含参数恒成立不等式问题的解题策略
- 格式:doc
- 大小:415.50 KB
- 文档页数:4
含参数恒成立不等式问题的解题策略河南省三门峡市卢氏一高高三数学组(472200)赵建文 张贺忠 Eail:含参数不等式恒成立问题是高中数学中的一类重要问题,是高考考查的重点和热点,本文将这类问题的解题策略作以介绍,供同学们学习时参考.一、主元变换法例1已知关于x 的不等式243x px x p +>+-对24p -≤≤恒成立,求实数x 的取值范围.分析:本题是对含参数的不等式在某个区间上恒成立,用主元变换法处理.解析:将其化为关于p 的不等式:2(1)430x p x x -+-+>对24p -≤≤恒成立, 当x =1时,不等式化为0>0,不成立.当x ≠1时,关于p 的一次函数()f p =2(1)43x p x x -+-+在[-2,4]上的值恒为正值, 无论一次项系数1x -为正还是为负,只需要(2)0(4)0f f ->⎧⎨>⎩,即222(1)4304(1)430x x x x x x ⎧--+-+>⎪⎨-+-+>⎪⎩,解得5x <-或1x >. 所以实数x 的取值范围(,5)(1,)-∞-⋃+∞.点评:对含参数的不等式在某个区间上恒成立问题,若将其看成关于已知范围的变量的不等式更为简单,常将已知范围的变量看作主变量,化为关于已知范围的变量的不等式,结合对应的函数图像,得出其满足的条件,通过解不等式求解.二、数形结合法例2已知关于x 的不等式2x <log a x 对1(0,]2x ∈恒成立,求实数a 的取值范围. 分析:本题是一边为二次式另一边是对数式的不等式问题,用数形结合法.解析:作出y =2x 和log a y x =的图像,由题意知对1(0,]2x ∈,y =2x 图像恒在log a y x =的图像的下方,故2111()log 22a a <⎧⎪⎨<⎪⎩,解得1116a <<, 故实数a 的取值范围为1116a <<. 点评:对不等式经过移项等变形,可化为两边是熟悉的函数的形式,特别是可化为一边为多项式另一边是超越函数的不等式问题和含参数的一元二次不等式问题,常常用数形结合法,先构造函数,再作出其对应的函数的图像,结合图像找出其满足的条件,通过解不等式求出参数的范围.例3.对任意实数x 不等式12x x a +-->恒成立,求实数a 的取值范围.分析:设y =|1||2|x x +--,对任意实数x 不等式12x x a +-->恒成立即转化为求函数y =|1||2|x x +--的最小值,画出此函数的图象即可求得a 的取值范围.解:令y =|1||2|x x +--=31211232x x x x -≤-⎧⎪--<<⎨⎪≥⎩在直角坐标系中画出图象如图所示,由图象可看出,要使对任意实数x 不等式12x x a +-->恒成立恒成立,只需3-<a .故实数a 的取值范围3-∞-(,)点评:本题中若将对任意实数x ,不等式12x x a+-->恒成立,求实数a 的取值范围,改为①任意实数x ,不等式12x x +--<a 恒成立,求实数a 的取值范围,同样由图象可得a >3;②对任意实数x ,不等式12x x ++->a 恒成立,求实数a 的取值范围,构造函数,画出图象,得a <3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.三、分离变量法例3已知函数()f x 在R 上是减函数,对一切x R ∈不等式2(2sin )f m x -≤ 2(21cos )f m x ++成立,求实数m 的取值范围.分析:先用函数的单调性化为关于x 的不等式,再用分离变量法,化为一端关于m 的式子另一端是关于x 的式子的不等式,解析:∵函数()f x 在R 上是减函数,对一切x R ∈不等式2(2sin )f m x -≤ 2(21cos )f m x ++成立,∴22sin m x -≥221cos m x ++对一切x R ∈恒成立,∴221m m --≥2cos 2sin x x +对一切x R ∈恒成立,设()g x =2cos 2sin x x +, ∴221m m --≥max [()]g x ()g x =2cos 2sin x x +=2sin 2sin 1x x -++=2(sin 1)2x --+,当sin x =1即x =22k ππ+(k Z ∈)时,max [()]g x =2, ∴221m m --≥2, 解得x ≤1-或x ≥3,∴实数m 的取值范围为x ≤1-或x ≥3.点评:对含参数不等式的在某个范围上恒成立求参数范围问题,若容易通过恒等变形将两个变量分别置于不等号的两边,即化为不等式()f x <()g m (或()f x >()g m )在x 的某个范围上恒成立问题,则()g m <min [()]f x (()g m >max [()]f x ),先求出()f x 的最值,将其转化为关于m 的不等式问题,通过解不等式求出参数m 的取值范围.四、分类讨论法例4当x ∈[2,8]时,不等式221log a x ->1-恒成立,求实数a 的取值范围.分析:本题不等式左边是对数式,底数含参数,故需要对底数分类讨论.解析:原不等式可化为:221log a x ->22211log 21a a --, 当0<221a -<1 ①时,对数函数是减函数,则原不等式等价于:2121a ->x 对x ∈[2,8]恒成立, ∴2121a ->max x , ∵当x ∈[2,8]时,max x =8, ∴2121a ->8,②解①②得,34-<a <2-或2<a <34; 当221a ->1 ③时,对数函数是增函数,则原不等式等价于:2121a -<x 对x ∈[2,8]恒成立, ∴2121a -<min x , ∵当x ∈[2,8]时,min x =2, ∴2121a -<2,④解③④得,a <1-或 a >1,综上所述,实数a 的取值范围为33(,1)(,)()(1,)4224-∞-⋃--⋃⋃+∞. 