初二几何练习题(梯形)
- 格式:doc
- 大小:33.50 KB
- 文档页数:1
初二数学梯形试题1.如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,△DEC的周长是().A.3B.12C.15D.19【答案】C【解析】本题主要考查了等腰梯形的性质和平行四边形的判定及性质. 根据等腰梯形的两腰相等可得出DE、DC的长度,利用平行线的性质可得出BE的长度,继而可得出答案解:∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=6,EB=AD=5,∴EC=8-5=3,则△DEC的周长=DE+DC+EC=6+6+3=15.故选C2.如图,在等腰梯形ABCD中,AB∥CD,AC、BD是对角线,将△ABD沿AB向下翻折到△ABE的位置,试判定四边形AEBC的形状,并证明你的结论.【答案】四边形AEBC是平行四边形证明见解析【解析】本题考查了等腰梯形的性质,旋转的意义,以及平行四边形的判定. 要判定四边形AEBC的形状,根据已知条件和旋转的意义可证AE∥BC AE=BC,所以四边形AEBC是平行四边形.四边形AEBC是平行四边形证明如下:在等腰梯形ABCD中, ∵AB∥CD,∴AD=BC,AC=BD.又∵AB=BA,∴△ABC≌△BAD,∴∠ABC=∠BAD.由题意可知△ABE≌△ABD,∴AD=AE,∠BAE=∠BAD.∴AE=BC,∠BAE=∠ABC, AE∥BC,∴四边形AEBC是平行四边形3.如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.⑴用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;⑵用序号再写出三个真命题(不要求证明)【答案】(1)如果①②③,那么④⑤,证明见解析(2)如果①②④,那么③⑤; 如果①③④,那么②⑤;如果①③⑤,那么②④【解析】本题主要考查全等三角形的判定与性质,平行线的性质与判定. (1)如果①②③,那么④⑤.过E点作EF∥AD,与AB交于点F,根据平行线的性质推出EF为梯形ABCD的中位线,根据平行线的性质和等量代换,即可推出∠4=∠3,AB=2EF,通过2EF=AD+BC,即可推出AB=AD+BC,(2)根据真命题的定义,写出命题即可.解:(1)如果①②③,那么④⑤.证明:延长AE交BC的延长线于F,∵AD∥BC,∴∠ADE=∠FCE,又∵∠AED=∠CEF,DE=EC,∴△ADE≌△FCE.∴AD=CF,AE=EF.∵∠1=∠F,∠1 =∠2,∴∠2=∠F,∴AB=BF,∴∠3=∠4,∴AD+BC=CF+BC=BF=AB.(2)如果①②④,那么③⑤; 如果①③④,那么②⑤;如果①③⑤,那么②④4.等腰梯形上、下底差等于一腰的长,那么腰长与下底的夹角是().A.75°B.60°C.45°D.30°【答案】B【解析】本题主要考查了等腰梯形的性质. 过A作AE∥CD交BC于E,得到平行四边形ADCE,推出AD=CE,AB=AE=CD,推出等边三角形ABE,关键等边三角形性质求出即可.解:过A作AE∥CD交BC于E,∵AD∥BC,AE∥CD,∴四边形ADCE是平行四边形,∴AD=CE,AE=CD=AB,∵BC-AD=AB,∴AB=BE=AE,∴△AEB是等边三角形,∴∠B=60°;故选B.5.等腰梯形的高是腰长的一半,则底角为().A.30°B.45°C.60°D.90°【答案】A【解析】本题主要考查了正弦的定义。
初二梯形试题及答案一、选择题1. 下列哪个选项不是梯形的性质?A. 梯形的对边平行B. 梯形的对角线相等C. 梯形的对角线互相平分D. 梯形的上下底平行答案:B2. 如果一个梯形的上底为5厘米,下底为10厘米,高为3厘米,那么这个梯形的面积是多少平方厘米?A. 7.5B. 15C. 22.5D. 30答案:C3. 等腰梯形的两条腰相等,那么它的两个底角相等吗?A. 是B. 不一定C. 不是答案:A二、填空题4. 梯形的面积公式是:\[ \text{面积} = \frac{(\text{上底} +\text{下底}) \times \text{高}}{2} \]。
5. 如果一个梯形的上底是6厘米,下底是12厘米,高是4厘米,那么它的面积是\[ 24 \]平方厘米。
三、简答题6. 请说明什么是等腰梯形,并给出一个等腰梯形的性质。
答:等腰梯形是两条腰相等的梯形。
等腰梯形的一个性质是它的两个底角相等。
7. 如何证明一个四边形是梯形?答:一个四边形是梯形,如果且仅如果它有一对平行边。
可以通过证明四边形的两组对边中有一组平行来证明它是梯形。
