北师大版八年级下第六章证明(一)复习卷
- 格式:doc
- 大小:884.50 KB
- 文档页数:3
【文库精品】第六章 平行四边形1.平行四边形的性质练习一基础训练1.已知平行四边形ABCD 中,200A C ∠+∠=︒,则B ∠的度数是()A.100︒B.160︒C.80︒D.60︒2.在平行四边形ABCD 中,:::A B C D ∠∠∠∠的比是()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:13.如图,在平行四边形ABCD 中,EF AD ∥,GH CD ∥,EF ,GH 相交于O ,则图中平行四边形的个数为()A.9B.8C.6D.44.用一根30m 长的绳子围成一个平行四边形,使其两边的比为3:2,则长边为_______m ,短边为__________m .5.平行四边形两邻角之差为30︒,则这个平行四边形各内角分别为___________.6.如图,已知:等腰ABC △的腰长为8cm ,过底边BC 上任一点D 作两腰的平行线分别交两腰于E , F ,则四边形AEDF 的周为____________cm .7.在平行四边形ABCD 中,已知平行四边形的周长是30cm ,且2c m A B B C -=,求平行四边形的边长. 能力提升8.如图,已知:在平行四边形ABCD 中,55B ∠=︒,235∠=︒,10AD =,对角线8AC =,求平行四边形ABCD 的周长和面积.9.如图,在平行四边形ABCD 中,DE AB ⊥于E ,DF BC ⊥于F ,DAB ∠的平分线AP 交DE 于M ,交DF 于N .试说明:DM DN =.练习二基础训练1.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,则图中全等的三角形有()A.2对B.3对C.4对D.8对2.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长m 的取值范围是()A.416m <<B.1426m <<C.1220m <<D.832m <<3.如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,则下列结论不一定...成立的是()A.BO DO =B.CD AB =C.BAD BCD ∠=∠D.AC BD =4.已知平行四边形ABCD 的两条对角线AC ,BD 互相垂直,且6cm AC =,8cm BD =,则边AB 的长为_____________cm .5.已知平行四边形ABCD 的两条对角线AC ,BD 相交于点O ,如果AOB △的面积是23cm ,那么平行四边形ABCD 的面积是_________2cm .6.在平行四边形ABCD 中,对角线AC ,BD 相交于O .如果OBC △的周长为59,BC 的长为28,14BD AC -=,那么对角线AC =__________,BD =____________.7.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE OF =.能力提升8.如图,已知平行四边形ABCD 的对角线相交于O ,且AD CD ≠,过O 作OE AC ⊥,交AD 于点E ,若CDE △的周长为10,求平行四边形ABCD 的周长.探究实践9.如图,在平行四边形ABCD 中,BE CD ⊥,BF AD ⊥,60EBF ∠=︒,2CE =,3AF =,求平行四边形ABCD 的边长.2.平行四边形的判定练习一基础训练1.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A.AB BC =,CD DA =B.AB CD ∥,AD BC =C.AB CD ∥,A C ∠=∠D.A B ∠=∠,C D ∠=∠ 2.用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有().A.1个B.2个C.3个D.4个3.根据下列条件,能作出平行四边形的是()A.相邻两边的长分别是3和5,且一条对角线的长为9B.两组对边的长分别是3和5C.一边的长为7,两条对角线的长分别为6和8D.一边的长为7,两条对角线的长分别为6和5 4.如图,在平行四边形ABCD 中,EF BC ∥,GH AB ∥,EF 与GH 相交于点O .除平行四边形ABCD 外,图中还有____________个平行四边形.5.在四边形ABCD 中,AC 为对角线,若AB CD =,BAC DCA ∠=∠,则四边形ABCD 为____________.6.两条对角线_______________的四边形是平行四边形.7.如图,在平行四边形ABCD 中,E ,F 是AC 上的点,且AE CF =,四边形BFDE 是平行四边形吗?试说明理由.能力提升8.如图,已知:AD 是ABC △的角平分线,DE AB ∥,在AB 上截取BF AE =.试说明:EF BD =.探究实践9.如图所示为在场地上画平行线的简单方法,将皮带尺从P 拉到A ,取AP 的中点M ,并且在点M 上竖一木桩,再将皮带从n 上的另一点B 拉向M ,使它过M ,取MC B M =,那么过P ,C 两点的直线m 就是平行于n 的一条直线.为什么?练习二基础训练1.四边形ABCD 中,对角线AC ,BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB DC ∥,AD BC ∥B.AB DC =,AD BC =C.AO CO =,BO DO =D.AB DC ∥,AD BC = 2.在下列条件中,能判定四边形ABCD 是平行四边形的是()A.AB BC =,CD DA =B.AB CD ∥,AD BC =C.AB CD =,AD BC =D.A B ∠=∠,C D ∠=∠ 3.在四边形ABCD 中,AD BC ∥,当满足下列条件()时,四边形ABCD 是平行四边形.A.180A C ∠+∠=︒B.180B D ∠+∠=︒C.180A B ∠+∠=︒D.180B C ∠+∠=︒4.