点评:对含参数恒成立的不等式问题,若参数取值不同,是不同的不等式或解法不同时,可对参数进行分类讨论进行求解,注意分类要做到不重不漏.五、判别式法例5不等式2222463x mx m x x ++++<1对x ∈R 恒成立,求实数m 的取值范围. 分析:本题左边是分子和分母都为关于x 二次三项式,可用判别式法.解析:∵2463x x ++>0恒成立,∴原不等式可化为:22(62)3x m x m +-+->0对x ∈R 恒成立,∵2>0, ∴∆=2(62)42(3)m m --⨯-<0,解得1<m <3,∴实数m 的取值范围为(1,3).点评:对可化为关于x 一元二次不等式对对x ∈R (或去掉有限个点)恒成立,常用判别式法.先将其化为关于x 一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解.注意二次是否可为0.六、最值法例6若已知不等式4(4)13x x x a -->+-对x ∈[3,2)-恒成立,求实数a 的取值范围. 分析:本题是一元二次不等式在某个区间上恒成立问题,将其化为一边是关于x 的二次式的另一边为0的形式,其对应的函数最值易求,故用最值法.解析:原不等式可化为:21613x x a ++-<0对x ∈[3,2)-恒成立, 设()f x =21613x x a ++-(x ∈[3,2]-)=2855()39x a +--,对称轴x =83-∈[3,2)-且离2远,故x =2时,max [()]f x =473a -, 要使21613x x a ++-<0对x ∈[3,2)-恒成立,只需max [()]f x =473a -≤0即可, 解得a ≥473,∴实数a 的取值范围为47[,)3+∞. 点评:对含参数的不等式恒成立问题,可将其化为()f x >0(或()f x <0)在x 的某个范围上恒成立问题,则0<min [()]f x (0>max [()]f x ),先求出()f x 的最值,将其转化为关于m 的不等式问题,通过解不等式求出参数m 的取值范围.。
微专题06 含参数不等式问题的处理策略【方法技巧与总结】解含参不等式,常常涉及对参数的分类讨论以确定不等式的解,这是解含参不等式问题的一个难点。
解决此类问题利用函数与方程思想、数形结合思想及分类与整合思想。
【题型归纳目录】题型一:含参数一元二次不等式(因式分解型) 题型二:含参数一元二次不等式(不能因式分解型) 题型三:分式、根式含参数不等式问题 题型四:绝对值含参不等式问题 【典型例题】题型一:含参数一元二次不等式(因式分解型) 例1.(2022·全国·高一专题练习)解下列不等式: (1)22120(0)x ax a a --<<; (2)()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝.【解析】(1)依题意22120(0)x ax a a --<<,()()430x a x a -+<,403a a <<-解得43a x a <<-,所以不等式22120(0)x ax a a --<<的解集为{}|43x a x a <<-. (2)依题意()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝,()110,1x a x a a a⎛⎫--<<< ⎪⎝⎭, 解得1a x a<<, 所以不等式()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭. 例2.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 例3.(2022·全国·高一专题练习)设1a >,则关于x 的不等式1(1)()()0a x a x a---<的解集是_________. 【答案】()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭【解析】1a >时,10a -<,且1a a>, 则关于x 的不等式1(1)()()0a x a x a ---<可化为1()()0x a x a-->,解得1x a<或x a >, 所以不等式的解集为(-∞,1)(a a ⋃,)∞+.故答案为:()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭例4.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式;(2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅, ③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..题型二:含参数一元二次不等式(不能因式分解型)例5.(2022·全国·高三专题练习)解关于x 的不等式2210ax x ++<. 【解析】(1)当0a =时,原不等式210x +<,解得12x <-,∴不等式解集为1(,)2-∞-;(2)当0a >时,44a ∆=-,2()21f x ax x =++开口向上,由图象得:①若01a <<时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111----+-<a a 不等式0f x <()的解集为1111(----+-a a ; ②若1a ≥时,0∆≤,不等式0f x <()解集为∅; (3)当0a <时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111-+----a a2()21f x ax x =++开口向下,由图象得不等式解集为1111(()-+-----∞⋃+∞a a; 综上可知,当0a <时不等式解集为1111()()-+-----∞⋃+∞a a; 当0a =时,不等式解集为1(,)2-∞-;当01a <<时,不等式解集为1111()----+-a a ; 当1a 时,不等式解集为∅. 