四、计算题8. 已知梯形ABCD,其中AB平行于CD,AB=4厘米,CD=8厘米,高DE=5厘米。
求梯形ABCD的面积。
解:根据梯形面积公式,\[ \text{面积} = \frac{(AB + CD)\times DE}{2} \],代入数值得:\[ \text{面积} = \frac{(4 + 8) \times 5}{2} = 30 \]平方厘米。
五、证明题9. 已知等腰梯形ABCD,AB平行于CD,AB=6厘米,CD=2厘米,AD=4厘米,BC=4厘米。
证明:对角线AC=BD。
证明:由于ABCD是等腰梯形,所以AD=BC。
设AC与BD相交于点E,根据等腰梯形的性质,我们可以知道三角形AED和三角形BEC是全等的。
因此,AE=BE,CE=DE。
由于AD=4厘米,我们可以得出AE+EC=4厘米,即BE+DE=4厘米。
初二梯形性质及判定练习题梯形的定义和性质梯形是一个四边形,它的两边是平行的,而另外两边不平行。
梯形的两个平行边称为梯形的底边和顶边,而两个不平行的边称为梯形的腰。
梯形有以下性质:1. 对角线:梯形的两条对角线不平行,且它们相交于一点。
2. 底角和顶角:梯形的底边和顶边上的角是对顶角,它们的度数之和为180度。
3. 腰角和底角:梯形的腰上的角和底边上的角是对顶角,它们的度数之和为180度。
判定梯形的条件一个四边形是梯形的条件为:1. 两边平行:四边形的两条边是平行的。
2. 底角相等:四边形的底边上的两个角度数相等。
判定题练1. 四边形ABCD的边AB与边CD平行,AB=CD=10cm,底角B=底角C=70度。
判断四边形ABCD是否为梯形。
2. 四边形EFGH的边EF与边GH平行,EF=GH=12cm,底角E=底角F=90度。
判断四边形EFGH是否为梯形。
3. 四边形IJKL的边IJ与边KL平行,IJ=12cm,KL=8cm,底角J=底角L=60度。
判断四边形IJKL是否为梯形。
4. 四边形MNOP的边MN与边OP平行,MN=12cm,OP=15cm,底角M=底角N=70度。
判断四边形MNOP是否为梯形。
判定结果1. 四边形ABCD是梯形。
根据条件,边AB与边CD平行,底角B=底角C=70度满足梯形的定义和性质。
2. 四边形EFGH不是梯形。
虽然边EF与边GH平行,但底角E=底角F=90度大于180度,不满足梯形的定义和性质。
3. 四边形IJKL是梯形。
根据条件,边IJ与边KL平行,底角J=底角L=60度满足梯形的定义和性质。
4. 四边形MNOP不是梯形。
虽然边MN与边OP平行,但底角M=底角N=70度大于180度,不满足梯形的定义和性质。
注意:以上判定结果基于给定条件和梯形的定义和性质,根据题目提供的数据进行推断和判断。
图 5E D C BA 梯形考点综述:梯形也是中考重要考点之一,主要考查内容为梯形以及直角梯形的定义、相关性质和应用,等腰梯形的定义、性质及判定方法,与梯形有关的计算与证明是考查的热点。
典型例题:1.(2007河南)如图,在直角梯形ABCD 中,AB //CD ,AD ⊥CD ,AB =1cm ,AD =2cm ,CD =4cm ,则BC = .第1题 第2题 第3题 第4题 2.(2008海南)如图,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6cm ,则AE = cm . 3.(2007青岛)如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2.A. B .6 C. D .124.(2008盐城)梯形的中位线长为3,高为2,则该梯形的面积为 .5.(2008深圳)如图,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E . (1)求证:梯形ABCD 是等腰梯形.(2)若∠BDC =30°,AD =5,求CD 的长.实战演练:1.(2007内江)如图在等腰梯形ABCD 中,AD BC ∥,60C ∠=, 则1∠=( )A .30B .45C .60D .802.(2008泸州)如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( ) A .6 B .7 C .8 D .9D C A B B A C D FE DCBA AB CED B3.(2007安顺)如图所示,等腰梯形ABCD 中,AD BC BD DC ∥,⊥, 点E 是BC 边的中点,ED AB ∥,则BCD ∠等于( ) A .30B .70C .75D .604.