一组对边________的四边形是平行四边形;两组对边分别_______的四边形是平行四边形;两条对角线___________的四边形是平行四边形.5.如图,点M ,N 是平行四边形ABCD 对角线上的两点,要使四边形AMCN 是平行四边形,还需加上的一个条件是__________(填上你认为正确的一个即可,不必考虑所有可能的情况).6.已知AD BC ∥,要使四边形ABCD 为平行四边形,需要增加的条件是__________________(填一个你认为正确的条件).7.如图,在平行四边形ABCD 的各边AB ,BC ,CD ,DA 上,分别取K ,L ,M ,N ,使A K C M =,BL DN =,试判断四边形KLMN 是否为平行四边形.并说明理由.能力提升8.如图,已知平行四边形ABCD ,过A 作AM BC ⊥于M ,交BD 于E ,过C 作CN AD ⊥于N ,交BD 于F ,连接AF ,CE .求证:四边形AECF 为平行四边形.探究实践9.如图,在ABC △中,D 是AB 的中点,E 是AC 上的一点,EF AB ∥,DF BE ∥.(1)猜想DF 与AE 的关系是_____________;(2)请说明你的猜想.3.三角形的中位线基础训练1.如图,点D ,E ,F 分别是ABC △三边的中点,且3DEF S =△,则ABC △的面积等于()A.6B.9C.12D.152.如图,已知ABC △的周长为1,连接ABC △三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形……依此类推,则第10个三角形的周长为().A.19B.110C.912⎛⎫ ⎪⎝⎭D.1012⎛⎫ ⎪⎝⎭3.如图,在ABC △中,D ,E 分别是AB ,AC 的中点,4DE =,则BC =__________.4.如图,D ,E ,F 分别为ABC △三边上的中点.(1)线段AD 叫做ABC △的_________,线段DE 叫做ABC △的_________,DE 与AB 的位置和数量关系是___________________;(2)图中全等三角形有_________________________________;(3)图中平行四边形有___________________________________.5.三角形各边长为5,9,12,则连接各边中点所构成的三角形的周长是_____________.6.如图,D ,E ,F 分别为ABC △三边上的中点,G 为AE 的中点,BE 与DF ,DG 分别交于P ,Q 两点,则:PQ BE =______________.7.如图,要测出池塘的宽度AB ,小强在池塘边上取一个能直接到达A ,B 的点C ,量得20m AC =,25m BC =,又取AC 的中点D ,BC 的中点E ,量得12m DE =,求池塘宽AB 为多少?能力提升8.如图,ABC △中,D ,E ,F 分别是AB ,BC ,AC 的中点,若10cm AB =,6cm AC =,求四边形ADEF 的周长.探究实践9.如图,在四边形ABCD 中,AB CD >,E ,F 分别是对角线BD ,AC 的中点.求证:()12EF AB CD >-. 4.多边形的内角和与外角和基础训练1.一个多边形切去一个角(即切去一个只含原多边形一个顶点的三角形)后,得到的新多边形的内角和与原多边形内角和相比().A.多180︒B.少180︒C.多360︒D.相等2.多边形内角钝角的个数最多有().A.4个B.5个C.6个D.无数个3.一个多边形的每一个内角均为108︒,则这个多边形是().A.七边形B.六边形C.五边形D.四边形4.若一个多边形的外角和是它的内角和的14,则此多边形的边数是_____________. 5.若一个多边形的各边都相等,它的周长为96,且它的内角和是1800︒,则它的边长是________. 6.OAB △是以正多边形相邻的两个顶点A ,B 与它的中心O 为顶点的三角形,若OAB △的一个内角为70︒,则该正多边形的边数为_______________.7.一个五边形,若五个外角度数之比是1:2:4:5:6,那么这五个外角的度数分别为多少?五个内角的度数之比是多少?能力提升8.如图,在正八边形ABCDEFGH 中,四边形BCFG 的面积为220cm ,则正八边形的面积为多少?9.已知,过m 边形的一个顶点有7条对角线,n 边形没有对角线,p 边形有p 条对角线,求()nm p -的值.【复习与反思】A 卷一、填空题1.平行四边形的周长为24,一组邻边的差为2,则较短的边长为________________.2.从平行四边形的一个顶点作两条高,若这两条高的夹角为75︒,则这个平行四边形的四个内角为_________.3.如图所示,等边ABC △的边长为6,DE BC ∥,DF AC ∥,则平行四边形DECF 的周长为___________.4.如图,平行四边形ABCD 中,60ABC ∠=︒,E ,F 分别在CD 和BC 的延长线上,AE BD ∥,EF BC ⊥,EF AB 的长是_____________.5.如图,一束平行太阳光线照射到正五边形上,则1∠=___________.6.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是_________.7.在四边形ABCD 中对角线AC ,BD 相交于O ,当AO =__________,BO =________时,四边形ABCD 是平行四边形.8.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为_______. 9.已知一个多边形的内角和等于它的外角和的6倍,则这个多边形的边数n =____________. 10.各内角都相等的多边形的内角和为2520︒,则它的每一个外角为________︒,每一个内角为______︒.二、选择题11.平行四边形两邻边长分别为20cm ,16cm ,两长边之间的距离为8cm ,则两短边之间的距离为()A.10cmB.9cmC.8cmD.7cm12.