D.32解析:C [∵A={-2,-1,0,1,2},B={y|y≤1},∴A∩B={-2,-1,0,1},∴A∩B的子集个数为24=16,故选C.]5.(2020·江西南昌测试)已知集合A={y|y=a x,x∈R},其中a>0且a≠1,A∩B=B,则集合B 可以是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]解析:A [由题意可得A ={y |y =a x,x ∈R }=(0,+∞),由A ∩B =B 得B ⊆A .故选A.] 6.(多选)(2020·江西红色七校联考)已知直线m ,n ,平面α,β,命题p :若α∥β,m ∥α,则m ∥β;命题q :若m ∥α,m ∥β,α∩β=n ,则m ∥n .下列是真命题的是( )A .p ∧qB .p ∨qC .p ∧(q ) D .(p )∧q解析:BD [对于命题p ,若α∥β,m ∥α,则还需m ⊄β才能推出m ∥β,所以命题p 为假命题,命题p 为真命题;对于命题q ,若m ∥α,m ∥β,α∩β=n ,则由线面平行的性质可推出m ∥n ,所以命题q 为真命题,命题q 为假命题.所以p ∨q 、(p )∧q 为真命题,故选BD.]7.(2020·唐山摸底考试)已知程序框图如图所示,则该程序框图的功能是( ) A .求1+13+15+17+…+121的值B .求1+13+15+17+…+119的值C .求1-13+15-17+…-119的值D .求1-13+15-17+…+121的值解析:C [通解 执行程序框图,S =1,a =-1,n =3;S =1-13,a =1,n =5;S =1-13+15,a=-1,n =7;…;S =1-13+15-17+…-119,a =1,n =21>19满足条件,退出循环,输出S .故该程序框图的功能是求S =1-13+15-17+…-119的值,故该程序框图的功能是求S =1-13+15-17+…-119的值,故选C.优解 根据a 正负相间取值,不难排除A,B,根据循环的次数,排除D 选项,故选C.] 8.(2019·长沙二模)已知d 为常数,p :对于任意n ∈N *,a n +2-a n +1=d ;q :数列{a n }是公差为d 的等差数列,则p 是 q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:A [由pq ,因为p 中不含有a 2-a 1=d ;而q ⇒p ,所以 p ⇒ q ,但q p ,故p 是q 的充分不必要条件.]9.(2019·保定三模)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1]解析:A [由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.] 10.(2019·烟台三模)已知p :函数f (x )=(a -1)x为增函数,q :∀x ∈⎣⎢⎡⎦⎥⎤12,1,ax -1≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A [函数f (x )=(a -1)x为增函数,则a -1>1,a >2;当x ∈⎣⎢⎡⎦⎥⎤12,1时,不等式ax-1≤0恒成立,则a ≤1x,等价于a ≤⎝ ⎛⎭⎪⎫1x min ,又⎝ ⎛⎭⎪⎫1x min =1,所以a ≤1,所以q :a >1,所以p 是q 的充分不必要条件,故选A.]11.中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“◇”处应填入( )A.a -221∈Z B.a -215∈Z C.a -27∈ZD.a -23∈Z解析:A [根据题意可知,此程序框图的功能是找一个满足下列条件的数a :a =3k +2,a =5n +3,a =7m +2,k ,n ,m ∈Z .根据程序框图可知,数a 已经满足a =5n +3,n ∈Z ,所以还要满足a =3k +2,k ∈Z 和a =7m +2,m ∈Z ,并且还要用一个条件给出,即a -2既能被3整除又能被7整除,所以a -2能被21整除,故在“◇”处应填入a -221∈Z ,选A.]12.下列命题是真命题的是( ) A .∀x ∈(2,+∞),x 2>2xB .“x 2+5x -6>0”是“x >2”的充分不必要条件C .设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的既不充分也不必要条件D .a ⊥b 的充要条件是a ·b =0解析:C [C 选项,当a 1<0,q >1时,数列{a n }递减;当a 1<0,数列{a n }递增时,0<q <1.A 选项,当x =4时,x 2与2x 显然相等.B 选项,由x 2+5x -6>0得{x |x >1或x <-6},{x |x >2}⊆{x |x >1或x <-6},故“x 2+5x -6>0”是“x >2”的必要不充分条件,D 选项,当a =0或b=0时,a ·b =0但不垂直.]二、填空题(本大题共4小题,每小题5分,共20分) 13.执行如图所示的程序框图,则输出的结果为________.