(2007潍坊)如图,梯形ABCD 中,AD BC ∥,45B =∠, 120D =∠,8cm AB =,则DC 的长为( )ABC. D .8cm 5.(2007邵阳)如图,梯形ABCD 中,AD BC ∥,AB CD = 2AD ==cm ,60B ∠=°,则梯形ABCD 的周长为 cm6.(2007绵阳)如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35︒,则∠D = .7.(2008义乌)如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8, AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当AE =5,P 落在线段CD 上时, PD = .8.(2008茂名)如图,在等腰梯形ABCD 中,已知AD ∥BC , AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.9.(2007威海) 如图,四边形ABCD 为一梯形纸片,AB CD ∥,AD BC =.翻折纸片ABCD ,使点A 与点C 重合,折痕为EF .已知CE AB ⊥. 求证:EF BD ∥;D F C FE D B AABCD10.(2008连云港)如图,在直角梯形纸片ABCD 中,AB DC ∥,90A ∠=,CD AD >,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E 处,折痕为DF .连接EF 并展开纸片. (1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连接EG ,如果BG CD =, 试说明四边形GBCE 是等腰梯形.应用探究:1.(2007天津)在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5=,BD=12c m ,则梯形中位线的长等于( )A. 7.5cm B. 7cm C. 6.5cm D. 6cm2.(2007黄冈)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°, E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有 个。
八年级数学(下)《梯形》同步测试题一、选择题1.等腰梯形上、下底差等于一腰的长,那么腰长与下底的夹角是( ).A.5°B.60° .45° D.30°2.等腰梯形的高是腰长的一半,则底角为( ).A.30°B.45°C.60°D.90°3.下列命题中,真命题是( ).A.有一组对边平行,另一组对边相等的梯形是等腰梯形B.有一组对角互补的梯形是等腰梯形C.有一组邻角相等的四边形是等腰梯形D.有两组邻角分别相等的四边形是等腰梯形4.如图1,在等腰梯形ABCD 中,AD=6cm,BD=9cm,AB=8cm,E 、F 、G 、H 分别是AD 、BD 、BC 、AC 的中点,那么四边形EFGH 的周长是( ).A.14cmB.15cmC.16cmD.17cm图1 图2 图35.如图2,等腰梯形ABCD,周长为40,∠BAD=60°,BD 平分∠ABC,则CD 的长为( ).A.4B.5C.8D.106.下列四边形中,两条对角线一定不相..等.的是( ). A.正方形 B.矩形 C.等腰梯形 D.直角梯形7.如图3,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是( ). A.1516 B.516 C.1532 D.17168.在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是 ( ).A B C D9.在梯形ABCD 中,AB ∥CD ,AB>CD ,如果∠D>∠C ,那么AD 和BC 的关系是( )A .AD>BCB .AD=BC C .AD<BCD .不能确定10.腰梯形两底之差的一半等于它的高,那么此梯形的一个底角是( )A .30°B .45°C .60°D .75°二、填空题11.直角梯形两底之差等于高,则其最大角等于_______.12.如图4,四边形ABCD是等腰梯形,AD//BC,AB=CD,则AC=_______,∠BAD=_____,∠BCD=_____,等腰梯形这个性质用文字语言可表述为_______.ADB C图413.等腰梯形ABCD中,对角线AC、BD相交于点O,那么图中的全等三角形最多有________对.14.在四边形ABCD中AD∥BC,但AD≠BC,若使它成为等腰梯形,则需添加的条件是_____(填一个正确的条件即可)15.