点A ,B ,C ,D 在同一平面内,从①AB CD ∥;②AB CD =;③BC AD ∥;④BC AD =.这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()A.3种B.4种C.5种D.6种13.下面给出了四边形ABCD 中A ∠,B ∠,C ∠,D ∠的度数之比,其中能判定四边形ABCD 是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:214.如图,过正五边形ABCDE 的顶点A 作直线l BE ∥,则1∠的度数为()A.30︒B.36︒C.38︒D.45︒15.如图,在平行四边形ABCD 中,2AD AB =,CE 平分BCD ∠交AD 边于点E ,且3AE =,则AB 的长为()A.4B.3C.52D.2 16.如图,已知ABC △的周长为1,连接ABC △三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,依此类推,第2013个三角形的周长为(). A.12012 B.12013 C.201212 D.201312三、计算题17.如图所示,平行四边形ABCD 中,8cm AB =,12cm AD =,120BCD ∠=︒.求平行四边形ABCD 的面积.18.在平行四边形ABCD 中,E ,F 为对角线BD 上的三等分点.求证:四边形AFCE 是平行四边形.19.已知:平行四边形ABCD 中E ,F 是对角线AC 上的两点,且AF CE =.求证:DE BF =.20.如图,D 是ABC △的边AB 上一点,CN AB ∥,DN 交AC 于点M .若MA MC =.FED C B A(1)求证:CD AN =;(2)若AC DN ⊥,30CAN ∠=︒,1MN =,求四边形ADCN 的面积.四、解答题21.如图所示,四边形ABCD 是平行四边形,E ,F 是直线BD 上的两点,且BF DE =.那么,线段AE 与CF 有什么关系?请说明理由.22.如图所示,A ,B 两点位于池塘的两端,李华用绳子测量A ,B 间的距离,但绳子不够长,一同学帮他想了个主意:先在地上取一个可以直接达到A ,B 的点C ,找到AC ,BC 的中点D ,E ,测量出DE 的长度就可以得到AB 的长度.你同意他的观点吗?请说明原因.B 卷五、解答下列各题23.如图,在ABC △中,1A ,1B ,1C 分别是BC ,CA ,AB 的中点,2A ,2B ,2C 分别是11B C ,11C A ,11A B 的中点,…,n A ,n B ,n C 分别是1n B -,1n C -,1n C -,1n A -,1n A -,1n B -的中点,假设ABC △的周长为a .则111A B C △的周长为___________,222A B C △的周长为___________,n n n A B C △的周长为________. 24.一个多边形的所有内角与某一个外角的和为1350︒.你知道这个多边形是一个几边形吗?请说明理由.25.我们知道过n 边形的一个顶点可以做()3n -条对角线,这()3n -条对角线把三角形分割成()2n -个三角形,想一想这是为什么?如图(1).如图(2),在n 边形的边上任意取一点,连接这点与各顶点的线段可以把n 边形分成几个三角形? 想一想,利用这两个图形,怎样证明多边形的内角和定理.。
八年级物理下册第六章一《透镜》习题1(无答案)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级物理下册第六章一《透镜》习题1(无答案)(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级物理下册第六章一《透镜》习题1(无答案)(新版)北师大版的全部内容。
《透镜》习题一、选择题1、物体从距凸透镜12 cm处移到距凸透镜20cm处,调整光屏的位置,总能在光屏上得到倒立放大的像,由此可知此凸透镜的焦距可能是()A、10 cmB、20 cmC、12 cmD、以上都不对2、用照相机给家人照相,人与照相机镜头的距离和底片到照相机镜头的距离分别是( )A、大于2f,小于fB、大于2f,小于2f,大于fC、小于2f,大于f,大于2fD、大于f,大于2f3、测绘人员绘制地图时,常常需要在高空的飞机上向地面照相,称为航空摄影,若要使用航空摄影照相机的镜头焦距为50 mm,则底片到镜头间的距离为()A、100 mm以外B、50 mm以内C、略大于50 mmD、恰为50 mm4、放映幻灯时,在屏幕上得到的是幻灯片上图像的()A、正立放大的虚像B、正立放大的实像C、倒立放大的虚像D、倒立放大的实像5、用一个凸透镜成像时,下面说法中正确的是()A、实像总是正立的、虚像总是倒立的B、实像和虚像都可能是放大或缩小的C、成实像时,物体离凸透镜越近像越大D、成虚像时,物体离凸透镜越近像越大二、填空题1、照相机的镜头相当于一个____镜,被拍摄的物体应在距镜头____的位置,在相当于____的胶片上得到____的____的____像。
北师大版八年级数学下册第六章平行四边形难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=OC B的坐标为()A.1) B.(1) C.+1,1) D.(11)2、若一个多边形的每一个内角均为120°,则下列说法错误的是()A.这个多边形的内角和为720°B.这个多边形的边数为6C.这个多边形是正多边形D.