空间直线与平面
- 格式:doc
- 大小:632.50 KB
- 文档页数:7
空间中直线与平面的关系在空间几何学中,直线和平面是两种基本的几何要素,它们之间存在着紧密的关系。
本文将探讨直线与平面的相互作用,以及它们在空间中的几何性质。
一、直线在平面内的位置关系直线可以分为三种不同的位置关系:直线在平面内的情况、直线在平面上的情况和直线与平面相交的情况。
1. 直线在平面内的情况当直线和平面没有交点时,我们说直线在平面内部。
在这种情况下,直线与平面是平行的。
平行的定义是:两条直线在平面内不存在交点,并且它们的方向向量也是平行的。
例如,在笛卡尔坐标系中,直线方程为y = mx + c,而平面方程为ax + by + cz + d = 0,其中m、c、a、b、c、d为常数。
当平面的法向量[a, b, c]与直线的方向向量[1, m, 0]平行时,我们可以确定直线在平面内。
2. 直线在平面上的情况当直线与平面有交点时,我们说直线在平面上。
直线在平面上可以有不同的位置关系:直线与平面相切、直线在平面内部和直线穿过平面。
- 直线与平面相切:在这种情况下,直线与平面只有一个交点,并且这个交点同时属于直线和平面。
我们可以通过求解直线和平面的方程组来确定交点的坐标。
- 直线在平面内部:当直线与平面有无数个交点时,我们说直线在平面内部。
在这种情况下,直线与平面相交但不重合。
- 直线穿过平面:当直线与平面有无穷多个交点时,我们说直线穿过平面。
在这种情况下,直线与平面重合。
3. 直线与平面相交的情况当直线与平面相交时,我们可以进一步讨论相交点的情况。
直线可以与平面相交于一个点、一条直线或平面本身。
- 直线与平面相交于一个点:在空间几何中,直线与平面相交于一个点是最常见的情况。
这时,我们可以通过求解直线和平面的方程组来确定交点的坐标。
- 直线与平面相交于一条直线:在这种情况下,直线与平面共面并且有无数个公共点。
这种情况也可以通过求解直线和平面的方程组来确定。
- 直线与平面相交于平面本身:直线与平面之间存在特殊的关系,即它们有一条公共直线。
平面与空间直线平面及其方程我们把与一平面垂直的任一直线称为此平面的法线。
设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:注意:此种形式的方程称为平面方程的点法式。
例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.解答:应用上面的公式得所求的平面方程为:即我们把形式为:Ax+By+Cz+D=0.称为平面方程的一般式。
其中x,y,z的系数A,B,C是平面的法线的一组方向数。
几种特殊位置平面的方程1、通过原点其平面方程的一般形式为:Ax+By+Cz=0.2、平行于坐标轴平行于x轴的平面方程的一般形式为:By+Cz+D=0.平行于y轴的平面方程的一般形式为:Ax+Cz+D=0.平行于z轴的平面方程的一般形式为:Ax+By+D=0.3、通过坐标轴通过x轴的平面方程的一般形式为:By+Cz=0.通过y轴和z轴的平面方程的一般形式为:Ax+Cz=0,Ax+By=0.4、垂直于坐标轴垂直于x、y、z轴的平面方程的一般形式为:Ax+D=0,By+D=0,Cz+D=0.直线及其方程任一给定的直线都有着确定的方位.但是,具有某一确定方位的直线可以有无穷多条,它们相互平行.如果要求直线再通过某一定点,则直线便被唯一确定,因而此直线的方程就可由通过它的方向数和定点的坐标表示出来。
设已知直线L的方向数为{l,m,n},又知L上一点Po(x0,y0,z0),则直线L的方程可表示为:上式就是直线L的方程,这种方程的形式被称为直线方程的对称式。
直线方程也有一般式,它是有两个平面方程联立得到的,如下:这就是直线方程的一般式。
平面、直线间的平行垂直关系对于一个给定的平面,它的法线也就可以知道了。
因此平面间的平行与垂直关系,也就转化为直线间的平行与垂直关系。
平面与直线间的平行与垂直关系,也就是平面的法线与直线的平行与垂直关系。
直线与平面的关系及应用一、直线与平面的空间位置关系公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
1. 线面平行定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
拓展:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
2. 线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
二、空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1. 两条直线平行定义:在同一平面内,不相交的两条直线互相平行。