如图5,梯形ABCD中,AB//CD,∠ABC=90°,AB=9cm,BC=8cm,CD=7cm,M是AD的中点,过M作AD的垂线交BC于N,则BN等于_____cm.2图5 图616.如图6,梯形ABCD中,AD∥BC,若∠B=60°,AC⊥AB,那么∠DAC= .3017.如图7,在等腰梯形ABCD中AD//BC,AB=DC,CD=BC,E是BA、CD延长线的交点,∠E=40°,则∠ACD=____________度.15图7 图818.如图8,在等腰梯形ABCD中,AD//BC,AC、BD相交于点O,有如下结论:①∠DAC=∠DCA;②梯形ABCD是轴对称图形;③△AOB≌△AOD;④AC=BD.请把其中正确结论的序号填写在横线上__________.19.等腰梯形ABCD中,AD∥BC,AD=AB,BC=BD,则∠A= .20.等腰梯形ABCD中,AB∥CD,AC平分∠DAB,∠DAB=60°,若梯形周长为8㎝,则AD= .三、解答题21.(12分)如图9,等腰梯形的上下底分别是3cm和5cm,一个角是45°,求等腰梯形的面积.图922.(12分) 如图10,等腰梯形ABCD中,AB//CD,DC=AD=BC,且对角线AC垂直于腰BC,求梯形的各个内角.图1023.(14分) 如图11,梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE.求证AC=CE.图1124.(14分)如图12,等腰梯形ABCD中,AD//BC,AD=3,AB=4,BC=7,求∠B的度数.4.图1225.如图13(尺寸单位:㎜)所示甲、乙两种直角梯形零件,且使两种零件的数量相等,有两种面积相等的矩形铝板可供选用.第一种长500㎜,宽300㎜;第二种长600㎜,宽250㎜.为了充分利用材料,应选第种铝板,这时一块铝板最多能剪甲、乙零件共个.2答案一、1.B 2.A 3.B 4.C 5.C 6.D 7.B 8.D 9. A 10.B二、11. 135°; 12. BD ,∠CDA ,∠ABC ,等腰梯形的对角线相等,等腰梯形同一底上的两个角相等; 13. 3; 14. ∠B=∠C 等; 15.2; 16.30°; 17.15; 18.②④. 19.108°; 20.85㎝ 三、21. 解:因为ABCD 是等腰梯形,AD=3cm,BC=5cm,过点A 作AE ⊥BC 于E, 因为∠B=45°,∠BAE=45°,所以BE=AE,BE=21(5-3)=1,所以AE=1,所以 S 梯形ABCD =21(5+3)×1=4(cm 2). 22. 解:因为AB//CD ,DC=AD=BC ,所以∠1=∠2,∠1=∠3,∠DAB=∠B , 所以∠1=∠2=∠3,所以∠B=∠DAB=∠2+∠3=2∠2,又AC ⊥BC ,所以∠2+∠B=90°,所以∠B=60°,所以∠DAB=60°,∠ADC=∠BCD=120°.23. 证明:因为AB//CD,BE=DC,且BE 在AB 的延长线上,所以CD//BE,CD=BE,所以四边形DBEC 是平行四边形,所以CE=DB,因为AD=BC,所以梯形ABCD 是等腰梯形,所以AC=BD,所以AC=CE.24.过点A 作AE//DC 交BC 与E,]∵AD//BC ,四边形AEDC 是平行四边形.∴EC=AD=3,DC=AE ,∴BE=BC-CE=7-3=4.∵等腰梯形两腰相等,∴AB=CD=4,∴AE=AB=BE=4,∴△ABE 是等边三角形,∴∠B=60º.25.选第一种铝板,最多能剪甲、乙两种零件2个,共计4个.剩余边角料面积=500×300-(100+300)×200-(100+300)×150=10000㎜2。
初二数学梯形练习题梯形是初中数学的一个重要概念,通过学习梯形的性质和相关公式,我们可以解决很多与梯形相关的问题。
本篇文章将为大家提供一些初二数学梯形练习题,帮助大家巩固相关知识点。
练习题一:计算面积已知梯形ABCD,其中AB∥CD,AB=10cm,CD=16cm,AD=12cm。
求梯形ABCD的面积。
解答:梯形的面积可以通过上底和下底的平均值乘以高得到。
根据题目给出的信息,梯形ABCD的上底为10cm,下底为16cm,可以计算得到平均底长为(10+16)/2=13cm。
梯形的高为AD=12cm。
因此,梯形ABCD的面积为13cm×12cm=156cm²。
练习题二:计算周长已知梯形EFGH,其中EF∥GH,EF=6cm,GH=10cm,FG=3cm,EH是梯形的高。
求梯形EFGH的周长。
解答:梯形的周长可以通过将各边的长度相加得到。
根据题目给出的信息,梯形EFGH的边长分别是EF=6cm,GH=10cm,FG=3cm。