这个多边形的外角和为360°3、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则∠COF的度数是()A.74°B.76°C.84°D.86°4、如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC 上从B向C移动而G不动时,下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定5、如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.108°B.36°C.72°D.144°6、正五边形的外角和是()A.180︒B.360︒C.540︒D.720︒7、一个n边形的所有内角之和是900°,则n的值是().A.5 B.7 C.9 D.108、正八边形的外角和为()A.360︒B.720︒C.900︒D.1080︒9、如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE ,使∠CDE =∠A ,DE 交BC 于点F ,则EF 的长为( )A .3BCD .3.510、如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:①∠BCD =2∠DCF ;②∠ECF =∠CEF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF ,其中一定正确的是( )A .②④B .①②④C .①②③④D .②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,M 、N 分别为AB 、BC 的中点,若OM =1.5,ON =1,则平行四边形ABCD 的周长是________.2、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.3、如图,1,2,3∠∠∠是三角形ABC 的不同三个外角,则123∠+∠+∠=___________4、每个外角都为36°的多边形共有___条对角线.5、如图所示,在Rt ABC 中,90ACB ∠=︒,6AC =,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若 2.5EF =,则EBF △的面积为_______.三、解答题(5小题,每小题10分,共计50分)1、如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC 的三个顶点都在格点上.(每个小方格的顶点叫格点)(1)画出三角形ABC 向上平移4个单位后的三角形A 1B 1C 1;(2)画出三角形A 1B 1C 1向左平移5个单位后的三角形A 2B 2C 2;(3)经过(1)次平移线段AC 划过的面积是 .2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60°,则BM =CN ;②如图(2),在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON =90°,则BM =CN .然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108°,则BM =CN .任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n (n ≥3)边形ABCDEF …中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,试问当∠BON 等于多少度时,结论BM =CN 成立(不要求证明);②如图(4),在正五边形ABCDE 中,M 、N 分别是DE 、AE 上的点,BM 与CN 相交于点O ,∠BON =108°时,试问结论BM =CN 是否成立.若成立,请给予证明;若不成立,请说明理由.3、如图,已知ABC ∆,以AB 为直径的半⊙O 交AC 于D ,交BC 于E ,BE CE =,65C =︒∠,求DOE∠的度数.4、如图,在ABCD中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)ABCD的面积;(2)△AOD的周长.5、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.-参考答案-一、单选题1、C【分析】作BD x⊥,求得OD、BD的长度,即可求解.【详解】解:作BD x ⊥,如下图:则90BDA ∠=︒在平行四边形OABC 中,AB OC OA ==AB OC ∥∴45DAB AOC ∠=∠=︒∴ADB △为等腰直角三角形则222AD BD AB +=,解得1AD BD ==∴1OD OA AD =+1,1)B故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解.2、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得.【详解】解:多边形的每一个内角均为120︒,∴这个多边形的每一个外角均为60︒,∴这个多边形的边数为360606︒÷︒=,则选项B 说法正确;∴这个多边形的内角和为()18062720︒⨯-=︒,则选项A 说法正确;多边形的外角和为360︒,∴选项D 说法正确;各边相等,各内角也相等的多边形叫做正多边形,∴选项C 说法错误;故选:C .【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键.3、C【分析】利用正多边形的性质求出∠EOF ,∠BOC ,∠BOE 即可解决问题.【详解】解:由题意得:∠EOF =108°,∠BOC =120°,∠OEB =72°,∠OBE =60°,∴∠BOE =180°﹣72°﹣60°=48°,∴∠COF =360°﹣108°﹣48°﹣120°=84°,故选:C【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.4、C【分析】AG,因此线段EF的长不变.连接AG,根据三角形中位线定理可得EF= 12【详解】解:如图,连接AG,∵E、F分别是AP、GP的中点,∴EF为△APG的中位线,AG,为定值.∴EF= 12∴线段EF的长不改变.故选C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应的中位线的长度就不变.5、C【分析】过点B作l1的平行线BF,利用平行线的性质推出∠CBF+∠1=180°,∠CBF+∠2=108°,两个式子相减即可.