解析:s =0,n =1<5,且n =1为奇数,则s =0-sin π=0;n =2<5,且n =2不是奇数,则s =0+sin π2=1;n =3<5,且n =3为奇数,则s =1-sin π3=1-32;n =4<5,且n =4不是奇数,则s =1-32+sin π4=1-32+22;n =5时结束循环.输出的s =1-32+22=1-3-22. 答案:1-3-2214.(多选题)已知全集U =R ,函数y =ln (1-x )的定义域为M ,集合N ={x |x 2-x <0},则①M ∩N =________,②M ∩∁U N ________∅.解析:本题考查集合间的运算和关系.由题意知M ={x |x <1},N ={x |0<x <1},∴M ∩N =N .又∁U N ={x |x ≤0或x ≥1},∴M ∩(∁U N )={x |x ≤0}≠∅.答案:①N ②≠15.(2020·湘潭模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a ·b <0”. 其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”;所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a与b的夹角是钝角”可以推出“a·b<0”,但由“a·b<0”得“平面向量a与b的夹角是钝角”或反向共线,所以“a·b<0”是平面向量a与b的夹角是钝角的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②16.(2019·青岛三模)若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ,则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的一个拓扑的集合τ是________.(填序号)解析:①τ={∅,{a},{c},{a,b,c}},但是{a}∪{c}={a,c}∉τ,所以①错;②④都满足集合X上的一个拓扑集合τ的三个条件.所以②④正确;③{a,b}∪{a,c}={a,b,c}∉τ,所以③错.答案:②④。
第1讲集合与常用逻辑用语考点1 集合的概念及运算集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[例1] (1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(2)[2019·全国卷Ⅰ]已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}【解析】(1)本题主要考查集合的交运算与一元二次不等式的求解,考查考生的运算求解能力,考查的核心素养是数学运算.集合B={x|-1≤x≤1},则A∩B={-1,0,1}.(2)本题主要考查集合的交运算、解一元二次不等式等,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.通解∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.优解由题得N={x|-2<x<3}.∵-3∉N,∴-3∉M∩N,排除A,B;∵2.5∉M,∴2.5∉M∩N,排除D.故选C.【答案】(1)A(2)C1.解答集合问题的策略先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为:(1)若给定的集合是不等式的解集,用数轴求解.(2)若给定的集合是点集,用图象法求解.(3)若给定的集合是抽象集合,常用Venn图求解.2.[警示]忽略空集的讨论,若遇到A⊆B,A∩B=A时,要考虑A为空集的可能性.『对接训练』1.[2019·四川南充适应性考试]已知集合P =⎩⎨⎧⎭⎬⎫x|x =k 2+14,k∈Z ,Q =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z 则( )A .P =QB .P QC .P QD .P ∩Q =∅解析:在集合P 中,x =k 2+14=2k +14,k ∈Z ,在集合Q 中,x =k 4+12=k +24,k ∈Z .因为k ∈Z ,所以2k +1为奇数,k +2为整数,由集合间的关系判断,得P Q .故选B.答案:B2.[2019·北京延庆一模]已知集合A ={x |x (x +1)≤0},集合B ={x |-1<x <1},则A ∪B =( )A .{x |-1≤x ≤1} B.{x |-1<x ≤0} C .{x |-1≤x <1} D .{x |0<x <1}解析:解一元二次不等式x (x +1)≤0,可得A ={x |-1≤x ≤0},则A ∪B ={x |-1≤x <1},故选C.答案:C考点2 命题的真假与逻辑联结词1.四种命题及其关系 (1)四种命题若原命题为“若p ,则q ”,则其逆命题是若q ,则p ;否命题是若綈p ,则綈q ;逆否命题是若綈q ,则綈p .(2)四种命题间的关系2.