例6.解关于x 的不等式: (1)2(1)10()ax a x a R -++<∈; (2)2(21)20()ax a x a R +--<∈; (3)2210()ax x a R -+<∈; (4)20(0)x x m x ++>【解析】解:(1)2(1)10ax a x -++<等价于(1)(1)0()ax x a R --<∈, 当0a =时,不等式的解集为(1,)+∞, 当0a >时,等价于1()(1)0x x a--<,即当01a <<时,不等式的解集为1(1,)a当1a =时,不等式的解集为空集, 当1a >时,不等式的解集为1(a ,1),当0a <时,不等式等价于1()(1)0x x a -->,即不等式的解集为(-∞,1)(1a⋃,)+∞(2)2(21)20ax a x +--<等价于(2)(1)0()x ax a R +-<∈ 当0a =时,不等式的解集为(2,)-+∞,当0a >时,不等式等价于1()(2)0x x a -+<,不等式的解集为1(2,)a -当0a <时,不等式等价于1()(2)0x x a-+>,当102a -<<时,不等式的解集为(-∞,1)(2a⋃,)+∞,当12a =-时,不等式的解集为(-∞,2)(2--⋃,)+∞,当12a <-时,不等式的解集为(-∞,12)(a -⋃,)+∞,(3)2210()ax x a R -+<∈;当0a =时,不等式的解集为1(2,)+∞,当0a >时,且△440a =->时,即01a <<时,不等式的解集为244(2a --,244)2a+-, 当0a >是,且△440a =-时,即1a 时,不等式的解集为空集, 当0a <时,且△440a =->时,即0a <时,不等式的解集为(-∞,244244)(22a a--+-⋃,)+∞, (4)20(0)x x m x ++>, 当△140m =->时,即14m <时,20x x m ++=的根为1142m x ---=-(舍去)或1142m x -+-=,若当11402m -+->时,即0m <时,不等式的解集为[0,114]2m-+-,若当11402m -+-<时,即104m <<时,不等式的解集为空集若当11402m-+-=时,即0m =时,不等式的解集为空集当△140m =-<时,即14m >时,不等式的解集为空集, 当△140m =-=时,即14m =时,不等式的解集为空集, 综上所述当0m <时,不等式的解集为[0,114]2m-+-,当0m 时,不等式的解集为空集. 例7.解关于x 的不等式: (1)22(1)10()x a x a R -++<∈; (2)2(8)10()ax a x a R --+>∈.【解析】解:(1)△24(1)40a =+-=时,解得0a =或2-. 当0a =或2-时,不等式化为2(1)0x ±<,此时不等式的解集为∅.由△0>解得0a >或2a <-,此时不等式化为2[(1)2]x a a a -+-+ 2[(1)2]0x a a a -+++<, 解得221212a a a x a a a +-+<<+++,此时不等式的解集为: 22{|1212}x a a a x a a a +-+<<+++;△0<时,即20a -<<时,不等式的解集为∅. 综上可得:20a -时,不等式的解集为∅;当0a >或2a <-时,不等式的解集为22{|1212}x a a a x a a a +-+<<+++.(2)当0a =时,不等式化为810x +>,解得18x >-,此时不等式的解集为1{|}8x x >-.当0a ≠时,由△2(8)40a a =-->,解得16a >或4a <.∴当16a >或4a <且0a ≠时,不等式化为228206482064()()022a a a a a a a x x a a -+-+---+-->. 当16a >或04a <<时,不等式的解集为282064{|2a a a x x a -+-+>或282064}2a a a x a ---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 综上可得:当0a =时,不等式的解集为1{|}8x x >-.当16a >或04a <<时,不等式的解集为282064{2a a a xx a -+-+>或282064}2a a a x a---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 题型三:分式、根式含参数不等式问题例8.不等式222(0)a x x a a -<+>的解集是( ) A .{|0}x x a < B .{|0x x >或4}5x a <-C .{|}2ax x a -<<D .4{|5x a x a -<-或0}x a <【答案】A【解析】解:不等式222a x x a -<+可化为:222244a x x ax a -<++, 即2540x ax +>,(0)a > 解得:0x >或45x a <-,又由20x a +>,且220a x -得:12a x a -<.综上可得:0x a <.故不等式222(0)a x x a a -<+>的解集是{|0}x x a <, 故选:A .例9.(2022秋•清河区校级期中)已知a R ∈,解不等式11xa x >+-. 【解析】解:原不等式化为(1)01ax a x -++>-①(1)当0a =时,原不等式为1011x x -<⇒>-. 在①中,分子中x 的系数含有字母a ,分类讨论就从这里引起.(2)当0a ≠时,原不等式化为1()01a a x a x +-<-. ② 对于不等式②,分子中的系数a 不能随意约去,因为根据不等式的性质,若给不等式两边同时乘以一个负数,不等式的方向要改变.