学年八年级数学上学期期中试题新人教版(9)
- 格式:doc
- 大小:284.00 KB
- 文档页数:7
2024-2025学年八年级数学上学期期中模拟卷(新疆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第11章~14.1。
5.难度系数:0.6。
第一部分(选择题共36分)一、选择题(本大题共9小题,每小题4分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)....【答案】B【解析】A,C,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C.10D.,+,86B.2个C.3个D.4个ACB .三条中线的交点D .三条高的交点三个顶点的距离相等,则猎狗应蹲守在ABC V B .A D B DEFÐ=ÐÐ=Ð,D .AC DF CF BE==,.5D 6ADC =,∴2ABCS S =△△C .12D .11622AEB S AB ET =´´=´V ,BC 上的点,AQ=PQ ,PRC.①②④D.,且PR=PS,∴点P在∠BAC第二部分(非选择题共分)二、填空题(本大题共6小题,每小题4分,满分24分)折叠后,点C 落到点E 处,30C Ð=°180=°,,故答案为:80°.CD^,,,∴PE==PE PD PE,,BC ^,三、解答题(本大题共8小题,满分90分.解答应写出文字说明,证明过程或演算步骤)16.(12分)(1)已知2m a =,32n b =,m ,n 为正整数,求3102m n +的值;(2)若233a b +=,则927a b ×的值.【解析】(1)解:2,32,m n a b ==Q()52,n b \=5n17.(12分)如图:(1)△ABC 的面积是______;(2)画出△ABC 关于y 轴的对称图形111A B C △;(3)写出△ABC 关于x 轴对称的△A ′B ′C ′的各顶点坐标.【解析】(1)解:△ABC 的面积为:11135152323 6.5222´-´´-´´-´´=.(3分)(2)解:如图所示,111A B C △即为所求;(7分)(3)解:如图所示,△ABC关于x轴对称的△A^′B^′C^′的各顶点坐标为:C¢-;B¢-,(1,1)A¢--,(4,3)(3,2)(12分))解:设这个多边形的每个外角为x°,则2180y °=,,求四边形AFDB 的面积.DF AC ^,90E DFC \Ð=Ð=°,CD ,Ð=Ð1=Ð=Ð+Ð,∴C EDB ADE C)AAS;(5分)。
南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
八年级上学期期中复习一.选择题(共12小题)1.下列图形是轴对称的是()A.B.C.D.2.具备下列条件的△ABC中,不是直角三角形的是()A.∠A=∠B=3∠C B.∠A﹣∠B=∠CC.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.如图,△ABC中,AB=6cm,AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为()A.10cm B.12cm C.14cm D.16cm4.如果一个n边形的外角和是内角和的一半,那么n的值为()A.6B.7C.8D.95.如图,下列各组条件中,得不到△ABC≌△BAD的是()A.BC=AD,∠BAC=∠ABD B.AC=BD,∠BAC=∠ABDC.BC=AD,AC=BD D.BC=AD,∠ABC=∠BAD6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM ⊥BC于点M,则OM的长为()A.1B.2C.3D.48.如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°9.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN10.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm11.如图,△ABC中,点D是BC边上一点,DE⊥AB于点E,DF⊥BC,且BD=FC,BE=DC,∠AFD =155°.则∠EDF的度数是()A.50°B.55°C.60°D.65°12.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=12,CD=5,则ED的长度是()A.8B.7C.6D.5二.填空题(共6小题)13.已知a、b、c是三角形的三边,化简|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=.14.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是cm.15.如图,△EFG≌△NMH,EH=2.4,HN=5.1,则GH的长度是.16.如图,直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=°.17.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.18.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是.三.解答题(共5小题)19.如图,在△ABC中,∠B=40°,∠C=60°,点D,E分别在边BC,AC上,且DE∥AB.若∠CAD =40°.求∠ADE的度数.20.如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.21.已知:如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于点E.求证:(1)△DEB≌△DCB;(2)AD+DE=BE.22.如图,点B,F,C,E在一条直线上,BF=CE,AB∥ED,AC∥FD.求证:△ABC≌△DEF.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.八年级上学期期中复习参考答案与试题解析一.选择题(共12小题)1.下列图形是轴对称的是()A.B.C.D.【分析】轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.【点评】本题考查轴对称图形,解题的关键是理解轴对称图形的定义.2.具备下列条件的△ABC中,不是直角三角形的是()A.∠A=∠B=3∠C B.∠A﹣∠B=∠CC.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:3【分析】根据直角三角形的定义一一判断即可.【解答】解:A、由∠A=∠B=3∠C,可得∠A=∠B=×180°,△ABC不是直角三角形,本选项符合题意.B、由∠A﹣∠B=∠C,可知∠A=90°,△ABC是直角三角形,本选项不符合题意.C、由∠A+∠B=∠C,可知∠C=90°,△ABC是直角三角形,本选项不符合题意.D、由∠A:∠B:∠C=1:2:3,推出∠C=90°,△ABC是直角三角形,本选项不符合题意.故选:A.【点评】本题考查三角形内角和定理,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.如图,△ABC中,AB=6cm,AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为()A.10cm B.12cm C.14cm D.16cm【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形周长公式计算,得到答案.【解答】解:∵BC的垂直平分线l与AC相交于点D,∴DB=DC,∴△ABD的周长=AB+AD+DB=AB+AD+DC=AB+AC=14(cm),故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如果一个n边形的外角和是内角和的一半,那么n的值为()A.6B.7C.8D.9【分析】根据n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:由题意得(n﹣2)•180°×=360°,解得n=6.故选:A.【点评】本题考查了多边形的内角和公式与外角和定理.解题的关键是熟练掌握多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.如图,下列各组条件中,得不到△ABC≌△BAD的是()A.BC=AD,∠BAC=∠ABD B.AC=BD,∠BAC=∠ABDC.BC=AD,AC=BD D.BC=AD,∠ABC=∠BAD【分析】根据全等三角形的判定定理判断即可.【解答】解:A.根据AB=BA,BC=AD,∠BAC=∠ABD不能推出△ABC≌△BAD,故本选项符合题意;B.根据AC=BD,∠BAC=∠ABD,AB=BA能推出△ABC≌△BAD(SAS),故本选项不符合题意;C.根据BC=AD,AC=BD,AB=BA能推出△ABC≌△BAD(SSS),故本选项不符合题意;D.根据BC=AD,∠ABC=∠BAD,AB=BA能推出△ABC≌△BAD(SAS),故本选项不符合题意;故选:A.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°【分析】根据∠DAE=∠EAC﹣∠CAD,求出∠EAC,∠CAD即可.【解答】解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣64°=26°,∴∠DAE=∠EAC﹣∠CAD=38°﹣26°=12°,故选:B.【点评】本题考查了三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM ⊥BC于点M,则OM的长为()A.1B.2C.3D.4【分析】过O作OD⊥AC于D,OE⊥AB于E,根据角平分线的性质和三角形的面积公式即可得到结论.【解答】解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∴S△ABC=AC•BC=×AB•OE+AC•OD+BC•OM,∴=+•OM+,∴OM=2,故选:B.【点评】本题考查了角平分线的性质;做题时运用了三角形角平分线交点的性质及“面积法”解答实际问题的能力.8.如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°【分析】根据三角形的外角性质解答即可.【解答】解:∵∠BAC=80°,∴∠ABC+∠BCA=180°﹣80°=100°,∴∠BAC的外角=100°,∵∠ABC和∠ACD的平分线相交于点E,∴AE是∠BAC的外角平分线,∴∠CAE=50°,故选:C.【点评】此题考查三角形的外角性质,关键是根据三角形外角性质得出∠BAC的外角=100°解答.9.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN【分析】根据三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.10.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况.【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.如图,△ABC中,点D是BC边上一点,DE⊥AB于点E,DF⊥BC,且BD=FC,BE=DC,∠AFD =155°.则∠EDF的度数是()A.50°B.55°C.60°D.65°【分析】证明Rt△FDC≌Rt△DEB(HL),由全等三角形的性质得出∠DFC=∠EDB=25°,则可得出答案.【解答】解:∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△FDC和Rt△DEB中,,∴Rt△FDC≌Rt△DEB(HL),∴∠DFC=∠EDB=25°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣25°﹣90°=65°.故选:D.【点评】本题考查了全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.12.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=12,CD=5,则ED的长度是()A.8B.7C.6D.5【分析】易证∠CAD=∠BCE,即可证明△CDA≌△BEC,可得CD=BE,CE=AD,根据DE=AD﹣CD,即可解题.【解答】解:∵∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS),∴CD=BE,CE=AD,∵DE=CE﹣CD,∴DE=AD﹣CD,∵AD=12,CD=5,∴DE=12﹣5=7.故选:B.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS 和HL)和性质(全等三角形的对应边、对应角相等)是解题的关键.二.填空题(共6小题)13.已知a、b、c是三角形的三边,化简|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=3c+b﹣3a.【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【解答】解:根据三角形的三边关系,两边之和大于第三边,得a﹣b﹣c<0,b+c﹣a>0,c﹣a﹣b<0.则|a﹣b﹣c|+|b+c﹣a|﹣|c﹣a﹣b|=b+c﹣a+b+c﹣a+c﹣a﹣b,=3c+b﹣3a.故答案为:3c+b﹣3a.【点评】考查了三角形的三边关系和绝对值的性质的综合运用.14.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABC的周长是17cm,AC=5cm,△ABD的周长是12cm.【分析】由DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD=CD,继而可得△ABD的周长=AB+BC,又由△ABC的周长是17cm及AC=5cm,即可求得AB+BC=12cm,从而可得,△ABD 的周长.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△ABC的周长是17cm,AC=5cm,∴AB+BC=17﹣5=112(cm),∴△ABD的周长为:AB+BD+AD=AB+BD+CD=AB+BC=12cm.故答案为:12.【点评】此题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.15.如图,△EFG≌△NMH,EH=2.4,HN=5.1,则GH的长度是 2.7.【分析】根据全等三角形的性质求出EG,结合图形计算,得到答案.【解答】解:∵△EFG≌△NMH,∴EG=HN=5.1,∴GH=EG﹣EH=5.1﹣2.4=2.7,故答案为:2.7.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.16.如图,直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=70°.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故答案为:70.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.17.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60度.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.18.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是AE=AC.【分析】求出∠BAC=∠DAE,根据全等三角形的判定定理SAS推出即可.【解答】解:AE=AC.理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=DAC+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE,故答案为:AE=AC.【点评】本题考查了全等三角形的判定定理的应用,注意:此题是一道开放型的题目,答案不唯一.三.解答题(共5小题)19.如图,在△ABC中,∠B=40°,∠C=60°,点D,E分别在边BC,AC上,且DE∥AB.若∠CAD =40°.求∠ADE的度数.【分析】利用平行线的性质以及三角形的内角和定理解决问题即可.【解答】解:在△ABC中,∠BAC+∠B+∠C=180°.∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵∠BAD=∠BAC﹣∠CAD,∠CAD=40°,∴∠BAD=80°﹣40°=40°,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=40°.【点评】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,已知点B,C,F,E在同一直线上,∠1=∠2,BF=CE,AB∥DE.求证:△ABC≌△DEF.【分析】首先根据平行线的性质可得∠E=∠B,进而求得BC=EF,再加上∠1=∠2,可利用AAS证明△ABC≌△DEF.【解答】证明:∵BF=CE,∴BF﹣FC=CE﹣CF,即BC=EF,∵AB∥DE,∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于点E.求证:(1)△DEB≌△DCB;(2)AD+DE=BE.【分析】(1)由角平分线的定义、垂直的定义证明△DEB≌△DCB;(2)根据全等三角形的对应边相等得出结论.【解答】证明:(1)∵BD平分∠CBA(已知),∴∠EBD=∠CBD(角平分线的定义).∵DE⊥AB(已知),∴∠DEB=90°(垂直的定义).∵∠C=90°(已知),∴∠DEB=∠C(等量代换).在△DEB和△DCB中,∴△DEB≌△DCB(AAS).(2)∵△DEB≌△DCB,∴DE=DC,BE=BC(全等三角形的对应边相等).∵AD+DC=AC=BC(已知),∴AD+DE=BE(等量代换).【点评】本题考查了角平分线的定义、垂直的定义、全等三角形的判定及其性质等知识.利用相等的线段进行等效转是解答本题的关键.22.如图,点B,F,C,E在一条直线上,BF=CE,AB∥ED,AC∥FD.求证:△ABC≌△DEF.【分析】先证明∠B=∠E,∠ACB=∠DFE,BC=EF,进而利用全等三角形的判定定理ASA证明两个三角形全等.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥ED,∴∠B=∠E.∵AC∥FD,∴∠ACB=∠DFE.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解此题的关键是熟练掌握全等三角形的判定方法.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用“边边边”证明△ABD和△ACD全等,然后根据全等三角形对应角相等可得∠BAD=∠CAD,再根据角平分线上的点到角的两边距离相等证明即可.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.。
2021-2022学年八年级上学期期中考试数学试卷
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,其中是轴对称图形的是()
A.B.C.D.