【详解】解:过点B作l1的平行线BF,则l1∥l2∥BF,∵l 1∥l 2∥BF ,∴∠ABF =∠2,∠CBF +∠1=180°①,∵五边形ABCDE 是正五边形,∴()=521805=108ABC ∠-⨯÷,∴∠ABF +∠CBF =∠CBF +∠2=108°②,∴①-②得∠1-∠2=72°,故选C .【点睛】本题主要考查了平行线的性质以及正多边形的内角问题,解题的关键是通过作辅助线,搭建角之间的关系桥梁.6、B【分析】根据多边形的外角和等于360°,即可求解.【详解】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B .【点睛】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.7、B【分析】n-⨯=,由此进行求解即可.根据n边形内角和公式即可得到()2180900【详解】解:∵一个n边形的所有内角之和是900°,n-⨯=,∴()2180900n=,∴7故选B.【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式.8、A【分析】根据多边形的外角和都是360︒即可得解.【详解】解:∵多边形的外角和都是360︒,∴正八边形的外角和为360︒,故选:A.【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是360︒是解题的关键.9、D【分析】根据勾股定理求出BC ,根据直角三角形的性质得到CD =AD ,证明AC ∥DF ,根据勾股定理计算,得到答案.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =1,AB =4,则BC在Rt △ABC 中,∠ACB =90°,点D 是斜边AB 的中点,∴CD =12AB =AD ,∴∠DCA =∠A ,∵∠CDE =∠A ,∴∠CDE =∠DCA ,∴AC ∥DF ,∴∠EFC =∠ACB =90°,∵AC ∥DF ,点D 是斜边AB 的中点,∴DF =12AC =12,CF =12BC 设EF =x ,则ED =x +12=CE ,在Rt △EFC 中,EC 2=EF 2+CF 2,即(x +12)2=x 2+2, 解得:x =3.5,即EF =3.5,故选:D .【点睛】 本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.10、B【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF 可得这两个三角形的面积相等,再由MC>BE易得S△BEC<2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.【详解】①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF DF AFE DFM ⎧⎪⎨⎪=∠=∠=∠⎩∠ , ∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯=,12BEC S BE CE =⨯ ∴S △BEC <2S △EFC ,故S △BEC =2S △CEF , 故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°﹣x ,∴∠EFC =180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.二、填空题1、10【分析】根据平行四边形的性质可得BO=DO,AD=BC,AB=CD,再由条件M、N分别为AB、BC的中点可得MO 是△ABD的中位线,NO是△BCD的中位线,再根据三角形中位线定理可得AD、DC的长.【详解】解:∵四边形ABCD是平行四边形,∴BO=DO,AD=BC,AB=CD,∵M、N分别为AB、BC的中点,∴MO=12AD,NO=12CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四边形ABCD的周长是:3+3+2+2=10,故答案为:10.【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分.2、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.3、360°.【分析】利用三角形的外角和定理解答.【详解】解:∵1,2,3∠∠∠是三角形ABC 的不同三个外角,三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型.4、35【分析】设这个多边形为n 边形,然后根据多边形外角和为360度以及多边形对角线公式()32n n -进行求解即可.【详解】解:设这个多边形为n 边形,由题意得:36036n ÷=,∴10n =,∴这个多边形的对角线条数()10103352⨯-==条, 故答案为:35.【点睛】本题主要考查了多边形外角和,多边形对角线条数,解题的关键在于能够熟练掌握相关知识进行求解.5、3【分析】根据三角形中位线定理求出CM ,根据直角三角形的性质求出AB 根据勾股定理得出BC ,求出24ABC S ∆=,由中线的性质得1122BCM ABC S S ∆∆==,再根据中位线的性质可得结论. 【详解】解:∵E 、F 分别为MB 、BC 的中点,∴CM =2EF =5,∵∠ACB =90°,CM 是斜边AB 上的中线,∴AB =2CM =10,∵∠ACB =90°,∴222AC BC AB +=∴8BC =∴11682422ABC S AC BC ∆==⨯⨯= ∵CM 是斜边AB 上的中线,∴1122BCM ABC S S ∆∆==∵EF 是CBM ∆的中位线,∴1112344EBF CBM S S ∆∆==⨯=故答案为:3.