当0a >时,原不等式等价于101a x a x +-<-. 由于11a a +>,可解得11a x a+<<.也可先确定两根1x ,212()x x x <, 然后直接写出解集.当0a <时,1()01a a x a x +-<-等价于101a x a x +->-. 由1111a a a +=+<可解得1a x a+<或1x >. 综上,当0a =时原不等式的解集为(1,)+∞. 当0a >时,解集为1(1,)a a + 当0a <时,解集为1(,)(1,)a a+-∞+∞.例10.(2022·全国·高一专题练习)解关于x 的不等式(1)22a x x ->-(其中1a ≤) 【解析】()()()()411242220001222a x a x a x a x a a x x x x -------->⇔->⇔>⇔<----, 又由42122a a a a a ---=≤--及知 当01a <≤时,42,2a a ->-则集合4{|2}2a A x x a -=<<-; 当0a =时,原不等式解集A 为空集; 当0a <时,42,2a a -<-则集合4{|2}2a A x x a -=<<-;综上:当01a <≤时,4{|2}2a A x x a -=<<-; 当0a =时,A 为空集; 当0a <时,4{|2}2a A x x a -=<<-. 例11.(2022·上海交大附中高一阶段练习)已知关于x 的不等式250mx x m-<-的解集为S ,若5S ∈且6S ,则实数m 的取值范围为_____;【答案】(]5[,1)25,366;【解析】由题意,2250(5)()0mx mx x m x m-<⇔--<- 故5S ∈且6S ,可得(55)(25)0(65)(36)0m m m m --<⎧⎨--≥⎩由(55)(25)0m m --<可得,1m <或25m >;由(65)(36)0m m --≥可得,5366m ≤≤因此:(]5[,1)25,366m ∈ 故答案为:(]5[,1)25,366例12.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--综上所述,1a ≥时,原不等式无解,当1a <时,原不等式的解集为{1111}xa x a --<--∣; (2)原不等式等价于()()120ax x -->, 当0a =时,解集为(),2-∞;当0a <时,原不等式可化为()()120ax x -+-<,因为12a <,所以解集为1,2a ⎛⎫ ⎪⎝⎭; 当102a <<时,12a >,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当12a =时,原不等式等价于()11202x x ⎛⎫--> ⎪⎝⎭, 所以2(2)0x ->,解集为{}2xx ≠∣; 当12a >时,12a <,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;综上所述,当0a =时,解集为(),2-∞;当0a <时,解集为1,2a ⎛⎫⎪⎝⎭;当102a <≤时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当12a >时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭.例13.(2022·全国·高一课时练习)解不等式:01axx ≤+. 【解析】()0101axax x x ≤⇔+≤+且10x +≠. 当0a >时,()10ax x +≤且()1010x x x +≠⇔+≤且1010x x +≠⇔-<≤, 此时原不等式的解集为{}10x x -<≤; 当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,()10ax x +≤且()1010x x x +≠⇔+≥且101x x +≠⇔<-或0x ≥, 此时原不等式的解集为{|1x x <-或}0x ≥.综上可知,当0a >时,原不等式的解集为{}10x x -<≤;当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,原不等式的解集为{|1x x <-或}0x ≥. 题型四:绝对值含参不等式问题例14.(2022春•安平县校级期中)对于任意的实数x ,不等式|1|x kx +恒成立,则实数k 的取值范围是()A .(,0)-∞B .[1-,0]C .[0,1]D .[0,)+∞【解析】解:不等式|1|x kx +恒成立,|1|y x ∴=+的图象不能在y kx = 的图象的下方,如图所示:01k ∴;故选:C .例15.(2022·全国·高一课时练习)已知集合{}24A x x =<<,{}2211B x x a =--≤,若A B B =,则实数a 的取值范围是______. 【答案】()2,3【解析】由2211x a --≤,得1a x a ≤≤+,∴{}1B x a x a =≤≤+. 由A B B =,得B A ⊆.显然B ≠∅,∴214a a >⎧⎨+<⎩,解得23a <<.故答案为:()2,3.例16.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4. 故答案为:2≤a ≤4例17.(2022·全国·高一单元测试)若不等式34x b -<的解集中的整数有且仅有2、3,则b 的取值范围是______. 【答案】78b ≤≤【解析】由34x b -<可得434x b -<-<,也就是4433b bx -+<<, 因为解集中的整数只有2,3,所以44123433b b-+≤<<<≤, 所以71058b b ≤<⎧⎨<≤⎩,故78b ≤≤.