由于上底和下底不平行,我们无法直接得到梯形的高。
然而,根据题目中的信息,我们可以通过应用勾股定理求解。
根据勾股定理,我们可以得到:FG²+EH²=EF²。
代入已知的数值,可得3²+EH²=6²,即9+EH²=36。
解方程可得EH=√27=3√3。
因此,梯形EFGH的周长为6cm+10cm+3cm+3√3cm=19cm+3√3cm。
练习题三:已知面积和底长已知梯形IJKL的面积为40cm²,上底JK为8cm,下底IL为12cm。
求梯形IJKL的高。
解答:根据上面提到的梯形面积的计算方法,面积可以通过上底和下底的平均值乘以高得到。
根据题目给出的信息,梯形IJKL的上底为8cm,下底为12cm,可以计算得到平均底长为(8+12)/2=10cm。
梯形的面积为40cm²。
代入公式,可得40cm²=10cm×h,解方程可得h=4cm。
梯形练习题及答案答案一:梯形练习题及答案一、选择题1. 梯形的两边是平行边,且不等长的四边形,其中不等长的一对边称为()。
A. 平行边B. 高C. 长边D. 短边2. 梯形中,非平行边的夹角互补,则该梯形是()。
A. 直角梯形B. 等腰梯形C. 普通梯形D. 等边梯形3. 若梯形的一组对边的夹角为75°,则该梯形的另一组对边的夹角为()A. 15°B. 30°C. 45°D. 60°4. 若梯形的一组对边的夹角为120°,则该梯形的另一组对边的夹角为()A. 60°B. 75°C. 90°D. 105°5. 梯形的高等于上底和下底的差,且上底为10 cm,下底为20 cm,那么该梯形的面积为()㎠。
A. 90B. 100C. 110D. 120二、计算题1. 已知一个梯形的上底长为8 cm,下底长为14 cm,高为6 cm,求该梯形的面积。
解:面积 = (上底长 + 下底长) ×高 ÷ 2= 22 × 6 ÷ 2= 132 ÷ 2= 66 cm²该梯形的面积为66平方厘米。
2. 已知一个梯形的上底长为16 cm,下底长为12 cm,面积为160平方厘米,求该梯形的高。
解:面积 = (上底长 + 下底长) ×高 ÷ 2160 = (16 + 12) ×高 ÷ 2320 = 28 ×高高 = 320 ÷ 28高≈ 11.43 cm该梯形的高约为11.43厘米。
三、综合题在一个梯形中,上底长是下底长的3倍,梯形的高是7 cm,求该梯形的面积。
解:设下底长为x,则上底长为3x。
面积 = (上底长 + 下底长) ×高 ÷ 2= 4x × 7 ÷ 2= 14x ÷ 2= 7x根据题意可得 7x = 7 cm解得 x = 1下底长为1 cm,上底长为3 cm。
(完整版)梯形的周长练习题精选1. 梯形的定义与性质梯形是一种特殊的四边形,其具有以下特点:- 有两对平行边,分别称为上底和下底。
- 除上底和下底外,其余两边称为斜边。
- 上底和下底之间的距离称为高。
2. 周长的计算公式梯形的周长可以通过以下公式计算:周长 = 上底 + 下底 + 斜边1 + 斜边23. 练题练题1:已知一个梯形的上底长度为10cm,下底长度为15cm,斜边1长度为7cm,斜边2长度为8cm。
求该梯形的周长。
解答:周长 = 10cm + 15cm + 7cm + 8cm= 40cm练题2:一个梯形的上底长度为6cm,下底长度为12cm,周长为30cm。
求该梯形的斜边1和斜边2的长度。
解答:设斜边1的长度为x,斜边2的长度为y,根据周长的计算公式以及已知条件可得:6cm + 12cm + x + y = 30cmx + y = 30cm - 18cmx + y = 12cm练题3:一个梯形的上底长度为8cm,下底长度为16cm,高度为5cm。
求该梯形的周长。
解答:根据梯形的定义和性质,我们可以通过使用勾股定理计算出斜边的长度:斜边1的长度 = 根号下(8cm^2 + 5cm^2)斜边1的长度 = 根号下(64cm^2 + 25cm^2)斜边1的长度≈ 根号下(5189) ≈ 72cm斜边2的长度 = 根号下(16cm^2 + 5cm^2)斜边2的长度 = 根号下(256cm^2 + 25cm^2)斜边2的长度≈ 根号下(6541) ≈ 81cm周长 = 8cm + 16cm + 72cm + 81cm= 177cm4. 总结本文介绍了梯形的定义和性质,并提供了三个练习题,涵盖梯形周长的计算和其他相关问题。
希望通过这些练习题的解答,读者能够更好地理解和应用梯形的周长计算方法。