命题p ∧q 、p ∨q 、綈p 的真假判断pqp ∧qp ∨q綈p 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真[例2] x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________;(2)[2019·福建漳州一中月考]已知命题p :椭圆25x 2+9y 2=225与双曲线x 2-3y 2=12有相同的焦点;命题q :函数f (x )=x 2+5x 2+4的最小值为52.则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .綈(p ∨q )D .p ∧(綈q )【解析】 (1)设f (x )=sin x ,则f (x )在0,π2上是增函数,在π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.(2)p 中椭圆x 29+y 225=1的焦点坐标分别为(0,4),(0,-4),双曲线x 212-y 24=1的焦点坐标分别为(4,0),(-4,0),故p 为假命题;q 中f (x )=x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,设t =x 2+4≥2(当且仅当x =0时,等号成立),则f (t )=t +1t 在区间[2,+∞)上单调递增,故f (x )min =52,故q 为真命题.所以(綈p )∧q 为真命题,故选B.【答案】 (1)f (x )=sin x ,x ∈[0,2](答案不唯一) (2)B1.命题真假的判定方法(1)一般命题p 的真假由涉及的相关知识辨别;(2)四种命题真假的判断:一个命题和它的逆否命题同真假,而其他两个命题的真假无此规律;(3)形如p ∧q ,p ∨q ,綈p 命题的真假根据p ,q 的真假与联结词的含义判定.2.全称命题与特称命题真假的判定(1)全称命题:要判定一个全称命题是真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;(2)特称命题:要判定一个特称命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可;否则,这一特称命题就是假命题.『对接训练』3.[2019·山西芮城期末]在一次数学测试中,成绩在区间[125,150]内视为优秀,有甲、乙两名同学,设命题p 是“甲测试成绩优秀”,q 是“乙测试成绩优秀”,则命题“甲、乙中至少有一名同学成绩不是优秀”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:“甲测试成绩不优秀”可表示为綈p ,“乙测试成绩不优秀”可表示为綈q ,“甲、乙中至少有一名同学成绩不是优秀”即“甲测试成绩不优秀”或“乙测试成绩不优秀”,表示形式为(綈p )∨(綈q ).故选A.答案:A4.[2019·江西临川一中月考]已知命题p :∀x ∈R ,x 2-2ax +1>0;命题q :∃x 0∈R ,ax 20+2≤0.若p ∨q 为假命题,则实数a 的取值范围是( )A .[1,+∞) B.(-∞,-1] C .(-∞,-2] D .[-1,1]解析:∵p ∨q 为假命题,∴p ,q 均为假命题.若命题p 为假命题,则Δ≥0,即4a 2-4≥0,解得a ≤-1或a ≥1;若命题q 为假命题,则a ≥0,∴实数a 的取值范围是[1,+∞),故选A.答案:A考点3 充分、必要条件充分条件与必要条件的3种判定方法A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)[2019·浙江卷]设a >0,b >0,则“a +b ≤4”是“ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 (1)本题主要考查充分性与必要性的判断、简单的不等式求解,考查考生的运算求解的能力,考查的核心素养是逻辑推理.由x 2-5x <0可得0<x <5.由|x -1|<1可得0<x <2.由于区间(0,2)是(0,5)的真子集,故“x 2-5x <0”是“|x -1|<1”的必要而不充分条件.(2)本题主要考查充分条件、必要条件,考查考生分析问题的能力,考查的核心素养是逻辑推理.通解 因为a >0,b >0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b >4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.优解 在同一坐标系内作出函数b =4-a ,b =4a的图象,如图,则不等式a +b ≤4与ab ≤4表示的平面区域分别是直线a +b =4及其左下方(第一象限中的部分)与曲线b =4a及其左下方(第一象限中的部分),易知当a +b ≤4成立时,ab ≤4成立,而当ab ≤4成立时,a +b ≤4不一定成立.故选A.【答案】(1)B (2)A判断充分、必要条件时的3个关注点要弄清先后顺序“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A 是B的充分不必要条件”则是指A能推出B,且B不能推出A.要善于举出反例当从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.