填78b ≤≤.例18.(2022·上海·高一课时练习)解关于x 的不等式:()1x x a a R ->-∈.【解析】两边平方,得()()221x x a ->-,即()()()2111a x a a ->-+.当1a =时,不等式解集为∅;当1a >时,不等式解集为1,2a +⎛⎫+∞ ⎪⎝⎭; 当1a <时,不等式解集为1,2a +⎛⎫-∞ ⎪⎝⎭. 例19.(2022·上海嘉定·高一期末)已知集合2{|23,}A x x x x R =+<∈,集合{|1,0,}B x x a a x R =-<>∈.若A B ⊆.求实数a 的取值范围.【解析】由223x x +<得2230x x +-<,解得31x -<<,即()3,1A =-. 又由1,0x a a -<>解得11a x a -<<+,即()1,1B a a =-+.因为A B ⊆,所以1311a a -≤-⎧⎨+≥⎩,解得4a ≥. 因此所求实数a 的取值范围是[)4,+∞.【过关测试】一、单选题1.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( )A .{}1a a >-B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集,不等式()2220x a x a +++≤,即()()20x x a ++≤, ①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤;②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤,所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤;综上所述,实数a 的取值范围为{}1a a ≥-.故选:B .2.(2022·四川德阳·高一期末)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( ) A .() 1? ∞+,B .(0,1)C .() 1?∞--,D .(-1,0) 【答案】C 【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ , 显然a =0不符合题意,若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线, 对于()0f x > ,解集为1x a<- 或1x > ,不符合题意; 若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线, 对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- , 故选:C.3.(2022·全国·高一课时练习)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m的取值范围为( )A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<, 当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C二、多选题4.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( )A .5-B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <-解方程22(27)70x k x k +++=,得127,2x x k =-=- (1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<- 此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤; (2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数, 则需满足:35k -<-≤,即53k -≤<;所以k 的取值范围为[5,3)(4,5]-.故选:ABD.5.(2022·全国·高一课时练习)已知a ∈R ,关于x 的不等式()10a x x a ->-的解集可能是( ) A .{}1x x a <<B .{}1x x x a 或C .{}1x x a x 或D .∅ 【答案】BCD【解析】当0a <时,不等式等价于()()10x x a --<,解得1<<a x ;当0a =时,不等式的解集是∅;当01a <<时,不等式等价于()()10x x a -->,解得1x >或x a <;当1a =时,不等式的解集为{}1x x ≠;当1a >时,不等式等价于()()10x x a -->,解得x a >或1x <.故选:BCD .三、填空题6.(2022·全国·高一课时练习)已知集合{}2280,R A x x x x =--≤∈ ,(){}2550,R B x x m x m x =-++≤∈ ,设全集为R ,若R B A ⊆,则实数m 的取值范围为______.【答案】()4,+∞ 【解析】解不等式2280x x --≤,得24x -≤≤,所以R {2A x x =<-或4}x > ,(){}()(){}2550,R 50B x x m x m x x x x m =-++≤∈=--≤ , 因为R B A ⊆,当5m =时,{}5B =,满足题意;当5m >时,[]5,B m =,满足题意.当5m <时,[],5B m =,由R B A ⊆,得4m >,所以45m <<.综上,m 的取值范围为()4,+∞.故答案为:()4,+∞7.