2.点M(1,2)关于x轴对称的点的坐标为()
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.下列运算正确的是()
A.a•a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a5 4.等腰三角形的两边长分别为2和7,则它的周长是()
A.9B.11C.16D.11或16
5.下列多项式中能用平方差公式分解因式的是()
A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9
6.若x2+8x+m是完全平方式,则m的值为()
A.4B.﹣4C.16D.﹣16
7.如图,△ABC中,AB=AC=15,AB的垂直平分线DE交AC于D,连结BD,若△DBC 的周长为23,则BC的长为()
A.6B.7C.8D.9
8.计算[(﹣a)3]4÷(﹣a4)3的结果是()
A.﹣1B.1C.0D.﹣a
9.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A =∠ABE,AC=5,BC=3,则BD的长为()
第1 页共23 页。
北京二中教育集团2024—2025学年度第一学期初二数学期中考试试卷考查目标1.知识:人教版八年级上册《三角形》、《全等三角形》、《轴对称》、《整式的乘法与因式分解》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.考生须知 1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡7页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共 16分)一、选择题(共16分,每题2分,以下每题只有一个正确的选项)1.中国古典建筑中有着丰富多彩的装饰纹样,以下四个纹样中,不是轴对称图形的是() A.B.C.D.2.下列计算正确的是( )A. B. C. D.3.如图是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,那么判定图中两三角形全等的条件是( )A.SSSB.SASC.AASD.ASA 4.如图,在中,边上的高是()32m m m -=326m m m ⋅=624m m m ÷=()239m m =ABC △BCA. B. C. D.5.如图,在中,,于D ,点B 关于直线的对称点是点,若,则的度数为( )A.8°B.10°C.20°D.40°6.已知式子的计算结果中不含x 的一次项,则a 的值为()A. B.3 C.1.5D.07.根据下列已知条件,不能画出唯一的是()A.,, B.,,C.,, D.,,8.如图,和分别是的内角和外角的角平分线,,连接.以下结论:①;②;③;④,其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.已知等腰三角形的两条边长分别为2和5,则这个等腰三角形的周长为______.10.若有意义,则x 的取值范围是______.11.如图,摄影师在拍照时为了确保照片的清晰度,往往会放一个三脚架来固定和支撑相机,这里用到的数学道理是______.BD CE BE AFABC △90BAC ∠=︒AD BC ⊥AD B '50B ∠=︒B AC '∠()()23x x a +-3-ABC △10AB =6BC =5CA =10AB =6BC =30A ∠=︒10AB =6BC =60B ∠=︒10AB =6BC =90C ∠=︒BD AD ABC △ABC ∠CAE ∠AD BC P CD AB AC =2BAC BDC ∠=∠4EAC ADB ∠=∠90ADC ABD ∠+∠=︒()021x -12.如图是一个五边形,图形中x 的值为______°.13.如图,在长方形中,,垂足为E ,交于点F ,连接.请写出一对面积相等但不全等的三角形______.14.若,,则______.15.如图,在等腰中,,,,,点C 的坐标是______.16.如图,等边的边长为5,点E 在上,,射线,垂足为点C ,点P 是射线上一动点,点F 是线段上一动点,当的值最小时,的长为______.ABCD AF BD ⊥AF BC DF 3a x =2b x =3a b x +=Rt ABC △90CAB ∠=︒AB AC =2OA =3OB =ABC △BC 2CE =CD BC ⊥CD AB EP FP +BF三、解答题(共68分,其中第17-21,23题每题5分,第22,24,25,26题每题6分,第27-28题每题7分)17.计算:.18.因式分解:.19.因式分解:.20.已知,求代数式的值.21.如图,中,,于点E ,于点D ,与相交于点F .求证:.22.如图,已知.(1)根据要求尺规作图:①作的平分线;②在上取点C ,作边的垂直平分线交于点D ,连接;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求证:.解:平分 垂直平分线段(____________)(填推理依据) (____________)(填推理依据)()2533a a a⋅--2328x y y -()()314x x +-+2410m m --=()()()22311m m m ---+ABC △45ABC ∠=︒BE AC ⊥AD BC ⊥BE AD BF AC =AOB ∠AOB ∠OP OP OC MN OA CD CD OB P OC AOB ∠AOC BOC ∴∠=∠MN OCDO DC ∴=AOC DCO ∴∠=∠BOC DCO ∴∠=∠CD OB∴P23.如图:在平面直角坐标系中,其顶点坐标如下:,,.(1)画出关于x 轴对称的图形.其中A 、B 、C 分别和、、对应;(2)点P 在y 轴上,若为等腰三角形,则满足条件的点P 的个数是______个.24.如图,是等边三角形,于D ,为边中线,,相交于点O ,连接.(1)判断的形状,并说明理由(2)若,求的长.25.如图1有三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形,老师用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2的面积关系,写出一个数学公式______;(2)根据数学公式,解决问题:已知,,求的值.26.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,例如:计算,可用竖式除法.步骤如下:①把被除式、除式按某个字母降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),再把两式相减;ABC △xOy ()3,1A -()1,2B --()1,3C ABC △111A B C △1A 1B 1C ACP △ABC △BD AC ⊥AE BC AE BD DE CDE △2OD =OB 7a b +=2229a b +=()2a b -()()43267121x x x x ---÷+46x 2x 33x 33x ()21x +()4363x x +④把相减所得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.余式为0,可以整除.请根据阅读材料,回答下列问题(直接填空):(1)请在两个方框内分别填入正确的数或式子;(2)多项式除以商式为______,余式为______;(3)多项式的一个因式是,则该多形式因式分解的结果为______.27.已知,,,连接和.(1)如图1,①求证:;②当时,的延长线交于点F ,写出与的数量关系并证明;(2)如图2,与的延长线交于点P ,连接,直接写出的度数(用含的式子表示)28.在平面直角坐标系,中,已知点,过点且垂直于x 轴的直线记为直线,过点且垂直于y 轴的直线记为直线.给出如下定义:将图形G 关于直线对称得到图形,再将图形关于直线得到图形,则称图形是图形G 关于点M 的双对称图形.(1)已知点M 的坐标为,点关于点M 的双对称图形点的坐标为______;()3210x x-- 432671x x x ∴---21x +2357x x +-2x +324839x x x +--1x -AB AC =AD AE =BAC DAE α∠=∠=BD CE BD CE =AD BD ⊥ED BC BF CF CE DB AP APB ∠αxOy (),M m n (),0m x m =()0,n y n =x m =1G 1G y n =2G 2G ()0,1()2,3N 2N(2)如图,的顶点坐标是,,.①已知点M 的坐标为,点,点,线段关于点M 的双对称图形线段位于内部(不含三角形的边),求n 的取值范围;②已知点M 的坐标为,直线l 经过点且平行于第一三象限的角平分线,当关于点M 的双对称图形与坐标轴有交点时,直线l 上存在满足条件的双对称图形上的点,直接写出k 的取值范围.北京二中教育集团2024—2025学年度第一学期初二数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.ACADB 6-8.CBD二、填空题(共16分,每小题2分)9.12 10.11.三角形具有稳定性 12.121°13.和(和,和,和)14.24 15. 16.3.5三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分,第27-28题每题7分)17.原式18.原式19.原式20.解:原式当时 原式21.证明:, ABC △()2,3A -()4,1B -()0,1C ()1,1-()4,P n ()4,1Q n +PQ 22P Q ABC △(),3m m -+()0,k ABC △222A B C △222A B C △12x ≠ABF △DBF △ABD △AFD △BCD △AFD △ABE △DEF △()5,2--66698a a a=-=-()()()2224222y x yy x y x y =-=+-()222234211x x x x x =+-+=++=+2224129131210m m m m m =-+-+=-+2410m m --=31013=+=BE AC ⊥ AD BC ⊥90ADB ADC BEC ∴∠=∠=∠=︒, 在与中 22.(1)图略(2)线段垂直平分线上的点与线段两个端点距离相等 等边对等角23.解:(1)图略 (2)524.(1)等边三角形证:在等边中,,, 又为边上的中线 又 是等边三角形(2),,,为边上的中线, 在中, 25.解:(1)(2)9又 26.解:(1)2,(2),(3)27.解:(1)①证: 90EBC C ∴∠+∠=︒90DAC C ∠+∠=︒EBC DAC ∴∠=∠45ABC ∠=︒ 9045BAD ABC ∴∠=︒-∠=︒ABC BAD∴∠=∠AD BD ∴=BFD △ACD △ADB ADC BD ADEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFD ACD ∴≌△△BF AC∴=ABC △AB BC AC ==60C ABC BAC ∠=∠=∠=︒AB BC = BD AC ⊥12CD AC ∴=AE BC 12CE BC ∴=CD CE ∴=60C ∠=︒ CDE ∴△AB BC = AB AC =BD AC ⊥AE BC 1302ABD ABC ∴∠=∠=︒1302BAE CAE BAC ∠=∠=∠=︒ABD BAE ∴∠=∠OA OB ∴=BD AC ⊥ 90BDA ∴∠=︒ Rt AOD △30CAE ∠=︒24OA OD ∴==4OB OA ∴==()2222a b a ab b +=++7a b += ()249a b ∴+=()()()22222a b a b a b ++-=+ ()2229499a b ∴-=⨯-=32105x x--31x -5-()()2123x x -+BAC DAE α∠=∠= BAC CAD DAE CAD ∴∠+∠=∠+∠在与中 ②法1:延长至G ,使,连接。