要注意转化綈p是綈q的必要不充分条件⇔p是q的充分不必要条件;綈p是綈q的充要条件⇔p是q的充要条件.『对接训练』5.[2019·甘肃天水一模]设a,b是向量.则“|a|=|b|”是“|a+b|=|a-b|”的( ) A.充分不必要条件B.充要条件C.必要不充分条件D. 既不充分也不必要条件解析:取a=-b≠0,则|a|=|b|≠0,|a+b|=|0|=0,|a-b|=|2a|≠0,所以|a+b|≠|a-b|,故由|a|=|b|不一定能推出|a+b|=|a-b|.由|a +b |=|a -b |,得|a +b |2=|a -b |2, 整理得a ·b =0,所以a ⊥b ,此时不一定能得出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D. 答案:D6.[2019·天津一中月考]已知命题p :x ≥k ,命题q :3x +1<1.如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞) B.(2,+∞) C .[1,+∞) D.(-∞,1] 解析:由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q 的充分不必要条件知,k >2,故选B.答案:B课时作业1 集合与常用逻辑用语1.[2019·全国卷Ⅱ]设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)解析:本题考查不等式的求解、集合的交运算,意在考查考生的运算求解能力,考查的核心素养是数学运算.因为A ={x |x 2-5x +6>0}={x |x >3或x <2},B ={x |x -1<0}={x |x <1},所以A ∩B ={x |x <1},故选A.答案:A2.[2019·宁夏中卫一模]命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( ) A .若a 2+b 2≠0,则a ≠0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0 D .若a ≠0或b ≠0,则a 2+b 2≠0解析:命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是“若a ≠0或b ≠0,则a 2+b 2≠0”,故选D.答案:D3.[2019·四川内江、眉山等六市诊断性考试]已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为( )A.4 B.3C.2 D.1解析:由A∪C=B可知集合C中一定有元素2,所以符合要求的集合C有{2},{2,0},{2,1},{2,0,1},共4种情况,所以选A.答案:A4.[2019·广东广州一测]已知集合A={x|x2-2x<0},B={x|2x>1},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B解析:A={x|0<x<2},B={x|x>0},故A⊆B,故选D.答案:D5.[2019·吉林长春模拟]设命题p:∀x∈(0,+∞),ln x≤x-1,则綈p是( ) A.∀x∈(0,+∞),ln x>x-1B.∀x∈(-∞,0 ],ln x>x-1C.∃x0∈(0,+∞),ln x0>x0-1D.∃x0∈(0,+∞),ln x0≤x0-1解析:因为全称命题的否定是特称命题,所以命题p:∀x∈(0,+∞),ln x≤x-1的否定綈p:∃x0∈(0,+∞),ln x0>x0-1.故选C.答案:C6.[2019·陕西西安铁一中月考]如果x,y是实数,那么“x≠y”是“cos x≠cos y”的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件解析:解法一(集合法)设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A 的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.解法二(等价转化法)x=y⇒cos x=cos y,而cos x=cos y⇒/ x=y.于是“x≠y”是“cos x≠cos y”的必要不充分条件.答案:C7.[2019·安徽芜湖四校联考]已知全集U=R,集合A={-2,-1,0,1,2},B={x|x2≥4},则图中阴影部分所表示的集合为( )A .{-2,-1,0,1}B .{0}C .{-1,0}D .{-1,0,1}解析:由韦恩图可知阴影部分对应的集合为A ∩(∁U B ),∵B ={x |x 2≥4}={x |x ≥2或x ≤-2},A ={-2,-1,0,1,2},∴∁U B ={x |-2<x <2},A ∩(∁U B )={-1,0,1},故选D.答案:D8.[2019·西藏拉萨中学月考]下列命题中是真命题的是( )A .命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2=0,则x ≠1” B .若p ∧q 为假命题,则p ,q 均为假命题C .