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)16【分析】(1)先找出A 、B 、C 三个点平移后的位置,然后依次连接即可;(2)先找出1A 、1B 、1C 三个点平移后的位置,然后依次连接即可; (3)从图中可知线段AC 划过的图形为平行四边形11A ACC ,根据平行四边形面积计算公式即可得.【详解】解(1)先找出A 、B 、C 三个点平移后的位置,然后依次连接即可,如图所示,111A B C ∆即为所求;(2)先找出1A 、1B 、1C 三个点平移后的位置,然后依次连接即可,如图所示,222A B C ∆即为所求;(3)线段AC 划过的图形为平行四边形11A ACC ,4416S =⨯=,故答案为:16.【点睛】题目主要考查图形的平移方法及平行四边形的面积,熟练掌握图形的平移方法是解题关键.2、(1)选①或②或③,证明见详解;(2)①当2180()-∠︒=n BON n 时,结论BM CN =成立;②当108BON ∠=︒时,BM CN =还成立,证明见详解. 【分析】(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CAN ≌,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;②连接BD 、CE ,根据全等三角形的判定定理和性质可得:BCD CDE ≌, BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,利用各角之间的关系及等量代换可得:BDM CEN ∠=∠, DBM ECN ∠=∠,继续利用全等三角形的判定定理和性质即可得出证明.【详解】解:(1)如选命题①,证明:如图所示:∵ 60BON ∠=︒,∴ 1260∠+∠=︒,∵ 3260∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1360BC CA BCM CAN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CAN ≌,∴ BM CN =;如选命题②,证明:如图所示:∵ 90BON ∠=︒,∴ 1290∠+∠=︒,∵ 3290∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1390BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;如选命题③,证明:如图所示:∵ 108BON ∠=︒,∴ 12108∠+∠=︒,∵ 23108∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,13108BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;(2)①根据(1)中规律可得:当2180()-∠︒=n BON n 时,结论BM CN =成立;②答:当108BON ∠=︒时,BM CN =成立.证明:如图所示,连接BD 、CE ,在BCD 和CDE 中,108BC CD BCD CDE CD DE =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCD CDE ≌,∴ BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,∵ 108CDE DEN ∠=∠=︒,∴ BDM CEN ∠=∠,∵ 108OBC OCB ∠+∠=︒,108OCB OCD ∠+∠=︒.∴ MBC NCD ∠=∠,又∵ 36DBC ECD ∠=∠=︒,∴ DBM ECN ∠=∠,在BDM 和CEN 中,BDM CEN BD CE DBM ECN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ BDM CEN ≌,∴ BM CN =.【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.3、50︒【分析】先证明OE 为ABC 的中位线,则,OE AC ∥证明65,OEB C 再求解50,BOE 证明50,DAB BOE 再利用三角形的内角和定理及平角的定义,从而可得答案.【详解】 解: BE CE =,,OB OA =OE ∴为ABC 的中位线,,∥OE ACC65,65,OEB C=OE OB,B OEB65,BOE18026550,∥OE AC,DAB BOE50,OD OA=,ODA OAD50,AOD18025080,DOE180805050.【点睛】本题考查的是圆的基本性质,三角形中位线的定义与性质,三角形的内角和定理的应用,等腰三角形的性质,熟练的运用以上知识解题是关键.4、(1)48(2)11【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8∴BC =AD =8∵AC ⊥BC∴∠ACB =90°在Rt △ABC 中,由勾股定理得AC 2=AB 2-BC 2∴6AC∴8648ABCD S BC AC =⋅=⨯=(2)∵四边形ABCD 是平行四边形,且AC =6 ∴13,2OA OC AC OB OD ==== ∵∠ACB =90°,BC =8∴OB =∴OD OB ==∴8311AOD C AD AO OD =++=+=【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.5、见详解【分析】由题意易得AB =CD ,AB ∥CD ,AE =CF ,则有∠BAE =∠DCF ,进而问题可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵E ,F 是对角线AC 的三等分点,∴AE =CF ,在△ABE 和△CDF 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS ),∴BE =DF .【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.。