梯形练习题1、如图1.在梯形ABCD 中,AD ∥BC ,∠ABC=90°,对角线AC 、BD 相交于点O .下列条件中,不能判断对角线互相垂直的是( )A .∠1=∠4 B .∠1=∠3 C .∠2=∠3 D .OB 2+OC 2=BC 22、如图2为菱形ABCD 与正方形EFGH 的重迭情形,其中E 在CD 上,AD 与GH 相交于I 点,且AD ∥HE .若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI 的面积为何?( )A 、63B 、83C 、10-23D 、10+233、如图3所示,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,EF ⊥AD 于点F ,AD=4,EF=5,则梯形ABCD 的面积是( )A .40 B .30 C .20 D .104、如图4,梯形ABCD 中,AD ∥BC ,点E 在BC 上,AE=BE ,点F 是CD 的中点,且AF ⊥AB ,若AD=2.7,AF=4,AB=6,则CE 的长为( )A .2 2 B .2 3-1 C .2.5 D .2.35、如图5,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )A .逐渐增大B .逐渐减小C .始终不变D .先增大后变小 6、如图6,在梯形ABCD 中,DC ∥AB ,AD=DC=CB ,AC ⊥BC ,将梯形沿对角线AC 翻折后,点D 落在E 处,则∠B 的度数为( )A .60° B .45° C .40° D .30°7、在梯形ABCD 中,AB ∥CD ,∠A=60°,∠B=30°,AD=CD=6,则AB 的长度为( )A .9B .12C .18D .6+33 8、梯形ABCD 中,AD ∥BC ,AD=1,BC=4,∠C=70°,∠B=40°,则AB 的长为( )A .2B .3C .4D .59、如图7,已知梯形ABCD ,AD ∥BC ,AD=DC=4,BC=8,点N 在BC 上,CN=2,E 是AB 中点,在AC 上找一点M 使EM+MN 的值最小,此时其最小值一定等于( )A .6B .8C .4D .4310、梯形ABCD 中,AB ∥CD ,若AD=m ,CD=n ,AB=m+n ,则下列等式一定成立的是( )A .∠A=∠B B .∠D=2∠BC .BC=m-nD .BC=m+n11、如图8,在梯形ABCD 中,AD ∥BC ,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )A .24 B .20 C .16 D .1212、边长为2,2,2,4的梯形的面积为( )A .3B .33C .6D .63 13、如图9,已知AB ∥DC ,AE ⊥DC ,AE=12,BD=15,AC=20,则梯形ABCD的面积是( )A .140B .130C .160D .150图1 图2 图3 图4 图 6图5图7 图8图914、如图10,在梯形ABCD 中,AB ∥CD ,∠D=2∠B ,AD=a ,CD=b ,则AB 等于( )A .2b a +B . b a +2C .a+bD .a+2b 15、如图11,在梯形ABCD 中,AD ∥BC ,∠B 与∠C 互余,AD=5,BC=13,∠C=60°,则该梯形面积是( )A .182B .183C .36D .362 16、如图12,梯形ABCD 中,AB ∥CD ,∠D=2∠B ,DC+AD=10,则AB 的长为( )A .8B .9C .10D .1117、在梯形ABCD 中,AD ∥BC ,AD=6,BC=11,CD=5,∠B=50°,则∠D 为( )A .100°B .115°C .120°D .130°18、如图13,梯形ABCD 中,AD ∥BC ,AC ,BD 交于点O ,则图中面积相等的三角形的对数有( )A .4对B .1对C .2对D .3对19、梯形的两底长分别为16cm 和8cm ,两底角分别为60°和30°,则较短的腰长为( )A .8cmB .6cmC .1cmD .4cm20、在梯形ABCD 中,AD ∥BC ,那么∠A :∠B :∠C :∠D 可以等于( )A .4:5:6:3B .6:5:4:3C .6:4:5:3D .3:4:5:621、如图14是一广告公司为某种商品设计的商标图案,若每个小长方形的面积是1,则图中阴影部分的面积为( )A .5 B .6 C .7 D .822、如图15,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是( )m 2.A .144 B .140 C .160 D .