八年级上学期期中数学试卷一、选择题:(本题满分45分,共有15道小题,每小题3分)把正确答案涂在答题卡上.1.木工师傅想利用木条制作一个直角三角形的工具,那么下列各组数据不符合直角三角形的三边长的是()A.3,4,5B.6,8,10C.5,12,13D.13,16,182.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对3.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,△A=90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,△C=90°,则a2+b2=c24.实数9的算术平方根是()A.3B.﹣3C.±3D.815.在﹣1.414,π,3.2122122122122…,2+,3.1415这些数中,无理数的个数为()A.5B.2C.3D.46.已知下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.⑤如果直角三角形的两边长分别是3,4,那么斜边长一定是5.其中正确的结论是()A.①②⑤B.②③C.③④D.②③④7.下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根8.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A.原点B.x轴上C.y轴D.坐标轴上10.点P(﹣3,5)关于y轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)11.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3B.x=2,y=3C.x=﹣2,y=3D.x=2,y=﹣312.下列函数中,图象经过原点的为()A.y=5x+1B.y=﹣5x﹣1C.y=﹣D.y=13.已知直线与一条经过原点的直线l平行,则这条直线l的函数关系式为()A.B.C.D.y=2x14.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm二、填空题(每小题3分,共18分)16.16的平方根是;的相反数是;=.17.一个三角形三边之比是10:8:6,则按角分类它是三角形.18.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)19.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为.20.当m时,一次函数y=(m﹣1)x+1的值随x值的增大而减小.21.在空中,自地面算起,每升高1千米,气温下降若干度(△).某地空中气温t(△)与高度h (千米)间的函数的图象如图所示.观察图象可知:该地面高度h千米时,气温低于0△.t关于h的函数解析式为.三、解答题:(本题满分57分,共有8道题)22.计算:(1)(2)(3)(4)(+)(﹣)(5)36x2﹣16=0(6)x3=﹣216.23.已知y=+9,求代数式的值.24.一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?25.已知正方形ABCD,对于边长为6的正方形,建立适当的直角坐标系,写出各个顶点的坐标.26.建立一个平面直角坐标系,在坐标系中描出与x轴、y轴的距离都等于4的点,并写出这些点之间的对称关系.27.小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定嬴,现在小明让小亮先跑若干米,图中l1,l2,分别表示两人的路程与小明追赶时间的关系.(1)哪条线表示小明的路程与时间之间的关系?(2)小明让小亮先跑了多少米?(3)谁将嬴得这场比赛?(4)l1对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?28.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?山东省济南市长清区~学学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题:(本题满分45分,共有15道小题,每小题3分)把正确答案涂在答题卡上.1.木工师傅想利用木条制作一个直角三角形的工具,那么下列各组数据不符合直角三角形的三边长的是()A.3,4,5B.6,8,10C.5,12,13D.13,16,18【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、△32+42=52,△能够成直角三角形,故本选项错误;B、△62+82=102,△能够成直角三角形,故本选项错误;C、△52+122=132,△能够成直角三角形,故本选项错误;D、△132+162≠182,△能够成直角三角形,故本选项正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对【考点】勾股定理的逆定理;等腰三角形的判定.【分析】在△ABD中,根据勾股定理的逆定理即可判断AD△BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【解答】解:△AD是中线,AB=13,BC=10,△BD=BC=5.△52+122=132,即BD2+AD2=AB2,△△ABD是直角三角形,则AD△BC,又△BD=CD,△AC=AB=13,△△ABC的形状是等腰三角形,故选:C.【点评】本题主要考查了勾股定理的逆定理与线段的垂直平分线的性质,关键是利用勾股定理的逆定理证得AD△BC.3.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,△A=90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,△C=90°,则a2+b2=c2【考点】勾股定理.【分析】由勾股定理得出选项A、B、C不正确,D正确;即可得出结论.【解答】解:A、若a、b、c是△ABC的三边,则a2+b2=c2;不正确;B、若a、b、c是Rt△ABC的三边,则a2+b2=c2;c不一定是斜边,△不正确;C、若a、b、c是Rt△ABC的三边,△A=90°,则a2+b2=c2;a是斜边,△不正确;D、若a、b、c是Rt△ABC的三边,△C=90°,则a2+b2=c2;c是斜边,正确;故选:D.【点评】本题考查了勾股定理;熟记勾股定理,分清直角三角形的斜边是解决问题的关键.4.实数9的算术平方根是()A.3B.﹣3C.±3D.81【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:△32=9,△9算术平方根为3.故选:A.【点评】此题主要考查了算术平方根,其中算术平方根的概念易与平方根的概念混淆而导致错误.5.在﹣1.414,π,3.2122122122122…,2+,3.1415这些数中,无理数的个数为()A.5B.2C.3D.4【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,2+是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.已知下列结论:①在数轴上只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.⑤如果直角三角形的两边长分别是3,4,那么斜边长一定是5.其中正确的结论是()A.①②⑤B.②③C.③④D.②③④【考点】实数与数轴;实数;勾股定理.【分析】根据实数与数轴上的点一一对应,根据直角三角形的斜边最长,可得答案;【解答】解:①在数轴能表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;⑤如果直角三角形的两边长分别是3,4,那么斜边长是5或4,故⑤错误;故选:B.【点评】本题考查了实数与数轴,实数与数轴上的点一一对应,注意如果直角三角形的两边长分别是3,4,那么斜边长是5或4.7.下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根【考点】平方根;立方根.【专题】计算题.【分析】利用平方根及立方根定义判断即可得到结果.【解答】解:A、1的平方根为±1,错误;B、﹣1的立方根是﹣1,正确;C、是2的平方根,正确;D、﹣是的平方根,正确;故选A【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.8.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标特点进行判断即可.【解答】解:△a>0,b<0,△点P(a,b)在第四象限.故选D.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.9.在坐标平面内,有一点P(a,b),若ab=0,则P点的位置在()A.原点B.x轴上C.y轴D.坐标轴上【考点】点的坐标.【分析】根据坐标轴上的点的坐标特点解答.【解答】解:△ab=0,△a=0或b=0,(1)当a=0时,横坐标是0,点在y轴上;(2)当b=0时,纵坐标是0,点在x轴上.故点P在坐标轴上.故选D.【点评】本题主要考查了坐标轴上点的坐标特点,即点在x轴上点的坐标为纵坐标等于0;点在y 轴上点的坐标为横坐标等于0.10.点P(﹣3,5)关于y轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y)即可得出答案.【解答】解:根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,△点P(﹣3,5)关于y轴的对称点的坐标是(3,5),故选:A.【点评】本题主要考查了关于横轴的对称点:横坐标相同,纵坐标变成相反数;关于纵轴的对称点:纵坐标相同,横坐标变成相反数,比较简单.11.若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3B.x=2,y=3C.x=﹣2,y=3D.x=2,y=﹣3【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据轴对称的性质,得x=2,y=﹣3.故选D.【点评】本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.12.下列函数中,图象经过原点的为()A.y=5x+1B.y=﹣5x﹣1C.y=﹣D.y=【考点】一次函数图象上点的坐标特征.【分析】根据原点坐标的特点对四个函数的解析式进行逐一检验即可.【解答】解:△原点的坐标为(0,0),A、错误,把x=0代入函数y=5x+1得,y=1;B、错误,把x=0代入函数y=﹣5x﹣1得,y=﹣1;C、正确,把x=0代入函数y=﹣得,y=0;D、错误,把x=0代入函数y=得,y=﹣.故选C.【点评】此题比较简单,考查的是原点坐标的特点及一次函数图象上点的坐标特点.13.已知直线与一条经过原点的直线l平行,则这条直线l的函数关系式为()A.B.C.D.y=2x【考点】两条直线相交或平行问题.【分析】首先设直线l的函数关系式为y=kx+b,根据直线过原点可得b=0,再根据与直线平行,可得k值相等,进而可得解析式.【解答】解:设直线l的函数关系式为y=kx+b,△直线l过原点,△b=0,△直线与直线l平行,△k=,△这条直线l的函数关系式为y=x,故选:B.【点评】此题主要考查了两条直线平行问题关键是掌握直线y=kx+b,(k≠0,且k,b为常数),当k 相同,且b不相等,图象平行.14.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对【考点】勾股定理.【专题】分类讨论.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x 为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选C.【点评】本题考查的是勾股定理的应用,解答此题时要注意分类讨论,不要漏解.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm【考点】勾股定理的应用.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,△h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,△AB==17,△此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.二、填空题(每小题3分,共18分)16.16的平方根是±4;的相反数是2﹣;=3﹣.【考点】实数的性质;平方根.【分析】根据开平方运算,可得一个正数的平方根;根据只有符号不同的两个数互为相反数,差的绝对值是大数减小数,可得答案.【解答】解:16的平方根是±4;的相反数是2﹣;=3﹣.故答案为:±4,,.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数,注意差的绝对值是大数减小数.17.一个三角形三边之比是10:8:6,则按角分类它是直角三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理来判定三角形的形状.【解答】解:设三角形三边分别为10x,8x,6x,则有(6x)2+(8x)2=(10x)2,所以三角形为直角三角形.【点评】本题通过设适当的参数,利用勾股定理的逆定理得出三角形是直角三角形.18.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为15cm.(π取3)【考点】平面展开-最短路径问题.【分析】本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.【解答】解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB====15cm.故蚂蚁经过的最短距离为15cm.(π取3)【点评】解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.19.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为(2,﹣2).【考点】等边三角形的性质;关于x轴、y轴对称的点的坐标;特殊角的三角函数值.【分析】先求出A点的坐标,然后关于x轴对称x不变,y变为相反数.【解答】解:△△ABC为等边三角形,△过A点作BC的垂线交于BC中点D,则D点坐标为(2,0).运用勾股定理得AD=4×sin60°=2.△A的坐标是(2,2).又因为关于x轴对称,所以可得答案为(2,﹣2).【点评】考查点的坐标的确定及对称点的坐标的确定方法.20.