(2022·上海市控江中学高一期中)已知k 为正实数,关于x 的不等式()24(2)0kx k x --+<的解集为,A B A =⋂Z ,则当k 的值变化时,集合B 中的元素个数的最小值为______;【答案】6【解析】由方程240kx k --=,可解得44x k k=+≥,当且仅当2k =时,等号成立, 则42,A k k ⎛⎫=-+ ⎪⎝⎭,即(]2,4A -⊂,由(]{}2,41,0,1,2,3,4-⋂=-Z ,则集合B 中的元素最少有6个, 故答案为:6.8.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤ 【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<, 当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤, 故答案为:315a -<≤. 四、解答题9.(2022·全国·高一课时练习)在①A B A ⋃=,②A B ⋂≠∅,③R B A ⊆这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a 、b 的值;(2)求集合B ;(3)是否存在实数m ,使得______?【解析】(1)因为一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >, 则关于x 的一元二次方程2320ax x -+=的两根分别为1、b , 所以,32021a b a -+=⎧⎪⎨⨯=⎪⎩,解得12a b =⎧⎨=⎩. (2)由(1)可得(){}()(){}222020B x x m x m x x x m =-++<=--<. 当2m =时,(){}220B x x =-<=∅;当2m <时,()(){}{}202B x x x m x m x =--<=<<;当2m >时,()(){}{}202B x x x m x x m =--<=<<.(3)若选①,{1A x x =<或}2x >,由A B A ⋃=,则B A ⊆,当2m =时,B A =∅⊆;当2m <时,{}2B x m x A =<<⊄,不合乎题意;当2m >时,{}2B x x m A =<<⊆,合乎题意.综上所述,2m ≥;选②,当2m =时,B =∅,此时A B =∅,不合乎题意;当2m <时,{}2B x m x =<<,若A B ⋂≠∅,则1m <,此时1m <;当2m >时,{}2B x x m =<<,此时A B ⋂≠∅.综上所述,1m <或2m >; 选③,{}12A x x =≤≤R .当2m =时,R B A =∅⊆;当2m <时,{}R 2B x m x A =<<⊆,则12m ≤<;当2m >时,{}2B x x m A =<<⊄R ,不合乎题意.综上所述,12m ≤≤.10.(2022·上海市杨浦高级中学高一期中)设集合{|12,},{|()(2)0,}A x x x B x x a x a x =-<<∈=--<∈R R ,若B A ⊆,求实数a 的取值范围.【解析】当0a >时,{|2}B x a x a =<<,当0a =时,B =∅,当0a <时,{|2}B x a x a =<<,由B A ⊆,而{|12,}A x x x =-<<∈R ,若0a >,有122a a ≥-⎧⎨≤⎩(等号不同时成立),则01a <≤; 若0a =,显然B =∅A ⊆成立;若0a <,有212a a ≥-⎧⎨≤⎩(等号不同时成立),则102a -≤<; 综上,112a -≤≤. 11.(2022·全国·高一课时练习)已知集合2{|12}{|40}A x x B x x ax =≤≤=-+≥,,若A B ⊆,求实数a 的取值范围.【解析】集合{|12}A x x =≤≤,2{|40}B x x ax =-+≥,若A B ⊆,B 一定非空,若2160a =-≤,得44a -≤≤,R B =,A B ⊆成立,若0>,即4a >或者4a ,设()24f x x ax =-+,(1)()11450f a a =-+=-≥,即5a ≤,对称轴02a <,所以4a ,(2)()2820f a =-≥,即4a ≤,对称轴22a ≥,不成立, 综上,(]4a ∞∈-,. 12.(2022·陕西·榆林市第一中学高一期末(理))解关于x 的不等式()()21440ax a x a ---<∈R .【解析】①当0a =时,原不等式可化为40x --<,解得4x >-;②当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ③当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <ⅱ>当14a =-,即14a =-时,解得4x <-或4x >-; <ⅱ>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-;当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或;当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭.13.(2022·全国·高一专题练习)当a ≤0时,解关于x 的不等式()21220ax a x +--≥.【解析】由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔②当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a ≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a -≤≤,综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =; 当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭.14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>.