八年级数学教案 一元二次方程9篇
- 格式:docx
- 大小:38.92 KB
- 文档页数:37
初中八年级数学《一元二次方程》教案教学设计8.1一元二次方程知识与技能:探索一元二次方程的解或近似解 过程与方法:探索一元二次方程的解或近似解 情感态度与价值观:经历方程解的探索过程,增进对方解的认识,发展估算意识和能力. 探索一元二次方程的解或近似解. 培养学生的估算意识和能力. 教师准备:ppt 课件学生准备:复习一元二次方程定义的相关内容 合作探究 课型 新授课教学过程(教师) 学生活动一、创设现实情境,引入新课 前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家回忆一下。
二、地毯花边的宽x(m)满足方程 估算地毯花边的宽地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x 2―13x+11=0 你能求出x 吗?(1)x 可能小于0吗?说说你的理由;x不可能小于0,因为x 表示地毯的宽度。
(2)x 可能大于4吗?可能大于2.5吗?为什么?(3)完成下表(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。
三、梯子底端滑动的距离x(m)满足方程 (x+6)2+72=102也就是x 2+12x ―15=0 (1)你能猜出滑动距离x(m)的大致范围吗? x 0 0.5 1 1.5 2 2.52x 2―13x+11 回答下列问题:什么叫一元二次方程?它的一般形式是什么?一般形式:ax 2+bx+c-0(a ≠0) 2、指出下列方程的二次项系数,一次项系数及常数项。
(8—2x)(5—2x)=18,即222一13x 十11=0.注:x>o ,8—2x >o ,5—2x >0.从左至右分别11,4.75,0,―4,―7,―9 地毯花边1米,另,因8―2x 比5―2x 多3,将18分解为6×3,8―2x=6,x=1 (x 十6) 十7 =10 ,即x 十12x 一15=0.所以1<x <2. x 的整数部分是1, 所以x 的整数部分是l ,十分位是1.。
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
初中一元二次方程教案一、教学目标1、知识与技能目标学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式。
学生能够熟练将一元二次方程化为一般形式,并准确指出各项系数。
学生能够运用一元二次方程的概念解决简单的实际问题。
2、过程与方法目标通过实际问题的引入,培养学生观察、分析和归纳的能力。
经历一元二次方程概念的形成过程,提高学生的抽象思维能力。
3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
通过合作学习,培养学生的团队合作精神和创新意识。
二、教学重难点1、教学重点一元二次方程的概念及一般形式。
准确识别一元二次方程的各项系数。
2、教学难点理解一元二次方程的概念中二次项系数不为零的条件。
从实际问题中抽象出一元二次方程的数学模型。
三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课展示实际问题:某小区有一块长方形绿地,长为10 米,宽为6 米。
现计划在绿地四周修建宽度相同的小路,使得绿地面积增加到 80 平方米。
请问小路的宽度是多少?引导学生设未知数,列出方程。
2、探索新知(1)观察列出的方程,如 x²+ 16x 20 = 0 ,引导学生分析方程的特点。
(2)给出一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
(3)强调一元二次方程的一般形式:ax²+ bx + c = 0(a ≠ 0),其中 a 是二次项系数,b 是一次项系数,c 是常数项。
3、例题讲解例 1:判断下列方程是否为一元二次方程:(1)3x²+ 2x 1 = 0(2)x²+ 2x + y = 0(3)(x + 1)²= x²+ 1(4)x²= 0例 2:将方程 2x(x 1) = 3(x + 5) 4 化为一般形式,并指出各项系数。
4、课堂练习(1)课本上的相关练习题。
(2)补充练习:给出一些方程,让学生判断是否为一元二次方程;给出一些一元二次方程,让学生指出各项系数。
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一教学设计思想解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。
直接开平方法很简单,在这里不做过多的介绍。
为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。
我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。
在解一元二次方程的几种方法中,均需要用到转化的思想方法。
如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。
在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。
教学目标知识与技能:1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。
2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。
过程与方法:1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。
2.在探究一元二次方程的过程中体会转化、降次的数学思想。
情感态度价值观:在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。