当m<1时,一次函数y=(m﹣1)x+1的值随x值的增大而减小.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象与系数的关系得到m﹣1<0,然后解不等式即可.【解答】解:当m﹣1<0时,函数值y随x的增大而减小,解得m<1.故答案为<1.【点评】本题考查了一次函数图象与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.21.在空中,自地面算起,每升高1千米,气温下降若干度(△).某地空中气温t(△)与高度h (千米)间的函数的图象如图所示.观察图象可知:该地面高度h>4千米时,气温低于0△.t 关于h的函数解析式为t=﹣6h+24.【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】计算题;数形结合;函数思想;待定系数法;函数及其图像;一次函数及其应用.【分析】根据函数图象自左向右逐渐下降且h=4时t=0可得h的范围,利用待定系数法可求函数关系式.【解答】解:由图象知:横坐标表示某地高度h(km)、纵坐标表示某地空中气温t△,当高度h=4km时,所对应的某地空中气温t=0△,故观察图象可知:该地面高度h>4千米时,气温低于0△;设t关于h的函数解析式为t=kh+b,将(0,24)、(4,0)代入得:,解得,故t关于h的函数解析式为:t=﹣6h+24 (h≥0).故答案为:>4,t=﹣6h+24.【点评】本题主要考查函数图象和待定系数法求函数关系式的基本能力,属基础题.三、解答题:(本题满分57分,共有8道题)22.计算:(1)(2)(3)(4)(+)(﹣)(5)36x2﹣16=0(6)x3=﹣216.【考点】实数的运算;平方根;立方根;零指数幂.【专题】计算题;实数.【分析】(1)原式利用完全平方公式化简,合并即可得到结果;(2)原式利用零指数幂法则,以及完全平方公式化简,合并即可得到结果;(3)原式利用二次根式的乘除法则计算,合并即可得到结果;(4)原式利用平方差公式化简,计算即可得到结果;(5)方程整理后,利用平方根定义开方即可求出解;(6)方程利用立方根定义化简,计算即可求出解.【解答】解:(1)原式=2+2﹣2+3=5;(2)原式=﹣2﹣1+5﹣4+=﹣+;(3)原式=﹣1﹣=5﹣1﹣2=2;(4)原式=12﹣6=6;(5)方程整理得:x2=,开方得:x=±;(6)开立方得:x=﹣6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.已知y=+9,求代数式的值.【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x的值,代入原式求出y的值,代入代数式根据算术平方根的概念计算即可.【解答】解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.24.一个三角形三条边的长分别为15cm,20cm,25cm,这个三角形最长边上的高是多少?【考点】勾股定理的逆定理.【分析】首先根据数据利用勾股定理逆定理证明是直角三角形,再利用三角形的面积求法可得到答案.【解答】解:△152+202=252,△这个三角形是直角三角形,设最长边(斜边)上的高为xcm,由直角三角形面积关系,可得:×15×20=×25•x,△x=12cm,△三角形最长边上的高是12cm.【点评】此题主要考查了勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,解决此题的关键是证明三角形是直角三角形.25.已知正方形ABCD,对于边长为6的正方形,建立适当的直角坐标系,写出各个顶点的坐标.【考点】坐标与图形性质.【分析】可以以正方形中互相垂直的边所在的直线为坐标轴,建立平面直角坐标系,再根据点的位置和线段长表示坐标.【解答】解:(这是开放题,答案不唯一)以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系如图所示,则点A、B、C、D的坐标分别是(0,0)、(6,0)、(6,6)、(0,6).【点评】本题考查了坐标与图形性质,这是一道开放型题型,答案不唯一.建立坐标系时,要考虑能方便表示点的坐标.26.建立一个平面直角坐标系,在坐标系中描出与x轴、y轴的距离都等于4的点,并写出这些点之间的对称关系.【考点】关于x轴、y轴对称的点的坐标.【专题】作图题.【分析】一个点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.根据这一结论,不难发现:x轴、y轴的距离都等于4的点有4个.画出图形后,再根据轴对称的知识进行判断.【解答】解:如图,点A与点B、点C与点D关于y轴对称,点A与点D、点B与点C关于x轴对称,点A与点C、点B与点D关于原点对称.答案不唯一,只要合理就可以.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于坐标轴对称和原点对称的点坐标之间的关系.27.小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定嬴,现在小明让小亮先跑若干米,图中l1,l2,分别表示两人的路程与小明追赶时间的关系.(1)哪条线表示小明的路程与时间之间的关系?(2)小明让小亮先跑了多少米?(3)谁将嬴得这场比赛?(4)l1对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】计算题;图表型;数形结合;函数思想;待定系数法;函数及其图像;一次函数及其应用.【分析】(1)小明后跑,小亮先跑,即当x=0时,小明的路程为0,故l2表示小明的路程与时间的关系;(2)由图象可知:看两条直线的纵坐标可以看出相差10米,所以小明让小亮先跑10米;(3)先用路程除以时间求得速度,再分别求出时间,用时少的先到达终点,可知谁将赢得这场比赛;(4)用待定系数法求出l1的函数表达式,可知一次项系数.【解答】解:(1)l2表示小明的路程与时间的关系;(2)观察图象可知,小明让小亮先跑了10米;(3)由图象可知当小明跑了5秒时,小亮跑了40﹣10=30米,小明跑了35米,所以小明的速度为:35÷5=7(米/秒),小亮的速度为:30÷5=6(米/秒);小明到达终点的时间是,小亮到达终点的时间是,△△小明赢得这场比赛;(4)设l1对应的一次函数表达式为:s=kt+b,由图象可知,l1经过(0,10),(5,40)两点,代入得,解得;故l1对应的一次函数表达式为:s=6t+10(0≤t≤15);故l1对应的一次函数表达式中,一次项系数是6,它的实际意义是小亮每秒钟跑6米.【点评】本题考查了一次函数的应用,从图象上获取信息是解题的关键,属基础题.28.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?【考点】一次函数的图象;一次函数的性质.【分析】(1)根据描点法,可得函数图象;(2)根据自变量与函数值的对应关系,可得答案;(3)根据勾股定理,可得答案;(4)根据三角形的面积公式,可得答案;(5)根据一次还是的性质即可求得.【解答】解:(1)如图:;(2)当y=0时,﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);当x=0时,y=﹣2,即B(0,﹣2);(3)由勾股定理得AB==;(4)S△AOB=×1×2=1;(5)由一次函数y=﹣2x﹣2的系数k=﹣2<0可知:y随着x的增大而减小.【点评】本题考查了一次函数图象和一次还是的性质,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.。
某某省某某乐平市2015-2016学年度八年级数学上学期期中试题一、选择题(本题共6小题,每小题3分,共18分)1.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,232.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形3.如果点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,则a的值是()A.﹣4 B.4 C.4或﹣4 D.无法确定4.点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.以上都不对5.结合正比例函数y=4x的图象回答:当x>1时,y的取值X围是()A.y=1 B.1≤y<4 C.y=4 D.y>46.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边RP在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP为半径画弧交数轴负半轴于点P1,则P1表示的是()A.﹣2 B.﹣2C.1﹣2D.2﹣1二、填空题(本题共8小题,每小题3分,共24分)7.在﹣,,,﹣,3.14,0,﹣1,,||中,其中:整数有;无理数有;有理数有.8.一次函数y=3x+b的图象过坐标原点,则b的值为.9.算术平方根等于它本身的数是.10.如图,Rt△AOB的斜边长为5,一直角边OB长为4,则点A的坐标是,点B的坐标是.11.的平方根是.12.将一根26cm的筷子,置于底面直径为9cm,高12cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的最小值是cm.13.若x3=256,则x=;若x3=﹣216,则x=.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形面积等于20,则a的值是.三、(本大题共4小題,每小题6分,共24分)15.(+)(﹣)﹣.16.如图是一个边长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.17.某校办工厂现在的年产值是15万元,计划今后毎年增产2万元.(1)写出年产值y(万元)与年数x之间的函数关系式并画出其图象;(2)求6年后的产值.18.在平面直角坐标系中,描出下列各点:A(﹣2,﹣1),B(4,﹣1),C(3,2),D(0,2),并计算四边形ABCD的面积.四、(本大題共4小题,每小题8分.共32分)19.(1)在6×6的网格中(每个小正方形边长均为1).画出一个面积为10的正方形;(2)在数轴上找到表示﹣的点.20.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.21.(1)观察探索:===2,即=2;===3,即=3(2)大胆猜想:等于多少?(3)灵活运用:再举一个例子并通过计算验证:猜想并写出一般表达式.22.某次火灾事故中,消防员架起一架AB=25米长的云梯.如图斜靠在一面墙上,梯子底端B离墙7米.(1)求这个梯子的顶端A距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降9米至A′(云梯长度不变),那么云梯的底部B′在水平方向应滑动多少米?五、(本大题共10分)23.“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为520元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费;乙旅行社表示,若人数不超过18人,每人都按八折收费.若超过18人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为x人.(1)请分别写出甲,乙两家旅行社收取组团游的总费用y(元)与x(人)之间的函数关系式.(2)如果朱老师和朋友一共有30人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?六、(本大题12分)24.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧)分别交y=x和y=﹣x+7的图象于点B,C,连接OC,若BC=OA,求△OBC的面枳.某某省某某乐平市2015~2016学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分)1.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【考点】勾股定理的逆定理.【专题】计算题.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.2.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.3.如果点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,则a的值是()A.﹣4 B.4 C.4或﹣4 D.无法确定【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),求出即可.【解答】解:∵点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,故选:B.【点评】此题主要考查了关于原点对称点的坐标性质,熟练掌握相关性质是解题关键.4.点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.以上都不对【考点】点的坐标.【分析】点P到x轴的距离为3,则这一点的纵坐标是3或﹣3;到y轴的距离为2,那么它的横坐标是2或﹣2,从而可确定点P的坐标.