【解析】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,15.(2022·湖北·武汉市钢城第四中学高一阶段练习)已知关于x 不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求实数a 、b 的值.(2)解关于x 不等式2ax -+(ac+b)x -bc>0.【解析】(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >,所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且0,a > b >1. 由根与系数的关系得3121b ab a⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,解得12a b =⎧⎨=⎩.(2)原不等式化为2(2)20x c x c -++<,即(2)()0x x c --<,①当2>c 时,不等式的解集为{}2x x c <<;②当2c <时,不等式的解集为{}2x c x <<;③当2c =时,不等式的解集为∅.16.(2022·安徽宣城·高一期中)(1)已知不等式2320mx x +->的解集为{}2x n x <<,求m ,n 的值; (2)求关于x 的不等式()210x a x a +--> (其中a R ∈)的解集.【解析】(1)由题意4620m +-=,1m =-,不等式为2320x x -+->,即2320x x -+<,解得12x <<,所以1n =;(2)不等式2(1)0x a x a +-->可化为(1)()0x x a -+>,1a <-时,1x <或x a >-,1a =-时,1x ≠,1a >-时,x a <-或1x >.综上,1a ≤-时,不等式的解集为(,1)(,)a -∞-+∞,1a >-时,解集为(,)(1,)a -∞-+∞.。
考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。
含参数恒成立不等式问题的解题策略
河南省三门峡市卢氏一高高三数学组(472200)赵建文 张贺忠 Eail:691724121@ 含参数不等式恒成立问题是高中数学中的一类重要问题,是高考考查的重点和热点,本文将这类问题的解题策略作以介绍,供同学们学习时参考. 一、主元变换法
例1已知关于x 的不等式243x px x p +>+-对24p -≤≤恒成立,求实数x 的取值范围.
分析:本题是对含参数的不等式在某个区间上恒成立,用主元变换法处理.
解析:将其化为关于p 的不等式:2(1)430x p x x -+-+>对24p -≤≤恒成立, 当x =1时,不等式化为0>0,不成立.
当x ≠1时,关于p 的一次函数()f p =2(1)43x p x x -+-+在[-2,4]上的值恒为正值, 无论一次项系数1x -为正还是为负,只需要(2)0(4)0
f f ->⎧⎨
>⎩,即
222(1)4304(1)430
x x x x x x ⎧--+-+>⎪⎨-+-+>⎪⎩,解5x <-或1x >.
所以实数x 的取值范围(,5)(1,)-∞-⋃+∞.
点评:对含参数的不等式在某个区间上恒成立问题,若将其看成关于已知范围的变量的不等式更为简单,常将已知范围的变量看作主变量,化为关于已知范围的变量的不等式,结合对应的函数图像,得出其满足的条件,通过解不等式求解.
二、数形结合法
例2已知关于x 的不等式2x <log a x 对1
(0,]2x ∈恒成立,求实数a 的取值范围.
分析:本题是一边为二次式另一边是对数式的不等式问题,用数形结合法. 解析:作出y =2x 和log a y x =的图像,
由题意知对1
(0,]2
x ∈,y =2
x 图像恒在log a y x =的图像
的下方,故21
11()log 22
a
a <⎧⎪
⎨<⎪⎩,解得1116a <<, 故实数a 的取值范围为
1116
a <<.
点评:对不等式经过移项等变形,可化为两边是熟悉的函数的形式,特别是可化为一
边为多项式另一边是超越函数的不等式问题和含参数的一元二次不等式问题,常常用数形结合法,先构造函数,再作出其对应的函数的图像,结合图像找出其满足的条件,通过解不等式求出参数的范围.
例3.对任意实数x 不等式12x x a +-->恒成立,求实数a 的取值范围
.
分析:设y =|1||2|x x +--,对任意实数x 不等式12x x a +-->恒成立即转化为求函数y =|1||2|x x +--的最小值,画出此函数的图象即可求得a 的取值范围.
解:令y =|1||2|x x +--=3
121
1232
x x x x -≤-⎧⎪--<<⎨⎪≥⎩
在直角坐标系中画出图象如图所示,由图象可看出,要使对任意实数x 不等式12x x a +-->恒成立恒成立,只需
3-<a .
故实数a 的取值范围3-∞-(,)
点评:本题中若将对任意实数x ,不等式12x x a
+-->恒成立,求实数a 的取值范围,改为①任意实数x ,不等式12x x +--<a 恒成立,求实数a 的取值范围,同样由图象可得a >3;②对任意实数x ,不等式12x x ++->a 恒成立,求实数a 的取值范围,构造函数,画出图象,得a <3.
利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.
三、分离变量法
例3已知函数()f x 在R 上是减函数,对一切x R ∈不等式2(2s i n )f m x -≤
2
(21cos )f m x ++成立,求实数m 的取值范围.