教学重难点重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。
难点:根据方程的特点灵活选择适当的方法解一元二次方程。
教学方法探索发现,讲练结合元二次方程教案篇二一、教学目标1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
《一元二次方程》教案合集6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、讲话致辞、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, job reports, speeches, contract agreements, policy documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《一元二次方程》教案合集6篇《一元二次方程》教案篇1一、教学目标知识与技能(1)理解一元二次方程的意义。
《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。
《一元二次方程》的优秀教案《一元二次方程》的优秀教案一、教案的特点尽管各个学科课程都有各自的特点,教学形式和手段也不尽相同,但在培养学生成为德智体美全面发展、适应社会需求的高素质人才教育宗旨上是一致的,对教案的要求也是有共性的。
这些共性原则上可以概括为以下几点:1. 取材内容合理,切合课程宗旨,符合培养目标定位的要求,适应现实需要,讲述内容观点正确,有实际应用价值。
2.能够理论联系实际,通过典型事例研究分析,揭示学科相关基本理论、基本方法的实质和价值及明确的应用方向。
3.逻辑思路清晰,符合认识规律。
在教知识的过程中渗透教认识问题的方法,通过互动式教学安排和过程,能够使学生举一反三,培养学生自主学习习惯和能力。
4.不墨守成规,能继往开来,教案既是以往教学经验的总结,又是开拓知识新领域的钥匙,能够体现学科发展前沿的要求,具有一定的前瞻性,与时代发展相适应。
5.教学方法有创新。
不照本宣科,不满堂灌,给学生留有充分的余地,注重引导学生思考问题、研究问题、解决问题。
遵循精讲多练的原则,讲要抓住本质、引人入胜;练要有的放矢,调动学生自己解决实际问题的积极性,让学生在教师启发引导下,通过自身的探索,不但知道相关学科领域核心知识“是什么”和“为什么”,还要知道“做什么”、“怎样做”,培养学生勇于实践勇于探索的精神和能力。
6.教案不能面面俱到、大而全,而应该是在学科基本的知识框架基础上,对当前急需解决的问题进行研究、探索、阐述,能够体现教师对相关学科有价值的学术观点及研究心得。
不是我会什么讲什么、我想讲什么讲什么,而是社会需要什么、学生将来走向社会需要什么就注重讲什么,就带领学生研究什么。
总之,教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。
二、《一元二次方程》的优秀教案(通用10篇)作为一名教学工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。
第1篇一、教学目标1. 知识与技能:- 了解一元二次方程的概念及其标准形式;- 掌握一元二次方程的解法,包括配方法、因式分解法、公式法;- 学会根据实际问题建立一元二次方程的数学模型。
2. 过程与方法:- 通过实例分析和小组合作,培养学生的探究能力和合作精神;- 通过对比不同解法,让学生体会数学方法的应用和数学思维的多样性; - 通过实际问题解决,提高学生的应用意识和解决实际问题的能力。
3. 情感态度与价值观:- 激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度;- 培养学生从数学的角度观察、分析问题的能力;- 增强学生的自信心,激发学生勇于挑战困难的勇气。
二、教学重难点1. 教学重点:- 一元二次方程的概念及其标准形式;- 一元二次方程的解法;- 应用一元二次方程解决实际问题。
2. 教学难点:- 一元二次方程的因式分解法;- 一元二次方程的公式法;- 建立一元二次方程的数学模型。
三、教学过程1. 导入新课- 复习一元一次方程的概念和解法;- 提出问题:当方程的次数为2时,方程的形式和求解方法有何变化?2. 新课讲解- 一元二次方程的概念及标准形式;- 一元二次方程的解法:1)配方法:通过配方将一元二次方程转化为两个一元一次方程;2)因式分解法:通过因式分解将一元二次方程转化为两个一元一次方程; 3)公式法:直接应用求根公式求解一元二次方程;- 建立一元二次方程的数学模型:1)通过实例分析,让学生了解实际问题与一元二次方程的联系;2)引导学生从实际问题中提取数学信息,建立一元二次方程。
3. 练习巩固- 学生独立完成课后习题,教师巡视指导;- 针对学生的易错点进行讲解和纠正。
4. 课堂小结- 回顾本节课所学内容,强调一元二次方程的解法和应用;- 布置课后作业,巩固所学知识。
四、教学反思1. 教学过程中,关注学生的学习状态,及时调整教学策略;2. 注重培养学生的数学思维能力和实际问题解决能力;3. 通过实例分析和小组合作,激发学生的学习兴趣和探究精神;4. 关注学生的个体差异,因材施教,提高教学质量。
八年级数学教案一元二次方程9篇一元二次方程 122.1 一元二次方程第一课时教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.态度、情感、价值观4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.整理、化简,得:__________.问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材p32 练习1、2四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材p34 习题22.1 1、2.2.选用作业设计.一元二次方程 2[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。
