线性代数n维向量空间小结
- 格式:ppt
- 大小:667.00 KB
- 文档页数:41
线性代数知识点总结1.a j:向量α的第j个分量。
2.n维实向量空间:全体n维实列向量构成的集合及其上定义的向量。
的加法和数乘运算的合称。
Ps:1.全体n维行向量构成的集合记为R1*n;2.R2即2维空间。
3.R n的子集:多个n维实向量构成的一个集合。
4.V是R n的子空间:V具有下列性质的R n的子集。
设V?R n是一个非空集合,V满足:(1)若α、β∈V,则α+β∈V;(2)若γ∈V,k∈R,则kγ∈V;5.齐次线性方程组的解空间:齐次线性方程组的全部解向量构成的合。
6.向量组:多个相同维数的向量组成的集合。
7.线性组合:给定R n中向量组A:α1,α2,…,αm,以及数k1,k2,…,k m,称向量β=k1α1+k2α2+…+k mαm(k∈R)为向量组A的一个线性组合。
8.张成:给定R n中向量组A:α1,α2,…,αm,由A的全体线性组合构成的集合。
Ps;(1)记为Span(α1,α2,…,αm)={k1α1+k2α2+…+k mαm};(2)张成是一R n的一个子空间;9.向量β能由向量组A线性表示:给定n维向量组A:α1,α2,…,αm和n维向量β,若存在m个数k1,k2,…,k m,使β=k1α1+k2α2+…+k mαm(k∈R)10.线性方程的三中表示:(1)矩阵方程Ax=b;(2)向量方程x1α1+x2α2+…+x nαn=β;(3)一般式方程;11.线性相关;k1α1+k2α2+…+k nαn=0(k不全为0);线性无关;k1α1+k2α2+…+k nαn=0(k全为0);12.线性相关的几何解释;(1)若向量组A:α1,α2线性相关,则它们共线:(2)若向量组A:α1,α2α3线性相关,则它们共面。
,13.向量组A线性相关的充要条件为R(A)<n(即齐次线性方程组有非零解);向量组A线性无关的充要条件为R(A)=n(……只有零解)。
Ps:秩:R(A)为系数矩阵的行阶梯形的非零行个数。
n维向量空间简介在数学中,向量是一个多维度的数学对象,用于表示方向和大小。
而n维向量空间则是由n个向量组成的空间,可以用于描述和计算n个变量之间的关系。
n维向量空间在各种学科和领域中都有重要的应用,例如线性代数、计算机图形学和机器学习等领域。
本文将介绍n维向量空间的基本概念、性质和常见操作。
基本概念向量一个向量可以由一组有序的数值表示,这组数值被称为向量的分量。
向量通常用小写字母加粗表示,例如v。
在n维向量空间中,一个向量可以表示为:v = (v₁, v₂, …, vₙ)其中v₁, v₂, …, vₙ是向量的n个分量。
n维向量空间n维向量空间可以由n个向量组成,记为{v₁, v₂, …, vₙ}。
这些向量可以是任意长度的向量,但在n维向量空间中,它们的维度必须相同。
n维向量空间中的向量可以进行向量加法和数乘运算。
向量加法是指将两个向量的对应分量相加,数乘是指将一个向量的每个分量乘以一个标量。
性质n维向量空间具有以下性质:1.封闭性:对于任意两个向量v和w,它们的和v+w仍然是n维向量空间中的向量。
2.交换律:向量加法满足交换律,即v+w = w+v。
3.结合律:向量加法满足结合律,即(v+w)+u =v+(w+u)。
4.数乘结合律:数乘满足结合律,即(a b)v = a(b v)。
5.分配律:数乘和向量加法满足分配律,即a(v+w) =a v + a w 和 (a+b)v = a v +b v。
常见操作向量点乘在n维向量空间中,可以对两个向量进行点乘运算。
点乘(也称为内积或数量积)的结果是一个标量,表示两个向量之间的夹角。
向量点乘的计算公式如下:v·w = v₁w₁ + v₂w₂ + … + vₙwₙ其中v和w分别是n维向量空间中的向量,v₁, v₂, …, vₙ和w₁, w₂, …, wₙ是它们的分量。
向量叉乘除了点乘,n维向量空间还可以进行向量叉乘运算。
向量叉乘(也称为外积或矢量积)的结果是一个新的向量,垂直于原来的两个向量。
线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。
(2)向量加减法按照对应项相加减。
(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。
可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。
(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。
(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。
唯一表示。
可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。