学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第六章 证明(一)复习题一. 知识点回顾1、 一个命题可以写成“如果。
那么。
”的形式。
“如果”后面部分叫 ,“那么”后面部分叫 。
2、平行线的性质:两直线平行, 角相等, 角相等, 角互补。
3、平行线的判别: 角相等, 角相等, 角互补,两直线平行 4.、三角形内角和定理:三角形的三个内角的和等于 度。
推论1:三角形的一个外角等于和它不相邻的 . 推论 2:三角形的一个外角大于任何一个和它 . 二. 课堂练习 ( A 组)1、下列命题中为假命题的是( )A .内错角不相等,两直线不平行 B.一个角的余角一定大于这个角 C .一个钝角的补角必是锐角 D.过两点有且只有一条直线 2、如图,直线a 、b 都于直线c 相交,下列条件中,能判断a ∥b 的条件是( )① ∠1 = ∠2 ② ∠3 = ∠6③∠2 = ∠8 ④∠5 + ∠8 = 1800A .①③ B.①②④ C.①③④ D.②③④3、如图,已知a ∥b ,∠1 = 120°,则∠2 = 。
4、在三角形中,最多有 个直角,最多有 个钝角,至少有 个锐角5、在△ABC中,∠A ∶∠B∶∠C = 1∶2∶3,则这个三角形是 三角形。
6、已知,如图,直线a ,b 被直线c 所截,a ∥b 。
求证:∠1+∠2=180°证明:∵a ∥b ( ) ∴∠1+∠ =180°(两直线平行,同旁内角互补)∵∠3=∠2( ) ∴∠1+∠2=180°( )7、已知,如图,∠1+∠2=180°,求证:∠3=∠4.三. 课堂练习(B 组)8、把“等角的余角相等”改写成 “如果……,那么……”的形式是 。
它的条件是 ,结论是 ,, 9、图△ABC 中,BP 平分∠B ,CP 平分∠C ,若∠A=60°,则∠BPC= 度。
北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。
八年级物理下册第六章常见的光学仪器必考点解析考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明的爷爷和爸爸都是老花眼(远视眼)爷爷的老花眼更重一些,小明的妈妈是近视眼,则下例说法正确的是()A.小明的爷爷和爸爸的眼镜是用凹透镜做的B.小明的爷爷和爸爸的眼镜是用凸透镜做的,爷爷的老花镜度数比爸爸的大C.小明的爷爷和爸爸的眼镜是用凸透镜做的爷爷的老花镜度数比爸爸的小D.小明妈妈的眼镜是用凸透镜做的2、下列关于图中所示光学现象的描述或解释正确的是()A.图甲中,小孔成的是倒立的虚像B.图乙中,人配戴的凹透镜可以矫正远视眼C.图丙中,太阳光通过三棱镜会分解成红、橙、黄、绿、蓝、靛、紫七色光D.图丁中,漫反射的光线杂乱无章不遵循光的反射定律3、光通过透镜的光路如图所示,正确的图是()A.B.C.D.4、黄健同学对凸透镜成像的特点进行了总结,其中正确的是:()A.缩小的都是实像,放大的都是虚像B.实像都是倒立的,虚像都是正立的C.缩小的像都是倒立的,放大的像都是正立的D.实像和虚像都可在光屏上呈现5、烛焰通过焦距为10cm的甲凸透镜在光屏上成清晰的像,如图所示.现用焦距为5cm的乙凸透镜替换甲,不改变蜡烛和凸透镜的位置,关于乙凸透镜的成像情况,正确的说法是()A.要在光屏上成清晰的像,光屏应向左移动B.要在光屏上成清晰的像,光屏应向右移动C.移动光屏,可以得到一个清晰放大的实像D.移动光屏,可以得到一个清晰放大的虚像6、某班同学在“探究凸透镜成像规律”的实验中,记录并绘制了物体到凸透镜的距离 u 跟像到凸透镜的距离 v 之间关系的图象,如图所示,下列判断正确的是()A.当u=5cm 时,在光屏上能得到一个放大的像B.当u=15cm 时,在光屏上能得到一个缩小的像C.当 u=25cm 时成放大的像,投影仪就是根据这一原理制成的D.把物体从距凸透镜 10cm 处移动到 30cm 处的过程中,像逐渐变小7、在“探究凸透镜成像规律的实验”中,小红调节蜡烛,凸透镜和光屏的位置,在光屏上成清晰的像如图所示,下列说法正确的是()A.教学中使用的投影仪就是利用了图中的成像规律B.换上焦距小一些的凸透镜,只将蜡烛向右适当移动就能在光屏上接收到清晰的像C.如果使蜡烛向左移动,光屏需要向右移动才能接收到清晰的像D.如果把蜡烛与光屏对调,光屏上将不会出现清晰的像8、在光具座的A点处放置一发光物体,从焦距f甲为5厘米、f乙为10厘米、f丙为20厘米的凸透镜中选择一个放置在如图所示的位置,在BC间移动光屏时可在光屏上得到清晰的像,则选择的凸透镜为()A.甲B.乙C.甲、乙D.乙、丙9、小周用图甲所示的装置测出凸透镜的焦距,并“探究凸透镜成像规律”,当蜡烛、透镜、光屏位置如图乙时,在光屏上可成清晰的像。
北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。
第一章:一元一次不等式一、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________. 4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.二、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .b a 11<C .ba 11-<- D .a b ->-5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆 三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组): (1)1312523-+≥-x x ;(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.第一章一元一次不等式和一元一次不等式组单元测试参考答案一、填空题 1.337≤t 2.129<≤k提示:不等式03≤-k x 的解集为 3k x ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k . 