判定定理:(1)如果两直线同时平行于第三条直线,那么这两条直线平行(2)如果两直线同时垂直于同一个平面,那么这两条直线平行性质定理: 两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
拓展:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
直线与平面的位置关系直线与平面的位置关系是几何学中的重要概念之一,研究它们的相互关系有助于我们深入理解空间几何。
在本文中,我们将探讨直线与平面的几种基本位置关系及其性质。
一、直线与平面的交点直线与平面可以相交于一点,此时它们具有唯一的交点。
假设有直线l和平面P,如果l与P相交于点A,我们可以得出以下结论:1. 点A在直线l上,同时也在平面P上;2. 点A在直线l上,但不在平面P上;3. 点A不在直线l上,但在平面P上。
这些情况中,最常见的是第一种情况,即直线与平面相交于一点,该点同时属于直线和平面。
二、直线与平面的重合直线与平面有可能重合,即它们完全重合于同一几何形状。
在这种情况下,直线与平面的所有点都是重合的,它们具有相同的位置和方向。
三、直线与平面的平行关系直线与平面可能平行,即它们始终保持着固定的距离,永不相交。
对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P平行,则其上的任意点都不在平面P上;2. 若直线l与平面P平行,则直线l上的一切点与平面P上的一切点的距离相等。
需要注意的是,直线与平面的平行关系是相对的,当我们谈论直线l与平面P平行时,必须指定相对于哪种参考系来判断。
四、直线与平面的垂直关系直线与平面可能垂直,即直线与平面形成一个直角。
对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P垂直,则直线l上的任意向量与平面P上的任意向量之间的内积为零;2. 若直线l与平面P垂直,则直线l与平面P相交于一点,该点同时属于直线和平面。
需要注意的是,直线与平面的垂直关系也是相对的,需要指定相对于哪种向量或平面来判断。
五、直线与平面的夹角除了垂直关系外,直线与平面之间还可以存在其他夹角。
对于直线l和平面P,我们可以定义它们之间的夹角为直线l上的某条与平面P 垂直的直线与平面P的交线的夹角。
直线与平面的夹角可以是锐角、直角或钝角,具体取决于直线与平面的位置关系和夹角的大小。
高中数学空间点直线和平面的位置关系公式The Standardization Office was revised on the afternoon of December 13, 2020空间点,直线和平面的位置关系一,线在面内的性质:定里1. 如果一条直线的两点在一个平面内,那么这条直线上所有点都在这个平面内。
二,平面确定的判定定理:定里2. 经过不在同一直线上的三点有且只有一个平面。
定里3.经过一条直线和直线外一点,有且只有一个平面。
定里4. 经过两条相交直线有且只有一个平面。
定里5.经过两条平行直线有且只有一个个平面。
三,两面相交的性质:定里6. 如果两个平面有一个公共点,那么还有其它公共点,则这些公共点的集合是一条直线。
四,直线平行的判定定理:定里7. 平行于同一直线的两直线平行。
五,等角定理:定里8.如果一个角的两边和另一个角的两边分别平行且同向,那么这两个角相等。
六,异面直线定义:不同在任何一个平面内的两条直线叫异面直线。
(异面直线间的夹角只能是:锐角或直角)七,直线和平面平行的判定定理:定理9. 平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄推理1. 如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα 八,平面与平面平行判定定理:定理1. 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
符号表示:βαββαα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂b a M b a b a推论1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
九,平面与平面平行的性质:定理1. 如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα十,线与面垂直的判定定理:定理1. 如果一条直线与一个平面内的两条相交直线都平行,那么这条直线垂直这个平面。
第三章平面与空间直线本章以矢量为工具推导平面和空间直线各种形式的方程,讨论两平面,直线与平面,两直线的相互位置关系,并以矢量为工具推导两平面,直线与平面,两直线间的夹角公式以及点到平面,点到直线,两异面直线间的距离公式,最后又讨论了平面束方程及其应用。