因此一元二次方程便成为了方程中研究的重要内容。
一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。
[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。
再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。
[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。
能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。
理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。
[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。
(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。
初探新知中,我将学生们分成两组,分别对二次项系数为 1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。
我在这些方程中安排了两个无理根方程。
当学生们发现这两个无理根在求和,求积后,竟变成了有理数,而且每一组两根和(积)都与系数有着密切的联系,此时的他们不难对两根和与两根积产生关注,经历了对二次项系数为1的一元二次方程两根和差积商的研究后,确定了课题并获得猜想:“两根和等于一次项系数的相反数, 两根积等于常数项。
”对于这一猜想,会有学生提出不同看法,他们提出研究二次项系数非 1 的一元二次方程。
学生的质疑启动再探新知。
直接研究一元二次方程两根和、两根积与系数的关系。
这一环节中我不再给出具体的方程要求研究,故除了部分同学自定义方程求根求和求积后产生猜想,还有部分同学对仍保留在板书部分的求根公式着手进行两根和,积的运算。
这两种方案齐头并进,当前者通过不断验证来说明他们猜想的可靠度时,后者通过论证,在严格意义下,说明了此结论的正确性。
对于论证中学生出现的问题,我们在第一时间内揪错指正,在知识初探与再探后,学生获得了新知,得到了一元二次方程根与系数的关系,三、训练感悟我将之前从学生那里收集来的错解对照表中方程,询问检验其正误的方法。
学生根据已有经验,将其代入方程,进行检验。
为寻求更为简便的方法,引出作用一,利用根与系数的关系,不解方程检验两数是否为原方程的根。
我再给出两例,便于巩固练习,更明确了只有当两数和(积)同时满足方程两根和(积)的时侯,才是正确的根。
当学生们正为找到了一种行之有效的检验方法,高兴不已的时候。
突然间,表格中的数据丢失了,我分别隐去了方程的一根及b,c,a三个系数。
为了将材料修复,学生小组展开热烈的讨论。
有了上一题的经验,学生们会利用根与系数关系,不解方程,求出另一根及系数。
也会使用代入求解的方法解题,通过新旧方法的比较,在训练中获得感悟:方法的选择在于简便,学生们在选择了恰当的方法后,修复了材料也巩固了新知。
四、总结提升由学生回顾知识的发生发展及应用过程,以“我的收获”与“我的疑惑”交流心得。
我再帮助学生整理所学知识,引导领会数学的思想。
我还会自豪的告诉他们,数学家们还发现了存在于一元n次方程中的根与系数的普遍关系,这一内容将在高数中有所涉及,激励奋进五、分层作业现在的设计较之以往,有所继承,有所变革。
1、研究启动入口不同过去我总是先给出若干具体方程要求学生求根,并计算两根和(积),作出猜想。
这样的数学后曾有学生问我:“老师为什么会想到两根和(积)与系数的关系,而不是其它?”这种疑问的产生一定与过去设计指定了学生的活动过程有关,为了给学生的活动指向更为宽泛,让两根和积与系数的研究更显合理,现在的设计中主要体现了由数到式的研究,从两根和差积商的重组合再有所观察,有所挑选,方才定位于两根和(积)作进一步的探究。
这种设计正是从数学内部下了功夫,由知识线索的连贯性,师生共同理顺了实验对象的来龙去脉,从数学本身上培养了学生的观察、分析、概括的综合能力。
2、探究部分两步走我将二次项系数为1,非 1的一元二次方程分两次出现,分别放置与知识初探和再探两个环节,这样设计的原因有二:学生的认知能力总是有所差异的,如果将这些方程合二为一加以研究的话,一部分同学对别人获得的正确猜想是瞬间接受,却缺乏思维的参与。
事实上,研究事物往往从简单到复杂,在这里,当a=1 时,易找规律,当 a ≠1后造成的认知冲突,更是激发了这一猜想的完善。
其实这一串,由实验——猜想——再实验——再猜想的思维过程,既符合认知规律,也是一种研究性学习的示范,一种创造性能力的培养。
为了让每一个学生都亲身参与其中,真正感受由“实践——认识——再实践——再认识”这一客观世界认知论的基本规律。
便是我如此设计的原因之一。
原因二:研究入口处,利用两根和差积商的结果,优选出对和积的研究。
初探中二次项系数为 1 的方程两根计算足以起到这一筛选作用。
因此在下一环节的再探新知中,便自然关闭了对两根差与商相对较为繁琐的计算,直接由两根和积入手研究与系数的关系,提高了研究的效率。
3、再探新知放手走我没有再给出任何具体的方程以供研究,这里的放手,引出了学生不同的操作方法。
一部分学生把注意力转放在求根公式上展开直接论证,就连另一部分学生自定义方程数据研究的方式也各不相同,他们有的翻开笔记本查阅之前解方程的资料;有的反凑特殊值方程;更有的会从中提炼出代数论证的方法;当然也有借助于计算器完成了繁琐的计算。