命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1D .“φ=2k π+π2(k ∈Z )”是“函数y =sin (2x +φ)为偶函数”的充要条件解析:对于A ,命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2≠0,则x ≠1”,A 错误.对于B ,若p ∧q 为假命题,则p ,q 中至少有一个为假命题,B 错误.对于C ,命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1,C 正确.对于D ,φ=2k π+π2(k ∈Z )时,函数y =sin(2x +φ)=cos 2x 为偶函数,充分性成立.函数y =sin(2x +φ)为偶函数时,φ=π2+k π(k ∈Z ),必要性不成立,不是充要条件,D 错误.故选C. 答案:C9.[2019·北京卷]设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查函数的奇偶性,充分、必要条件的判断,以及三角函数的性质;考查学生的运算求解能力和推理论证能力;考查的核心素养是逻辑推理.当b =0时,f (x )=cos x 为偶函数;若f (x )为偶函数,则f (-x )=cos(-x )+b sin(-x )=cos x -b sin x =f (x ),∴-b sin x =b sin x 对x ∈R 恒成立,∴b =0. 故“b =0”是“f (x )为偶函数”的充分必要条件. 故选C.答案:C10.[2019·安徽六安月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞) B.(3,+∞) C .(-∞,3) D .(-∞,3]解析:依题意可知当a <3时,A ∩B ≠∅,故选C.答案:C11.[2019·贵州贵阳模拟]已知命题p :∀x ∈R,2x<3x,命题q :∃x ∈R ,x 2=2-x ,若命题(綈p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:因为綈p :∃x ∈R,2x≥3x,要使(綈p )∧q 为真命题,所以綈p 与q 同时为真命题.由2x ≥3x 得⎝ ⎛⎭⎪⎫23x ≥1,所以x ≤0,由x 2=2-x 得x 2+x -2=0,所以x =1或x =-2.又x ≤0,所以x =-2.故选D.答案:D12.[2019·海南海口模拟]已知集合A ={x ∈R ⎪⎪⎪12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m ≥2 B.m ≤2 C .m >2 D .-2<m <2解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:C13.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 020+b 2 020的值为________.解析:因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b , 所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 020+b2 020=1.答案:114.[2019·安徽定远重点中学月考]若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是________.解析:由题意知命题“∀x ∈R ,使得x 2+mx +2m -3≥0 ”为真命题,所以Δ=m 2-4(2m -3)≤0,解得2≤m ≤6,则实数m 的取值范围是[2,6].- 11 - 答案:[2,6]15.[2019·江苏扬州期中]已知条件p :x >a ,条件q :1-x x +2>0.若p 是q 的必要不充分条件,则实数a 的取值范围是________.解析:由1-x x +2>0,得{x |-2<x <1}.因为p 是q 的必要不充分条件,所以a ≤-2. 答案:(-∞,-2]16.[2019·陕西西安模拟]已知下列命题:①∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,sin x 0+cos x 0≥2; ②∀x ∈(3,+∞),x 2>2x +1;③∀x ∈R,2x +12x >2; ④∃x 0∈⎝ ⎛⎭⎪⎫π2,π,tan x 0>sin x 0. 其中真命题为________(填所有真命题的序号).解析:对于①,当x =π4时,sin x +cos x =2,所以此命题为真命题;对于②,当x ∈(3,+∞)时,x 2-2x -1=(x -1)2-2>0,所以此命题为真命题;对于③,因为2x >0,所以12x +2x ≥212x ×2x =2,当且仅当12x =2x ,即x =0时等号成立,所以此命题为假命题;对于④,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0<sin x ,所以此命题为假命题.综上,真命题为①②. 答案:①②。