本章的基本要求如下:A.掌握1.基本概念:平面的方位矢量和法矢量,量,方向角,方向余弦,方向数。
有轴平面束和平行面束。
点与平面间的离差,直线的方向矢量2.平面方程矢量形式的方程:点位式,一般式,参数式,点法式。
坐标形式的方程:点位式,三点式,截距式,一般式,参数式,点法式,法线式。
根据平面的方程画出平面的图形。
3.直线方程矢量形式的方程:点向式,参数式。
坐标形式的方程:对称式,两点式,参数式,一般式,射影式。
4.点,直线,平面的相关位置①用矢量方法讨论两平面的位置关系(相交,平行,重合),并求两平面间的夹角。
②点和平面的位置关系(点在或点不在平面上),利用平面的法线式方程求点与平面的离差和距离。
③用矢量方法讨论直线和平面的位置关系(相交,平行,直线在平面上),并求直线和平面间的夹角。
④点和直线的位置关系(点在直线上或点不在直线上),利用矢量方法求点到直线的距离。
⑤用矢量方法讨论两直线的位置关系(异面,相交,平行,重合)并求两直线间的夹角。
⑥平面束方程,利用平面束方程求空间直线在任一平面上的射影。
⑦空间圆的方程,圆心和半经的求法。
5.基本理论平面基本定理及其证明(定理3,1,1)有轴平面束方程及其证明(定理3,8,1)B.理解利用矢量方法求两异面直线的公垂线和两异面直线间的距离。
知识要求:1.知道决定平面的几何条件及矢量条件,会根据几何条件求出平面方程;2.掌握平面的参数方程、一般方程、法式方程、截距式方程;3.会求点到平面的距离;4.会用矢量条件判断平面与平面的位置关系;5.知道决定空间直线的几何条件及矢量条件,会根据几何条件求出直线方程;6.掌握空间直线的参数方程、两点式方程、一般方程、标准方程,会将参数方程、一般方程转化成标准方程;7.会用矢量条件判断直线与直线、平面与直线的的位置关系; 8.会求两直线之间的夹角;9.会求两异面直线之间的距离与公垂线方程; 10.了解平面束的概念。
空间几何中的直线与平面的交点问题解析在空间几何中,直线与平面的交点问题是一个常见的题型。
本文将对这一问题进行详细解析。
在三维空间中,直线与平面的交点问题涉及到直线和平面的几何性质。
首先,我们来讨论直线与平面的相对位置。
直线可以与平面相交、平行或者重合。
当直线与平面相交时,它们将有一个交点;当直线与平面平行时,它们将没有交点;当直线与平面重合时,它们将有无穷多个交点。
接下来,我们来探讨如何求解直线与平面的交点。
设直线的参数方程为:$$\begin{cases}x = x_{0} + at \\y = y_{0} + bt \\z = z_{0} + ct \\\end{cases}$$其中,$(x_{0}, y_{0}, z_{0})$是直线上的一点,$a, b, c$是方向比例系数,$t$为参数。
设平面的一般方程为 $Ax + By + Cz + D = 0$,其中 $A, B, C, D$ 为常数。
要求解直线与平面的交点,我们可以将直线的参数方程代入平面的一般方程,得到一个关于参数 $t$ 的方程。
将这个方程化简,求解$t$ 的值。
然后将 $t$ 的值代入直线的参数方程,即可求得直线与平面的交点的坐标。
需要注意的是,当 $t$ 有多个解时,即直线与平面重合时,我们可以通过选择不同的 $t$ 值,得到直线与平面的多个交点。
如果直线与平面平行,它们没有交点。
下面通过实例来进一步说明如何解决直线与平面的交点问题。
假设有一条直线 $l$ 的参数方程为:$$\begin{cases}x = 2 + t \\y = 1 - 2t \\z = -3 + 3t \\\end{cases}$$平面 $P$ 的一般方程为 $2x - 3y + z + 1 = 0$。
我们将直线 $l$ 的参数方程代入平面 $P$ 的一般方程,得到:$$2(2 + t) - 3(1 - 2t) + (-3 + 3t) + 1 = 0$$化简上述方程,得到:$$8t - 6 = 0$$解上述方程,得到 $t = \frac{3}{4}$。
一对一vip辅导讲义
求证:a、b、c相交于一点或互相平行
分析:两种情况(1)交线相交(2)交线不相交
证明:(1)设a∩b=P则P∈a, P∈b
∵α∩β=a,β∩γ=b ∴P∈α,P∈β,P∈γ
∵p∈α∩β而α∩γ=c
∴p∈c ∴a、b、c相交于一点P
(2)若a、b、c不相交,在α内必有a∥c
同理b∥c ∴a∥b∥c
练习2、在正方体AC
1
中,M、N分别就是A
1
B
1
、B
1
B的中点,求
(1)AM与CN所成角的大小;
(2)AM与BD
1
所成角的大小。
(3)AM与BD所成角的大小;
D1C1
G
A1B1
M
N
D C
A Q P B
练习3、如图正方体
1
1
1
1
D
C
B
A
ABCD-中:
(1)与对角线AC1成异面的直线的棱有多少条?
(2)与AB成异面直线的棱有多少条?
(3)与BD成异面直线的棱有多少条?
(4)正方体12条棱中异面直线共有多少对?