【解答】解:∵点P到x轴的距离为3,∴点的纵坐标是3或﹣3;∵点P到y轴的距离为2,∴点的横坐标是2或﹣2.∴点P的坐标可能为:(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3),故选D.【点评】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.5.结合正比例函数y=4x的图象回答:当x>1时,y的取值X围是()A.y=1 B.1≤y<4 C.y=4 D.y>4【考点】正比例函数的性质.【分析】首先画出正比例函数y=4x的图象,经过原点和(1,4)点,然后再根据图象可直接得到答案.【解答】解:如图所示:当x>1时,y>4,故选:D.【点评】此题主要考查了画正比例函数的图象,关键是掌握正比例函数y=kx(k≠0)图象经过(0,0)和(1,k).6.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边RP在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP为半径画弧交数轴负半轴于点P1,则P1表示的是()A.﹣2 B.﹣2C.1﹣2D.2﹣1【考点】实数与数轴;勾股定理.【分析】首先利用勾股定理计算出QP的长,进而可得QP1的长度,再由点Q表示的数为1可得答案.【解答】解:QP===2,∵Q表示1,∴P1表示的是1﹣2,故选:C.【点评】此题主要考查了实数与数轴,以及勾股定理,关键是正确计算出PQ的长.二、填空题(本题共8小题,每小题3分,共24分)7.在﹣,,,﹣,3.14,0,﹣1,,||中,其中:整数有0,|﹣1| ;无理数有,,﹣1,;有理数有﹣,﹣,3.14,0,|| .【考点】实数.【分析】由于无限不循环小数是无理数;有理数包括整数和分数.整数包括正整数、负整数和0;所以根据以上实数的分类解答即可.【解答】解:整数:0,||;无理数:,,﹣1,;有理数:﹣,﹣,3.14,0,||.故答案为:0,||;,,﹣1,;﹣,﹣,3.14,0,||.【点评】此题主要考查了实数的分类,解答此题的关键是熟知以下概念:整数包括正整数、负整数和0;无限不循环小数是无理数;有理数包括整数和分数.8.一次函数y=3x+b的图象过坐标原点,则b的值为0 .【考点】待定系数法求一次函数解析式.【专题】计算题;待定系数法.【分析】可根据一次函数的特点求出b的值.【解答】解:解答本题有两种方法:(1)一次函数y=3x+b的图象过坐标原点,则函数为正比例函数,解析式为y=3x;(2)把(0,0)代入y=3x+b,得b=0;解析式为y=3x.故答案为0.【点评】本题要熟悉一次函数的性质,且明确正比例函数是一次函数的特殊情况.9.算术平方根等于它本身的数是0和1 .【考点】算术平方根.【专题】计算题.【分析】由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1.由此即可求解.【解答】解:算术平方根等于它本身的数是0和1.【点评】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,﹣1的特殊性质.10.如图,Rt△AOB的斜边长为5,一直角边OB长为4,则点A的坐标是(0,3),点B的坐标是(4,0).【考点】勾股定理;坐标与图形性质.【分析】先根据OB=4求出B点坐标,再根据勾股定理求出OA的长,进而可得出A点坐标.【解答】解:∵点B在x轴正半轴上,OB=4,∴B(4,0).∵AB=5,∴OA===3,∴A(0,3).故答案为:(0,3),(4,0).【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.将一根26cm的筷子,置于底面直径为9cm,高12cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的最小值是11 cm.【考点】勾股定理的应用.【分析】筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的最大长度,筷子总长度减去杯子里面的长度即露在外面的最小长度.【解答】解:设杯子底面直径为a,高为b,筷子在杯中的最大长度为c,根据勾股定理,得:c2=a2+b2,∴c===15(cm),∴h的最小值=26﹣15=11(cm).故答案为:11.【点评】本题考查了勾股定理的应用.熟练掌握勾股定理,善于观察题目的信息,由勾股定理求出c是解题的关键.13.若x3=256,则x= 4;若x3=﹣216,则x= ﹣6 .【考点】立方根.【专题】计算题;实数.【分析】两方程利用立方根定义开立方即可求出x的值.【解答】解:若x3=256,则x=4;若x3=﹣216,则x=﹣6.故答案为:4;﹣6.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形面积等于20,则a的值是±8.【考点】坐标与图形性质;三角形的面积.【专题】计算题.【分析】利用三角形面积公式得到•5•|a|=20,然后解绝对值方程即可得到a的值.【解答】解:根据题意得•5•|a|=20,解得a=8或a=﹣8.即a的值为±8.故答案为±8.【点评】本题考查了坐标与图形性质:利用点的坐标特征计算相应线段的长和判断线段与坐标轴的位置关系.三、(本大题共4小題,每小题6分,共24分)15.(+)(﹣)﹣.【考点】实数的运算.【分析】根据实数的运算法则先把二次根式化简,再运用平方差公式计算.【解答】解:原式=7﹣3﹣4=0.【点评】此题主要考查了实数的运算,比较简单,解答此类题目时要注意平方差公式的运用,需同学们熟练掌握.16.如图是一个边长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.【考点】平面展开-最短路径问题.【分析】画出正方体的侧面展开图,利用勾股定理求解即可.【解答】解:如图所示,∵PB=AB=6,AQ=2,∴BQ=6+2=8,∴PQ===10.答:蚂蚁爬行的最短路程是10.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.17.某校办工厂现在的年产值是15万元,计划今后毎年增产2万元.(1)写出年产值y(万元)与年数x之间的函数关系式并画出其图象;(2)求6年后的产值.【考点】一次函数的应用;一次函数的图象;根据实际问题列一次函数关系式.【专题】函数及其图像;一次函数及其应用.【分析】(1)根据等量关系:年产值=现产值+增产部分,列出函数关系式,根据关系式画出图象;(2)求6年后的年产值,就是当年数x=6时,代入函数式y=2x+15求出y的值即为年产值.【解答】解:(1)根据题意,现在年产值是15万元,计划今后每年增加2万元,则x年后增加2x 万元,∴年产值y与年数x之间的函数关系式y=2x+15(x≥0);函数图象如下:(2)将x=6代入解析式得:y=2x+15=2×6+15=27(x≥0).答:6年后的产值为27万元.【点评】本题考查理解题意能力,能够根据题意中的等量关系建立函数关系式,求出函数式根据函数式画图象以及代入x求y的值.18.在平面直角坐标系中,描出下列各点:A(﹣2,﹣1),B(4,﹣1),C(3,2),D(0,2),并计算四边形ABCD的面积.【考点】坐标与图形性质;三角形的面积.【专题】计算题.【分析】先描点得到四边形ABCD为等腰梯形,然后根据梯形的面积公式计算即可.【解答】解:如图,四边形ABCD的面积=×(3+6)×3=.【点评】本题考查了坐标与图形性质:利用点的坐标进行相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是画出几何图形得到四边形为等腰梯形.四、(本大題共4小题,每小题8分.共32分)19.(1)在6×6的网格中(每个小正方形边长均为1).画出一个面积为10的正方形;(2)在数轴上找到表示﹣的点.【考点】勾股定理;实数与数轴.【专题】作图题.【分析】(1)由正方形的性质和勾股定理即可得出结果;(2)根据勾股定理可以知道,一个直角三角形的斜边为2,一直角边为1时,另一直角边为,在数轴上画出即可,﹣在原点的左边.【解答】解:(1)∵面积为10的正方形的边长为,=,∴四边形ABCD即为所求,如图1所示:(2)如图2所示:以原点O为圆心,所画直角边的斜边OB为半径画弧,交数轴的负半轴于一点C,点C即为表示﹣的点.【点评】本题考查了勾股定理的应用、正方形的性质、实数与数轴;注意:在直角三角形中,两直角边的平方和等于斜边的平方.20.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.【考点】翻折变换(折叠问题).【分析】首先根据勾股定理求出BF的长,借助翻转变换的性质及勾股定理求出DE的长即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8;∠B=∠C=90°;由题意得:AF=AD=10,EF=DE=λ,EC=8﹣λ;由勾股定理得:BF2=102﹣82,∴BF=6,CF=10﹣6=4;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3.【点评】该题主要考查了翻折变换﹣折叠问题,勾股定理,解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.21.(1)观察探索:===2,即=2;===3,即=3(2)大胆猜想:等于多少?(3)灵活运用:再举一个例子并通过计算验证:猜想并写出一般表达式.【考点】算术平方根.【专题】计算题;规律型.【分析】(1)观察已知等式,做出探索;(2)根据已知等式做出猜想即可;(3)举一个例子,验证,归纳总结得到一般性规律,写出即可.【解答】解:(1)观察探索:===2,即=2;===3,即=3;(2)根据题意猜想得:=5;(3)===6,得到一般性规律为=n(n为正整数).【点评】此题考查了算术平方根,弄清题中的规律是解本题的关键.22.某次火灾事故中,消防员架起一架AB=25米长的云梯.如图斜靠在一面墙上,梯子底端B离墙7米.(1)求这个梯子的顶端A距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降9米至A′(云梯长度不变),那么云梯的底部B′在水平方向应滑动多少米?【考点】勾股定理的应用.【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑9米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.【解答】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===24(米);答:这个梯子的顶端A距地面有24m;(2)梯子下滑了9米即梯子距离地面的高度为OA′=24﹣9=15(米),根据勾股定理:OB′==20(米),所以当梯子的顶端下滑9米时,梯子的底端水平后移了20﹣7=13(米),答:当梯子的顶端下滑9米时,梯子的底端水平后移了13米.【点评】本题考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.五、(本大题共10分)23.“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为520元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费;乙旅行社表示,若人数不超过18人,每人都按八折收费.若超过18人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为x人.(1)请分别写出甲,乙两家旅行社收取组团游的总费用y(元)与x(人)之间的函数关系式.(2)如果朱老师和朋友一共有30人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?【考点】一次函数的应用;根据实际问题列一次函数关系式.【专题】计算题;分类讨论;函数思想;一次函数及其应用.【分析】(1)根据题意,甲旅行社收取的总费用=原价×折扣×人数,人数超过18人时,乙旅行社收取的总费用=前18人总费用+超出人数的费用,可列出函数关系式;(2)当x=30时,分别计算两旅行社费用,比较可知.【解答】解:(1)根据题意,甲旅行社收取的总费用y与x间的函数关系式为:y=520×0.8x=416x;当0≤x≤18时,乙旅行社收取的总费用y与x间的函数关系式为:y=520×0.8x=416x;当x>18时,乙旅行社收取的总费用y与x间的函数关系式为:y=520×0.8×18+520×0.75×(x﹣18)=390x+468;故乙旅行社收取的总费用y与x间的函数关系式为:;(2)当x=30时,甲旅行社收取的总费用y=416×30=12480(元),乙旅行社收取的总费用y=390×30+468=12168(元),∵12168<12480,∴朱老师应选择乙旅行社.【点评】本题考查了一次函数的实际应用,解答本题的关键是乙旅行社收费与人数之间的关系要分类讨论,属中档题.六、(本大题12分)24.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧)分别交y=x和y=﹣x+7的图象于点B,C,连接OC,若BC=OA,求△OBC的面枳.【考点】两条直线相交或平行问题.【分析】(1)联立两一次函数的解析式求出x、y的值即可得出A点坐标;(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(a,0)可用a表示出B、C的坐标,故可得出a的值,由三角形的面积公式即可得出结论.【解答】解:(1)由题意得,解得.则A(4,3);(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA===5.∴BC=OA=×5=14.∵P(a,0),∴B(a,a),C(a,﹣a+7),∴BC=a﹣(﹣a+7)=a﹣7,∴a﹣7=14,解得a=12,∴S△OBC=BC•OP=×14×12=84.word【点评】本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.21 / 21。