无法确定23、梯形的上底长为6cm ,过上底一个顶点引一腰的平行线,与下底相交所得的三角形的周长为19cm ,那么这个梯形的周长为( )A .31cm B .25cm C .19cm D .28cm24、一梯形的两条对角线长分别为5和12,且对角线互相垂直,则这个梯形的面积为( )A .60B .30C .40D .5025、已知梯形的两条对角线分别为m 与n ,两对角线的夹角为60°,那么,该梯形的面积为( )A .3B 、43C 、83D 、23 26、如图16,梯形ABCD 中,AD ∥BC ,E 是AB 的中点,CE 恰好是平分∠BCD ,若AD=3,BC=4,则CD 的长是( )A .5B .6C .7D .827、如图17,在梯形ABCD 中,∠D=90°,M 是AB 的中点,若CM=6.5,BC+CD+DA=17,则梯形ABCD 的面积为( )A .20B .30C .40D .50图10图11 图12 图13 图14图15图16图17 图18 图1928、在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=10,BD=6,则该梯形的面积是( )A .30B .15C . 215 D .60 29、四边形ABCD 各角之比∠A :∠B :∠C :∠D=1:2:3:4,则这个四边形为( )A .平行四边形B .菱形C .等腰梯形D .梯形30、如图18,梯形ABCD 中,AB ∥CD ,三角形DCE 的面积与三角形DCB 的面积比为1:3,则S △DEC :S △ABD =( )A .1:5 B .1:6 C .1:7 D .1:931、如图19梯形ABCD 中,AD ∥BC ,∠ABC+∠C=90°,AB=6,CD=8,M ,N ,P 分别为AD 、BC 、BD 的中点,则MN 的长为( )A .4 B .5 C .6 D .732、如图20所示,已知梯形ABCD ,AD ∥BC ,E 为CD 的中点,若用S 1、S 2、S 3分别表示△ADE 、△EBC 、△ABE 的面积,则S 1、S 2、S 3的关系是( )A .S 1+S 2>S 3B .S 1+S 2=S 3C .S 1+S 2<S 3D .以上都不对33、已知梯形的上、下底分别为6和8,一腰长为7,则另一腰a 的取值范围是( )A .6<a <8B .5<a <9C .a <7D .a >734、如图21,在数学活动课上,小明提出一个问题:“如图,在四边形ABCD 中,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是多少度”大家经过了一番热烈的讨论交流之后,小雨第一个得出了正确结论,你知道他说的是( )A .20° B .35° C .55° D .70°二、填空。
梯形相关练习题梯形是一种特殊的四边形,其中有两边是平行的,被称为上底和下底,而另外两边则不平行,被称为斜边或者腰。
本文将介绍一些梯形的相关练习题,帮助读者巩固对梯形的理解和应用。
练习题一:计算梯形的面积已知一梯形的上底长度为a,下底长度为b,高为h,请计算其面积。
解答:梯形的面积计算公式为:面积 = (上底 + 下底) ×高 ÷ 2代入已知条件,即可计算出梯形的面积。
练习题二:求解梯形的周长已知一梯形的上底长度为a,下底长度为b,斜边长度为c,请计算其周长。
解答:梯形的周长计算公式为:周长 = 上底 + 下底 + 两边之和代入已知条件,即可计算出梯形的周长。
练习题三:寻找梯形的等腰性质已知一梯形的上底长度为a,下底长度为b,斜边长度为c,高为h。
观察该梯形的特点,判断并证明是否存在两边相等的情况。
解答:根据梯形的定义,我们可以发现一条重要性质:梯形的两个底角和两个顶角的和都是180度。
假设上底角为A,下底角为B,则有A + B + 两个顶角的和 = 180度。
由于梯形的两边不平行,所以两个顶角一定相等,即上底角A和下底角B相等。
练习题四:求解梯形的中线长度已知一梯形的上底长度为a,下底长度为b,高为h。
求解梯形的中线长度。
解答:梯形的中线长度计算公式为:中线长度 = (上底 + 下底) ÷ 2代入已知条件,即可计算出梯形的中线长度。
练习题五:求解梯形的对角线长度已知一梯形的上底长度为a,下底长度为b,斜边1长度为c1,斜边2长度为c2。
求解梯形的对角线长度。
解答:梯形的对角线长度计算公式为:对角线长度= √(c1² + c2² -2c1c2cos(θ))其中,θ为斜边1和斜边2之间的夹角。
练习题六:有关梯形的面积比已知两个梯形,其上底分别为a1和a2,下底分别为b1和b2,高分别为h1和h2。
假设这两个梯形的面积满足比例关系,即:面积1:面积2 = k:1。
初二几何练习题02\1\18
一、选择题:
⒈周长为30的梯形ABCD中,DE∥AB,AD = 5,则三角形CDE的周长为().