分析:先用函数的单调性化为关于x 的不等式,再用分离变量法,化为一端关于m 的式子另一端是关于x 的式子的不等式,
解析:∵函数()f x 在R 上是减函数,对一切x R ∈不等式2
(2s i n )f m x -≤
2
(21cos )f m x ++成立,
∴22sin m x -≥2
21cos m x ++对一切x R ∈恒成立,
∴221m m --≥2
cos 2sin x x +对一切x R ∈恒成立,
设()g x =2cos 2sin x x +, ∴2
21m m --≥max [()]g x
()g x =2
cos 2sin x x +=2
sin 2sin 1x x -++=2
(sin 1)2x --+,
当sin x =1即x =22
k π
π+
(k Z ∈)时,max [()]g x =2,
∴2
21m m --≥2, 解得x ≤1-或x ≥3,
∴实数m 的取值范围为x ≤1-或x ≥3.
点评:对含参数不等式的在某个范围上恒成立求参数范围问题,若容易通过恒等变形将两个变量分别置于不等号的两边,即化为不等式()f x <()g m (或()f x >()g m )在x 的某个范围上恒成立问题,则()g m <min [()]f x (()g m >m ax [()]f x ),先求出()f x 的最值,将其转化为关于m 的不等式问题,通过解不等式求出参数m 的取值范围.
四、分类讨论法
例4当x ∈[2,8]时,不等式2
21
log a
x ->1-恒成立,求实数a 的取值范围.
分析:本题不等式左边是对数式,底数含参数,故需要对底数分类讨论. 解析:原不等式可化为:2
21
log a
x ->22
21
1log 21
a a --,
当0<221a -<1 ①时,对数函数是减函数,则原不等式等价于:
2
121
a ->x 对x ∈
[2,8]恒成立,
∴
2
121
a ->m ax x , ∵当x ∈[2,8]时,m ax x =8, ∴
2
121
a ->8,②
解①②得,34
-<a <2
-
或
2
<a <
34
;
当221a ->1 ③时,对数函数是增函数,则原不等式等价于:
2
121
a -<x 对x ∈
[2,8]恒成立,
∴
2
121
a -<m in x , ∵当x ∈[2,8]时,m in x =2, ∴
2
121
a -<2,④
解③④得,a <1-或 a >1,
综上所述,实数a 的取值范围为33
(,1)(,,)(1,)4224
-∞-⋃-
-
⋃⋃+∞. 点评:对含参数恒成立的不等式问题,若参数取值不同,是不同的不等式或解法不同时,可对参数进行分类讨论进行求解,注意分类要做到不重不漏.
五、判别式法 例5不等式
2
222463
x mx m x x ++++<1对x ∈R 恒成立,求实数m 的取值范围.
分析:本题左边是分子和分母都为关于x 二次三项式,可用判别式法. 解析:∵2
463x x ++>0恒成立,
∴原不等式可化为:2
2(62)3x m x m +-+->0对x ∈R 恒成立, ∵2>0, ∴∆=2(62)42(3)m m --⨯-<0,解得1<m <3,
∴实数m 的取值范围为(1,3).
点评:对可化为关于x 一元二次不等式对对x ∈R (或去掉有限个点)恒成立,常用判别式法.先将其化为关于x 一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解.注意二次是否可为0.
六、最值法
例6若已知不等式4(4)13
x x x a -->
+-对x ∈[3,2)-恒成立,
求实数a 的取值范围. 分析:本题是一元二次不等式在某个区间上恒成立问题,将其化为一边是关于x 的二次式的另一边为0的形式,其对应的函数最值易求,故用最值法.
解析:原不等式可化为:21613
x x a ++-<0对x ∈[3,2)-恒成立,
设()f x =2
1613
x x a +
+-(x ∈[3,2]-)=2
855()39
x a +
-
-,
对称轴x =83
-∈[3,2)
-且离2远,故x =2时,m ax [()]f x =
473
a -,
要使2
1613
x x a ++-<0对x ∈[3,2)-恒成立,只需m ax [()]f x =
473
a -≤0即可,
解得a ≥
473
,∴实数a 的取值范围为47[
,)3
+∞.
点评:对含参数的不等式恒成立问题,可将其化为()f x >0(或()f x <0)在x 的某个范围上恒成立问题,则0<min [()]f x (0>m ax [()]f x ),先求出()f x 的最值,将其转化为关于m 的不等式问题,通过解不等式求出参数m 的取值范围.。