A BCDADEF C2014-2015学年八年级数学上学期期中考试一、选择题(每小题3分,共27分)。
1、以下列各组线段为三角形的边,能组成三角形的是〖 〗。
A 、1㎝,2㎝,4㎝B 、3㎝,3㎝,6㎝C 、7㎝,7㎝,12㎝D 、3㎝,6㎝,10㎝ 2、下列平面图形中,不是轴对称图形的是 〖 〗。
3、下列图形具有稳定性的是〖 〗。
A 、正五边形B 、正方形C 、梯形D 、等腰三角形 4、点P(a, 4)与点Q (2,b )关于X 轴对称,则 a 、b 的值是〖 〗。
A 、a=2,b =4B 、a=2,b=-4C 、a=-2,b =4D 、a=-2,b=-4 5、如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能.. 判定△ABM ≌△CDN 的是〖 〗。
A 、∠M=∠NB 、AM=CNC 、AB=CD D 、AM ∥CN6、如图,某同学将一块三角形的玻璃打碎成了三块,现在要到 玻璃店去配一块完全一样的玻璃,最省事的办法是〖 〗。
A 、带①去 B 、带②去 C 、带③去 D 、带①②去7、如图,在△ABC 中,∠A =40°,将△ABC 延虚线剪去∠A , 则∠1+∠2等于〖 〗。
A 、180°B 、200°C 、220°D 、270° 8、如图,在△ABC 中,AB=8,BC=6,AC=5,∠B、∠C 的 角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于 点F,,则△AEF 的周长等于〖 〗。
A 、11 B 、13 C 、14 D 、199、如图,把长方形纸片ABCD 纸沿对角线折叠,重叠部分为△EBD ,下列说法中正确的有〖 〗。
①△EBD 是等腰三角形; ②折叠后∠ABE 和∠CBD 一定相等; ③折叠后得到的图形是轴对称图形; ④△EBA ≌△EDC ;A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)。
人教版数学2023-2024学年八年级上学期数学期中考试模拟考试时间:100分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共40分) 1.(本题4分)下列图形是轴对称图形的是( )A .B .C .D . 2.(本题4分)在平面直角坐标系中,点()1,2A −关于x 轴对称的点B 的坐标是( )A .()1,2-B .()1,2C .()1,2-D .()1,2−−3.(本题4分)下列三条线段,能组成三角形的是( )A .3,5,2B .4,8,4C .3,3,3D .4,3,84.(本题4分)若等腰三角形底角为72°,则顶角为( )A .36°B .54°C .72°D .108°则仓库应建在( )A .ABC 三边的中线的交点上B .ABC 三内角平分线的交点上 C .ABC 三条边高的交点上D .ABC 三边垂直平分线的交点上6.(本题4分)已知m ,n 是整数,0a ≠,0b ≠,则下列各式中,能表示“幂的乘方法则”的是( ) A .n m m n a a a +=B .()n m mn a a =C .01a =D .()n n n ab a b =7.(本题4分)如图所示的图形中,AC AD =,BC BD =,那么( )A .CD 垂直平分ABB .AB 垂直平分CDC .CD 平分ACB ∠ D .CAD CBD ∠=∠8.(本题4分)已知:如图,D E 、分别在AB AC 、上,若,,60,35AB AC AD AE A B ==∠=°∠=°,则ADC ∠的度数是( )A .95°B .90°C .85°D .80°9.(本题4分)如图,90ACB ∠=°,AC BC =,点()1,2C ,()2,0A −,则点B 的坐标是( )A .()3,2−B .()41−,C .()3,1−D .()4,2−10.(本题4分)如图,ABC 面积是16,AB AC =,4BC =,点A 与点C 关于直线EF 对称,若D 为BC 的中点,点M 为EF 上一动点,则CDM 周长的最小值为( ).A .8B .10C .12D .14二、填空题(共24分) 11.(本题4分)计算: ①6384a a ÷=; ②2(3)a = .12.(本题4分)已知一个多边形的每个外角都等于45°,则它的边数是 .13.(本题4分)两直角三角形如图放置,90ABC DBE ∠=∠=°且BC BE =,若直接应用“HL ”判定ABC ≌DBE ,则需要添加的一个条件是 .14.(本题4分)点M (1,2)关于x 轴对称的点的坐标为 .15.(本题4分)如图,ABC 中,40B ∠=°,30C ∠=°,点D 为边BC 上一点,将ADC △沿直线AD 折叠后,点C 落到点E 处,若DE AB ∥,则ADE ∠的度数为 .16.(本题4分)如图,在平面直角坐标系中,点A 的坐标为()20,,点B 的坐标为()04,,在y 轴上取一点C 使ABC 为等腰三角形,符合条件的C 点有 个.三、解答题(共86分) 17.(本题8分)计算:(1)53223()(2)a a a a ⋅+−; (2)()()212x x +−.18.(本题10分)如图,点B ,D 在线段AE 上,C F ∠=∠,AC EF =,AC EF ∥. 求证:ABC EDF △≌△.(1)尺规作图:①在AN上取一点C∠的平分线②作MAN③在AD上找到一点21.(本题10分)如图,在ABC 中,D 是BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是点E 、F ,BE CF =.求证:AD 平分BAC ∠.22.(本题10分)如图,四边形ABCD 中90BC ∠∠==°,,AM 平分BAD ∠交BC 于点M M ,为BC 的中点,连接DM .求证:(1)DM 平分ADC ∠;(2)AD AB CD =+.23.(本题10分)在ABC 中,B C ∠=∠,点D 在BC 边上(点B 、C 除外)点E 在AC 边上,且4AED ∠=∠.(1)如图1,若45B C ∠==°∠,①当160∠=°时,求∠2的度数;②试猜想∠1与∠2的数量关系(不用证明,直接写出猜想)(2)深入探究:如图2,若B C ∠=∠,但45C ∠≠°,其他条件不变,试探究∠1与∠2的数量关系.要求有简单的推理过程.24.(本题10分)如图,在平面直角坐标系中,()30A −,、()70C ,,B 为y 轴正半轴上一点,D 在第四象限.若BC CD ⊥,CA 平分BCD ∠,180ABC ADC ∠+∠=°.(1)直接写出B 点坐标(___________,___________);(2)求证:AB AD =;(3)求四边形ABCD 的面积.25.(本题10分)如图1,在等边ABC 中,D ,E 分别是边AC ,BC 上一点,且AD CE =,BD 与AE 相交于点M .(1)求证:ABD CAE △△≌;(2)求证:60AMD ∠=°; (3)如图2,连接CM ,当2BM AM =时,求证:⊥CM BM .人教版数学2023-2024学年八年级上学期数学期中考试模拟(解析)考试时间:100分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共40分) 1.(本题4分)下列图形是轴对称图形的是( )A .B .C .D .A .()1,2-B .()1,2C .()1,2-D .()1,2−−【答案】B【分析】利用平面直角坐标系点对称的性质求解,关于x 轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.【详解】解:∵点A 的横坐标为1,∴点A 关于x 轴对称的点的横坐标是1,∵点A 的纵坐标为2−,∴点A 关于y 轴对称的点的纵坐标是2,∴点()1,2A −关于x 轴对称的点的坐标是()1,2.故选:B .【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数,解题的关键是掌握点的坐标的变化规律.3.(本题4分)下列三条线段,能组成三角形的是()A.3,5,2 B.4,8,4 C.3,3,3 D.4,3,8【答案】C【分析】根据三角形的三边关系定理逐项判断即可得.+=,不满足三角形的三边关系定理,不能组成三角形;【详解】A、325B、448+=,不满足三角形的三边关系定理,不能组成三角形;C、333+>,满足三角形的三边关系定理,能组成三角形;D、438+<,不满足三角形的三边关系定理,不能组成三角形;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.4.(本题4分)若等腰三角形底角为72°,则顶角为()A.36°B.54°C.72°D.108°【答案】A【分析】根据等腰三角形的性质以及三角形内角和定理,求解即可.°−°×=°【详解】解:等腰三角形底角为72°,则顶角为18072236故选:A【点睛】此题考查了等腰三角形的性质,解题的关键是掌握等腰三角形的性质.5.(本题4分)如图,点A、B、C表示某公司三个车间的位置,现在要建一个仓库,要求它到三个车间的距离相等,则仓库应建在()A.ABC三内角平分线的交点上三边的中线的交点上B.ABCC.ABC三边垂直平分线的交点上三条边高的交点上D.ABC【答案】D【分析】根据线段垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等,即可求解.【详解】解:由题意可得,这一点是到点A、B、C的距离相等,三边垂直平分线的交点上由线段垂直平分线的性质可得,这一点应该建在ABC故选:D【点睛】此题考查了线段垂直平分线的应用,解题的关键是熟练掌握线段垂直平分线的性质.6.(本题4分)已知m,n是整数,0b≠,则下列各式中,能表示“幂的乘方法则”的是()a≠,0A .n m m n a a a +=B .()n m mn a a =C .01a =D .()nn n ab a b = A .CD 垂直平分ABC .CD 平分ACB ∠【答案】B 【分析】根据到线段两端点距离相等的点在线段的垂直平分线上即可判断.【详解】解:∵AC AD =,BC BD =,∴AB 垂直平分CD ,选项B 正确,不能判断选项A 、C 、D 是否正确,故选:B .【点睛】本题考查了线段垂直平分线的判定,掌握“到线段两端点距离相等的点在线段的垂直平分线上”是解题的关键.8.(本题4分)已知:如图,D E 、分别在AB AC 、上,若,,60,35AB AC AD AE A B ==∠=°∠=°,则ADC ∠的度数是( )A .95°B .90°C .85°D .80°【答案】C 【分析】根据SAS 证ABE ACD ≌,推出C B ∠=∠,求出C ∠的度数,根据三角形的内角和定理求解即可. 【详解】解: 在ABE 和ACD 中AE AD A A AB AC = ∠=∠ =, (SAS)ABE ACD ∴ ≌,C B ∴∠=∠,35B ∠=° ,35C ∴∠=°,60A ∠=° ,180()85ADC A C ∴∠=°−∠+∠=°,故选:C .【点睛】本题考查了全等三角形的性质和判定、三角形内角和定理,解题的关键是求出C ∠的度数和得出180()ADC A C ∠=°−∠+∠.9.(本题4分)如图,90ACB ∠=°,AC BC =,点()1,2C ,()2,0A −,则点B 的坐标是( )A .()3,2−B .()41−,C .()3,1−D .()4,2−【答案】C 【分析】过C 和B 分别作CD ⊥OD 于D ,BE ⊥CD 于E ,利用已知条件可证明△ADC ≌△CEB ,再由全等三角形的性质和已知数据即可求出B 点的坐标.【详解】解:过C 和B 分别作CD ⊥OD 于D ,BE ⊥CD于E ,∵∠ACB =90°,∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在△ADC 和△CEB 中,90ADC CEB CAD BCE AC BC ∠=∠=° ∠=∠ =, ∴△ADC ≌△CEB (AAS ),∴DC =BE ,AD =CE ,∵点C 的坐标为(1,2),点A 的坐标为(﹣2,0),∴AD =CE =3,OD =1,BE =CD =2,∴则B 点的坐标是(3,﹣1).故选:C .【点睛】本题借助于坐标与图形性质,重点考查了直角三角形的性质、全等三角形的判定和性质,解题的关键是做高线构造全等三角形.10.(本题4分)如图,ABC 面积是16,AB AC =,4BC =,点A 与点C 关于直线EF 对称,若D 为BC 的中点,点M 为EF 上一动点,则CDM 周长的最小值为( ).A .8B .10C .12D .14【答案】B∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,2BDDC ==,∵ABC 面积是16,二、填空题(共24分)11.