练习4、正方体
1
1
1
1
D
C
B
A
ABCD-棱长为a,对角线C
A
1
长为a3。
①异面直线
1
BA与
1
CC所成的角。
②异面直线BC与
1
AA的距离。
③ 异面直线B A 1与C B 1所成的角。
④ 异面直线B A 1与1AC 所成的角。
⑤ M 、N 为11C D 、11B C 中点,MN 与AC 所成角。
⑥ H 为BC 中点,H C 1与B D 1所成角。
练习5、 四面体ABCD,棱长均为a (正四面体)
① 求异面直线AD 、BC 的距离。
② 求AC 、BD 所成的角。
③ E 、F 为BC 、AD 中点,求AE 、CF 所成角。
练习6、 P 为ABC ∆所在平面外一点,E 为PA 中点,且AC BE ⊥,AC PC ⊥,a PA =,b PC =(b a >)。
求异面直线BE 、PC 的距离。
练习6、 正方体1AC 中,E 、F 为AB 、B B 1中点,求E A 1、F C 1所成的角。
【随堂练习及课后作业】
1、 已知E,F,G ,H 就是空间的四个点 。
命题甲:点E,F,G ,H 不共面 ; 命题乙:点E,F,G ,H 中任何三点不共线 。
那么甲就是乙成立的( )条件。
A 、 充分非必要
B 、 必要非充分
C 、 充要
D 、 非充分非必要
2、 a 、b 异面,b 、c 异面,则a 、c 的关系为( )
A 、 平行
B 、 相交
C 、 异面
D 、 以上均有可能 3、分别与两条异面直线都相交的两条直线的位置关系就是( )
A 、 平行或相交
B 、 相交或异面
C 、 平行或异面
D 、 均有可能 4、 a 、b 为异面直线,α⊂a ,β⊂b ,l =⋂βα,则有( )
A 、 a 、b 同时与l 相交
B 、 l 至少与a 、b 中一条相交
C 、 l 至多与a 、b 中一条相交
D 、 l 与a 、b 中一条平行,一条相交 5、 AB 、CD 分别就是两条异面上线段,M 、N 分别就是它的中点,则有( )
A 、
)(2
1
BD AC MN +=
B 、 )(2
1BD AC MN +<
C 、 )(2
1BD AC MN +>
D 、 MN 与)(2
1BD AC +无法比较
6、 若a 、b 为异面直线,直线c//a,则c 与b 的位置关系就是( )
A 、 相交
B 、 异面
C 、 平行
D 、 异面或相交 7、 两两相交的四条直线确定平面的个数最多的就是( )
A 、 4个
B 、 5个
C 、 6个
D 、 8个
8、 正方体ABCD-A 1B 1C 1D 1中,所有各面的对角线能与AB 1成60°角的异面直线的条数有( ) A 、 2条 B 、 4条 C 、 5条 D 、 6条 9、 在空间四点中,三点共线就是四点共面的( )
A 、 充分必要条件
B 、 必要非充分条件
C 、 充分非必要条件
D 、 既非充分又非必要条件 10、 教室内有一把尺子,无论怎样放置,地面上总有这样的直线与该直尺所在直线( ) A 、 平行 B 、 垂直 C 、 相交但不垂直 D 、 异面
11、 如图所示,点P 、Q 、R 、S 分别在正方体的四条棱上并且就是所在棱的中点,则直线PQ 与RS 就是异面直线的一个图就是( )
12、 在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 与HG 交于点M,则( ) A 、 M 一定在直线AC 上 B 、 M 一定在直线BD 上
C 、 M 可能在AC 上,也可能在B
D 上 D 、 M 不在AC 上,也不在BD 上 13、 如图所示就是一个正方体的展开图,在原正方体中,有下列命题: (1)AB 与CD 所在直线垂直;(2)CD 与EF 所在直线平行;
(3)AB 与MN 所在直线成60°角; (4)MN 与EF 所在直线异面。
其中正确命题的序号就是( )
(二)填空题
1、21//l l ,a 、b 与1l 、2l 均垂直,则a 、b 的关系为_____________________
2、已知异面直线a 、b 成︒60角,P 为空间一点,则过P 且与a 、b 所成角均为︒60的直线有_________条
3、空间直线b a ,满足(1)与a 异面;(2)与a 成︒45角;(3)与a 距离为10cm;则这样的b 有_________条
4、空间四边形ABCD 棱长为a ,对角线也为a ,E 为AD 中点,AB 与CE 所成角为__________________
5、若a 、b 、l 就是两两异面的直线,a 与b 所成的角就是π
3
,l a l b 与、与所成的角都就是α,则α的取值
范围就是 6、在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 分别为AB 、BC 、CC 1的中点,则EF 与BG 所成角的余弦值为_______ (三) 解答题
1、 已知:四边形ABCD 中,AB//CD,AB 、BC 、DC 、AD(或其延长线)分别与平面α相交于E 、F 、G 、H 四点,求证:E 、F 、G 、H 四点共线。
2、 空间四边形ABCD 中,E 、F 分别就是AB 、BC 的中点。
求证:EF 与AD 为异面直线。
3、 △ABC 就是边长为2的正三角形,在△ABC 所在平面外有一点P,P
B P
C ==72,PA =3
2
,延长BP 至D,使B
D =7,
E 就是BC 的中点,求AE 与CD 所成角的大小。