A、25;
B、20;
C、15;
D、10
⒉直角梯形的一腰长为10,该腰与底所成的角为30°,则另一腰长为().
A、2.5;
B、5;
C、10;
D、15
⒊下列图形中是轴对称图形而不是中心对称图形的是().
A、菱形;
B、正方形;
C、矩形;
D、等腰梯形
⒋梯形ABCD的面积被对角线BD分成1∶3 两部分,则梯形被中位线分成两部分的面积之比
是(). A、2∶3;B、3∶5;C、3∶4;D、3∶7
⒌梯形ABCD的对角线AC、BD交于点O,则图中面积相等的三角形共有().
A、1 对;
B、2 对;
C、3 对;
D、4 对
⒍若顺次连结以下四个四边形的四边中点,所围成的新四边形是菱形,则原四边形是().
A、平行四边形;
B、菱形;
C、等腰梯形;
D、直角梯形
⒎若梯形同一底上的两个角互余,则两底中点的连线等于().
A、两底之和;
B、两底和的一半;
C、两底之差;
D、两底差的一半
⒏顺次连结四边形各边中点得到一个菱形,则原四边形一定是().
A、矩形;
B、菱形;
C、正方形;
D、对角线相等的四边形
二、填空题:
⒈梯形的高为4cm,上底为4cm,面积为20cm ,则下底长为_______.
⒉顺次连结等腰梯形各边中点所组成的四边形是____________________.
⒊直角梯形的一条对角线把梯形分成一个直角三角形和一个边长为a 的等边三角形,则梯
形的面积等于_________________.
⒋梯形上底长为2,下底长为8,则两对角线中点的距离为______.
⒌三角形三条中位线围成的三角形与原三角形的面积之比为____________.
⒍梯形两条对角线三等分中位线,则上底与下底长度之比为____________.
⒎等腰梯形的对角线互相垂直,且它的中位线长为m ,则梯形的高为______________.
⒏三角形ABC中,BD、CE 分别是AC、BA 上的中线,M、N 分别是BD、CE 的中点,
BC = 4.8 ,则MN =_______.
9.
的周长是28cm,AC与BD交于O点,△OAB的周长比△OBC的周长达4cm 则AB=____,BC=______.
10.正方形ABCD的边BC的延长线上取一点E,使EC=AC,连结AE交CD于F,∠AFC=_____。
11.已知一个多边形的外角和等于它的内角和,则这个多边形是__________.
12.某人设计装饰地面的图案,拟已长为22cm,16cm,18cm的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形共有_______ 个。
13.如果a:b=3∶2,且b是a、c的比例中项,则b∶c=______.
14.已知x∶y∶z=3∶4∶5且x+y+z=6,则xyz=_____.
15. △ABC 中,DE∥BC,AD∶AB=3∶5,则S△ADE∶S梯DBCE=__________.
16. △ABC 中,AD是BC边上中线,F是AD上一点,且AF∶FD=1∶5,连结CF并延长交AB于E,则AE∶EB=__________.
三、解答题:
⒈求证:对角线互相垂直的等腰梯形中,中位线与高相等.
⒉如图,ΔABC中,∠B = 2∠C,AD ⊥BC 于 D ,M 为BC 的中点.求证:DM =∠
2
1
AB
.
⒊已知:如图,梯形ABCD 中,AB∥DC,AD 平行且等于CE ,延长DC 交BE 于 F.
求证:EF = FB .
⒋已知:AH 是ΔABC 的高,D、E、F 分别是BC、AC、AB 中点.
求证:∠FDE = ∠FHE .
⒌已知:如图,等腰梯形ABCD 中,AD∥BC ,E、F、G、H 分别是AD、BE、BC、CE
的中点.求证:EG、FH 互相垂直平分.
6.已知:过△ABC的顶点A作直线EA∥BC,又过BC的中点D作直线与AE、AB及AC的延长线分别相交于E、G、F。
求证:GD·FE=GE·FD
G
F
E
D
C
B
A。