(本题4分)计算:①6384a a ÷=; ②2(3)a = .【答案】 32a 29a【分析】①根据单项式除单项式的运算法则计算即可;②根据积的乘方运算法则计算即可.【详解】解:①633842a a a ÷=,故答案为:32a ;②22(3)9a a =,故答案为:29a .【点睛】本题考查了单项式除单项式,积的乘方,熟记运算法则是解题的关键.12.(本题4分)已知一个多边形的每个外角都等于45°,则它的边数是 .【答案】8【分析】根据多边形的外角和是360°,多边形的每个外角都相等,且一个外角的度数为45°,由此即可求出答案.【详解】解:∵多边形的外角和是360°,每个外角都等于45°,∴360÷45=8,∴多边形的边数为8.故答案为:8.【点睛】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°. 13.(本题4分)两直角三角形如图放置,90ABC DBE ∠=∠=°且BC BE =,若直接应用“HL ”判定ABC ≌DBE ,则需要添加的一个条件是 .【答案】DE AC =【分析】根据直角三角形全等的判定解决此题.【详解】解:添加:DE AC =.理由如下:在Rt BDE 和Rt BAC 中,DE AC BE BC= = ∴Rt BDE ≌Rt BAC (HL ).故答案为:DE AC =.【点睛】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定是解决本题的关键.14.(本题4分)点M (1,2)关于x 轴对称的点的坐标为 .【答案】(1,-2)【分析】利用关于x 轴对称点的性质,关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ).【详解】点M (1,2)关于x 轴对称的点的坐标为:(1,−2).故答案为(1,−2).【点睛】本题考查关于x 轴、y 轴对称的点的坐标.熟记关于x 轴、y 轴对称点的坐标特点是解决此题的关键.此时符合条件的点由1个;若以点B 为圆心,以AB 为半径画弧,与y 轴有2个交点,线段AB 的垂直平分线与y 轴有1个交点;∴符合条件的C 点有:1214++=(个). 故答案为:4.【点睛】本题考查等腰三角形的判定,可以通过结合图形得出答案.理解和掌握等腰三角形的判定是解题的关键.三、解答题(共86分) 17.(本题8分)计算:(1)53223()(2)a a a a ⋅+−;(2)()()212x x +−.【答案】(1)66a −(2)2232x x −−【分析】(1)根据同底数幂的乘法、幂的乘方和积的乘方的运算法则展开,再合并同类项即可.(2)根据多项式乘以多项式法则展开,再合并同类项即可.【详解】(1)解:()()23532+2a a a a ⋅− 6668=a a a +−66a =−;(2)()()212x x +−2242x x x =−+−2232x x −−.【点睛】本题考查了整式的运算,熟练掌握整式的运算法则是解题的关键.18.(本题10分)如图,点B ,D 在线段AE 上,C F ∠=∠,AC EF =,AC EF ∥. 求证:ABC EDF △≌△.【答案】证明见解析(1)尺规作图:①在AN上取一点C∠的平分线②作MAN③在AD上找到一点(2)在(1)的条件下,求证:BE AN ∥.【答案】(1)见解析(2)见解析【分析】(1)以点A 为圆心,以AB 长为半径画弧与AN 的交点即为点C ;按角平分线的作图方法进行作图即可得,以点B 为圆心,以AB 长为半径画弧与AD 的交点即为点E ;(2)由AB BE =,得到BAE AEB ∠=∠,由AD 平分MAN ∠,得到BAE CAE ∠=∠,则=AEB CAE ∠∠,即可得到结论.【详解】(1)解:如图所示,(2)证明:∵AB BE =,∴BAE AEB ∠=∠,∵AD 平分MAN ∠,∴BAE CAE ∠=∠, ∴=AEB CAE ∠∠,∴BE AN ∥.【点睛】此题考查了基本作图、角平分线的定义、等腰三角形的性质、平行线的判定等知识,熟练掌握和运用相关的性质是解题的关键.21.(本题10分)如图,在ABC 中,D 是BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是点E 、F ,BE CF =.求证:AD 平分BAC ∠.【答案】证明见解析【分析】根据HL 可证Rt BED Rt CFD ≌,根据全等三角形的性质可得DE DF =,再根据角平分线的判定即可证明.【详解】证明: D 是BC 的中点,∴BD CD =,DE AB ⊥,DF AC ⊥,∴90BED CFD ∠=∠=°, Rt BED 和Rt CFD △中,BD CD =,BE CF =,∴Rt BED Rt CFD ≌()HL ,∴DE DF =,又 DE AB ⊥,DF AC ⊥,∴AD 平分线BAC ∠.【点睛】本题主要考查了角平分线的判定,全等三角形的判定与性质等知识点,解题关键是证明Rt Rt BED CFD △≌△.22.(本题10分)如图,四边形ABCD 中90BC ∠∠==°,,AM 平分BAD ∠交BC 于点M M ,为BC 的中点,连接DM .求证:(1)DM 平分ADC ∠;(2)AD AB CD =+.【答案】(1)见解析(2)见解析【分析】(1)过点M 作ME AD ⊥于点E ,由角平分线的性质得ME MB =,再证ME MC =,即可得出结论; (2)证Rt AME ≌Rt HL AMB (),得AE AB =,同理可证DC DE =,即可得出结论. 【详解】(1)如图,过点M 作ME AD ⊥于点E ,90B C ∠=∠=° ,MB AB MC CD ∴⊥⊥,,AM 平分DAB MB AB ME AD ∠⊥⊥,,,ME MB =∴,又M 为BC 的中点,MC MB ∴=,ME MC ∴=,MC CD ME AD ⊥⊥ ,,DM ∴平分ADC ∠;(2)在Rt AME 和Rt AMB 中,ME MB AM AM= = , Rt AME ∴ ≌Rt HL AMB (), AE AB ∴=, 同理可证DC DE =,AD AE DE =+ ,D AD AB C ∴=+.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质和判定等知识,熟练掌握全等三角形的判定与性质以及角平分线的判定与性质是解题的关键.23.(本题10分)在ABC 中,B C ∠=∠,点D 在BC 边上(点B 、C 除外)点E 在AC 边上,且4AED ∠=∠.(1)如图1,若45B C ∠==°∠,①当160∠=°时,求∠2的度数;②试猜想∠1与∠2的数量关系(不用证明,直接写出猜想)(2)深入探究:如图2,若B C ∠=∠,但45C ∠≠°,其他条件不变,试探究∠1与∠2的数量关系.要求有简单的推理过程.∴ECA DCA ∠=∠,在ECA △和DCA △中,EC DC ECA DCA AC AC = ∠=∠ =, ∴()SAS ECA DCA △≌△,∴AE ADAEC ADC ==,∠∠, ∵180180ABC ADC AEC AEB +=°+=°∠∠,∠∠, ∴ABE AEB ∠=∠,∴AB AE =,∴AB AD =;(3)解:如图所示,过点D 作DF x ⊥轴于F ,∴90AFD BOA ∠=∠=°, ∴90FAD FDA∠+∠=°, ∵180BC DC ABC ADC +=°⊥,∠∠, ∴36090BADABC ADC BCD ∠=°−∠−∠−∠=°, ∴90FAD OAB∠+∠=°, ∴FDA OAB ∠=∠, 由(2)得AD BA =,∴()AAS OAB FDA △≌△,∴DF OA =,∵()30A −,,()70C , ∴37DFOA OC ===,, ∴()7310AC =−−=,222CF AM AF MF ===,取CF 的中点N,连接MN ,则FN NC MF ==,然后证FMN 是等边三角形,得MNFN CN ==,60FMN ∠=°,即可解决问题.【详解】(1)证明:∵ABC 是等边三角形,∴ABAC BC ==,60BAC ACB ABC ∠=∠=∠=°, 在ABD △和CAE 中,AB CA BAD ACE AD CE = ∠=∠ =, ∴(SAS)ABD CAE ≌ ;(2)由(1)可知,ABD CAE △△≌,∴ABD CAE ∠=∠, ∴60AMD ABD BAE CAE BAE BAC ∠=∠+∠=∠+∠=∠=°;(3)如图2,延长BD 到F ,使AM MF =,连接AF CF 、,由(1)知:60AMF ∠=°, ∴AMF 是等边三角形,∴AM AF =,60AFM MAF ∠=∠=°, ∵ABC 为等边三角形,∴60,BAC AB AC ∠=°=, ∴BAM CAF ∠=∠, 在BAM 和CAF 中,AB AC BAM CAF AM AF = ∠=∠ =, ∴(SAS)BAM CAF ≌ ,∴BM CF =,180120AFCAMB AMF ∠=∠=°−∠=°, ∵2BM AM =,∴222CF AM AF MF ===, 取CF 的中点N ,连接MN ,则FNNC MF ==,∵60AFM ∠=°, ∴1206060MFN AFC AFM ∠=∠−∠=°−°=°, ∴FMN 是等边三角形,∴MNFN CN ==,60FMN ∠=°, ∴NMC NCM ∠=∠, ∵60FNM NMC NCM ∠=∠+∠=°,∴30NMC ∠=°, ∴603090CMF FMN NMC ∠=∠+∠=°+=°,∴BM CM ⊥.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质,构造全等三角形是解本题的关键.。
2022-2023学年新人教版数学八年级上册期中学习质量检测卷学校:_____________班级:____________ 姓名:____________(时间:120分钟分值:120分)一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,9 2.(3分)一副三角尺如图摆放,则α的大小为()A.105°B.120°C.135°D.150°3.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°4.(3分)如图图案中不是轴对称图形的是()A.B.C.D.5.(3分)已知,如图,△ABC中,AB=AC,∠A=120°,BC=18cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AB于点F,则MN的长为()A.18cm B.12cm C.6cm D.3cm6.(3分)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°7.(3分)如图,已知AB=AC,AE=AD,则图中全等的三角形共有()A.2对B.3对C.4对D.5对8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)在△ABC中,AC=6,中线AD=10,则AB边的取值范围是()A.16<AB<22B.14<AB<26C.16<AB<26D.14<AB<22 10.(3分)如图,已知∠A=60°,∠B=40°,∠C=30°,则∠D+∠E等于()A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图是小明从镜子中看到电子钟的时间,此时实际时间是.12.(3分)如图,在△ABC中,AB=AC,BC=5cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长为12cm,则△ABC的周长为cm.13.(3分)如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.14.(3分)已知BD、CE是△ABC的高,直线BD、CE相交所成的锐角为40°,则∠A的度数是.15.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=度.三、解答题(共10小题,满分75分)16.(7分)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.17.(7分)如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=50°,∠BAC=60°,求∠ADB的度数;(2)若∠BED=45°,求∠C的度数.18.(7分)如图,在四边形ACDE中,点F、G分别在AE和CD上,连接FG,且DE ∥FG,点B在AE的延长线上,连接BC,分别交GF、DE于点M,N,且∠2=∠3.(1)求证:∠1=∠B;(2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.19.(7分)在由单位正方形(每个小正方形边长都为1)组成的网格中,△AOB的顶点均在格点上.(1)把△AOB向左平移4个单位,再向上平移2个单位得到△A1O1B1,请画出△A1O1B1,并写出点A1的坐标;(2)请画出△AOB关于x轴对称的△A2OB2,并求出△A2OB2的面积.20.(7分)△ABC的三边长分别为m﹣2,2m+1,8.(1)求m的取值范围;(2)若△ABC是等腰三角形,求三边长.21.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.22.(9分)如图,F、B、E、C四点共线,AB与DE相交于点O,AO=DO,OB=OE,BF=CE,求证:∠D=∠A.23.(9分)如图,△ABC中,∠ABC=45°,AD⊥BC于D,点E在AD上,且DE=DC.求证:△BDE≌△ADC.24.(7分)工人师傅经常利用角尺平分一个任意角.如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.(1)证明:OP平分∠AOB;(2)在(1)的条件下,请你在射线OP上任取一点Q,作QC⊥OA,QD⊥OB,试判断线段QC与线段QD的数量关系并证明.25.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠2=70°,求∠AEB的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.C;2.A;3.B;4.A;5.C;6.C;7.A;8.C;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.21:0512.1913.414.140°或40°15.540三、解答题(共10小题,满分75分)16.解:∵∠CAB=180°﹣∠ABC﹣∠C,而∠ABC=82°,∠C=58°,∴∠CAB=40°,∵AE平分∠CAB,∴∠DAF=20°,∵BD⊥AC于D,∴∠ADB=90°,∴∠AFB=∠ADB+∠DAF=90°+20°=110°.故答案为:110°.17.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=12∠BAC=30°.∵∠ADB是△ADC的外角,∠C=50°,∴∠ADB=∠C+∠DAC=80°;(2)∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE.∵∠BED是△ABE的外角,∠BED=45°,∴∠BAD+∠ABE=∠BED=45°.∴∠BAC+∠ABC=2(∠BAD+∠ABE)=90°.∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=90°.18.(1)证明:∵DE∥FG,∴∠2=∠D ,∵∠2=∠3,∴∠3=∠D ,∴AB ∥CD ,∴∠1=∠B ;(2)解:∵AB ∥CD ,∴∠A +∠ACD =180°,∵∠A =∠1+70°,∠ACB =42°,∴(∠1+70°)+(∠1+42°)=180°,∴∠1=34°,∴∠B =∠1=34°.19.解:(1)如图,△A 1O 1B 1即为所求.点A 1的坐标为(﹣3,5).(2)如图,△A 2OB 2即为所求.△A 2OB 2的面积为3×3−12×1×3−12×2×1−12×3×2=72.20.解:(1)根据三角形的三边关系得{(2m +1)+(m −2)>8(2m +1)−(m −2)<8,解得3<m <5;(2)当m ﹣2=2m +1时,解得m =﹣3(不合题意,舍去),当m ﹣2=8时,解得,m =10>5(不合题意,舍去),当2m +1=8时,解得,m =72,所以若△ABC 为等腰三角形,m =72,则m ﹣2=32,2m +1=8,所以,△ABC 三边长为32、8、8. 21.解:(1)∵AB =AC ,∠B =70°,∴∠BAC =180°﹣70°×2=40°;(2)∵MN 垂直平分AB .∴MB =MA ,又∵△MBC 的周长是14cm ,∴AC +BC =14cm ,∴BC =6cm .(3)当点P 与点M 重合时,PB +CP 的值最小,为AC 长,最小值是8cm .22.证明:∵OB =OE ,∴∠DEF =∠ABC ,∵AO =DO ,BF =CE ,∴AO +OB =DO +OE ,CE +BE =BF +BE ,∴DE =AB ,EF =BC ,在△DEF 和△ABC 中,{DE =AB ∠DEF =∠ABC EF =BC,∴△DEF ≌△ABC (SAS ),∴∠D =∠A .23.证明:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∵∠ABC =45°,∴∠BAD =45°,∴∠ABC =∠BAD ,∴AD =BD ,在△BDE 和△ADC 中,{BD =AD ∠EDB =∠ADC DE =DC,∴△BDE ≌△ADC (SAS ).24.(1)证明:在△OPM 与△OPN 中,{OM =ON PM =PN OP =OP,∴△OPM ≌△OPN (SSS ),∴∠AOP =∠BOP ,∴OP 平分∠AOB ;(2)解:QC =QD .证明:∵OP 是∠AOB 的平分线,QC ⊥OA ,QD ⊥OB , ∴QC =QD .25.(1)证明:∵∠ADB =∠2+∠C =∠1+∠BDE ,∠1=∠2, ∴∠BDE =∠C ,在△AEC 和△BED 中,{∠BDE =∠C ∠B =∠A BE =AE ,∴△AEC ≌△BED (AAS );(2)解:∵△AEC ≌△BED ,∴∠BED =∠AEC ,∴∠BEA =∠2,∵∠2=70°,∴∠AEB =70°.。
2017年秋季学期期中考试八年级数学试卷(考试时间120分钟 满分120分)一、选择题(每小题4分,共32分)1.方程x (x ﹣2)+x=0的解是( )A .x 1=0,x 2=1B .x 1=0,x 2=﹣1C .x 1=0,x 2=3D .x 1=﹣1,x 2=﹣32.抛物线y=x 2﹣2x+3的顶点坐标是( )A .(1,﹣2)B .(1,2)C .(﹣1,2)D .(﹣1,﹣2)3.已知反比例函数y= ,下列各点不在该函数图象上的是( )A .(2,3)B .(﹣2,﹣3)C .(-3,-2) D(-1,6)4.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( )A .B .C .D .5.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意列出方程为( )A 、12x (x -1)=2070B 、12x (x +1)=2070 C 、x (x +1)=2070 D 、x (x -1)=20706.⊙o 的半径是13,弦AB ∥CD, AB=24, CD=10,则AB 与CD 的距离是 ( )A 、 7B 、 17C 、7或17D 、347.已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图,其中正确的是( )A B C D8.如图,把直角△ABC 的斜边AC 放在定直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 2C 2的位置,设AB=,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .(+)πB .(+)πC .2πD .π二、填空题(每小题3分,共18分)9.一元二次方程:3x 2+8x-3=0的解是:10.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为11.已知方程(k-2)x 2-3x+5=0有两个实数根,则k 的取值范围12.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是13.一块四周镶有宽度相等的花边的地毯如下图,它的长为8m ,宽为5m .地毯中央长方形图案的面积为18m 2,那么花边有多宽?设花边的宽为x, 则可得方程为_____________14..将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为.三、解答题(共9题,满分70分)15(本小题8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.16(本小题5分)有一人患了流感,经过两轮传染后共有121人患了流感,求每轮传染中平均一个人传染了几个人?17. (本小题6分)△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长?18. (本小题6分)为响应习总书记“足球进校园”的号召,我区在各中学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数为;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(本小题8分)如图,CD为⊙O的直径,AB是弦,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=1。
(1)求∠C的大小;(2)求阴影部分的面积。
20. (本小题5分)如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B (1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.21.(本小题10分)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?22、(10分)如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)、求证:BC是⊙O的切线;(2)、设阴影部分的面积为a,b, ⊙O的面积为S,请写出S与a,b的关系式。
23.(本小题12分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).(1)点A的坐标:,点E的坐标:;(2)若二次函数y=﹣x2+bx+c过点A、E,求此二次函数的解析式;(3)P是线段AC上的一个动点(P与点A、C不重合)连结PB、PD,设L是△PBD的周长,当L取最小值时。
求:①点P的坐标②判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.参考答案一、选择题1、A2、B3、D4、B5、D6、C7、D8、B二、填空题9、x1, x2=-3 10、15π 11、k≤且k≠212、 13、(8-2x)(5-2x)=18 14、(17,2)三、解答题15、解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,16、设每轮传染中平均每个人传染了人,依题意得,∴=10或=﹣12(不合题意舍去).所以,每轮传染中平均一个人传染了10个人.17、根据切线长定理,设AE=AF=xcm ,BF=BD=ycm ,CE=CD=zcm .根据题意,得, 解得x=4,y=5,z =9 即AF=4cm 、BD=5cm 、CE=9cm .18、解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人,故答案为30人;从表中可以看到总的有12种情况,而AB 分到一组的情况有2种,故恰好选到A 、B 两所学校的概率为P==.19、(1)证明:由CD ⊥AB ,得=;∴∠AOD =2∠C由AO ⊥BC ,易得∠C =30°。
(2)13π- 3 420、解:(1)∵点A (﹣2,1)在反比例函数的图象上, ∴m=(﹣2)×1=﹣2.∴反比例函数的表达式为. ∵点B (1,n )也在反比例函数的图象上, ∴n=﹣2,即B (1,﹣2).把点A (﹣2,1),点B (1,﹣2)代入一次函数y=kx+b 中,得解得.∴一次函数的表达式为y=﹣x ﹣1.(2)∵在y=﹣x ﹣1中,当y=0时,得x=﹣1.∴直线y=﹣x ﹣1与x 轴的交点为C (﹣1,0).x+y=9 y+z=14x+z=13∵线段OC将△AOB分成△AOC和△BOC,∴S△AOB=S△AOC+S△BOC=×1×1+×1×2=+1=.21、解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4,解得x=10%或190%.答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元;(3)设每件商品应降价y元,获得利润为W,由题意得,W=(40﹣30﹣y)(4×+48)=﹣8y2+32y+480=﹣8(y﹣2)2+512,故每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.22、(1)证明:∵AB=BC,∴∠CAB=∠ACB=45°.∵在△ABC中,∠ABC=180°﹣45°﹣45°=90°,∴AB⊥BC.又∵AB是⊙O的直径,∴BC是⊙O的切线.(2)设AC圆交于点D,连接BD,∵AD=BD,∴△BCD的面积=,∵△ADB的面积=△BCD的面积,∴半圆的面积=,∴.23、解:(1)连接AD,如图1,∵△ABC是边长为4的等边三角形,又B的坐标为(﹣1,0),BC在x轴上,A在第一象限,∴点C在x轴的正半轴上,∴C的坐标为(3,0),由中点坐标公式,得:D的坐标为(1,0).显然AD⊥BC且AD=BD=2,∴A的坐标是(1,2).OE=AD,得E(0,);(2)因为抛物线y=﹣x2+bx+c过点A、E,由待定系数法得:c=,b=,抛物线的解析式为y=﹣x2+x+;(3)作点D关于AC的对称点D',连接BD'交AC于点P,则PB与PD的和取最小值,即△PBD的周长L取最小值,如图2.∵D、D′关于直线AC对称,∴DD′⊥AC,即∠D′DC=30°,DF=,DD'=2,求得点D'的坐标为(4,),直线BD'的解析式为:y=x+,直线AC的解析式为:y=﹣x+3,求直线BD'与AC的交点可,得点P的坐标(,).此时BD'===2,所以△PBD的最小周长L为2+2,把点P的坐标代入y=﹣+x+成立,所以此时点P在抛物线上.。