3.3>x 或2-<x 提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x 4.<,> 5.1<x 6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a . 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22.二、选择题 1.C2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x . 解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7. 4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x 移项,合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x . 解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m . 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a . 4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x .故该班共有学生28人. 5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案1; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案2.① ②(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符. 三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符.二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为:2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a >时,02<-ab ,所以甲会赔钱. 当b a <时,02>-ab ,所以甲会赚钱. 当b a =时,02=-ab ,所以甲不赔不赚. 2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.第二章因式分解单元测试AB 卷仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式中从左到右的变形属于分解因式的是( ).A.2(1)a a b a ab a +-=+-B.22(1)2a a a a --=--C.2249(23)(23)a b a b a b -+=-++D.121(2)x x x+=+2.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ), A.-8a 2bc B. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 33. 下列因式分解错误的是()A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+4.下列多项式中,可以用平方差公式分解因式的是( ) A.x 2+1 B.-x 2+1 C.x 2-2 D.-x 2-1 5.把-6(x -y)2-3y(y -x)2分解因式,结果是( ). A.-3(x -y)2(2+y) B. -(x -y)2(6-3y) C.3(x -y)2(y +2)D. 3(x -y)2(y -2)6.下列各式中,能用完全平方公式分解因式的是( ). A.4x 2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +127.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-8.式分解公式( ). A.))((22b a b a b a -+=-B.(a +C.2222)(b ab a b a +-=- D.)(2b a a ab a -=- 二、耐心填一填(每空4分,总共32分)1.2a 2b -6ab 2分解因式时,应提取的公因式是 . 2.-x -1=-(____________).3. 因式分解:=-822a .4.多项式92-x 与962++x x 的公因式是 . 5.若a +b=2011,a -b=1,z 则a 2-b 2=_________________. 6.因式分解:1+4a 2-4a=______________________.7.已知长方形的面积是2916a -(43a >),若一边长为34a +,则另一边长为________________.8.如果a 2+ma +121是一个完全平方式,那么m =________或_______. 三、用心算一算(共36分) 1.(20分)因式分解:(1)4x 2-16y 2; (2)()()()()a b x y b a x y ----+(3)x 2-10x +25; (4)()22241x x -+2.(5分)利用因式分解进行计算:(1)0.746×136+0.54×13.6+27.2;3.(满分5分)若2m n -=-,求m n n m -+222的值?4.(6分)3221-可以被10和20之间某两个数整除,求这两个数.八年级数学下册第二章整章水平测试(B )仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式从左到右的变形中,是因式分解的为( )A.bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+-C.)1)(1(12-+=-x x xD.c b a x c bx ax ++=++)( 2.下列多项式,不能运用平方差公式分解的是( )A.42+-m B.22y x -- C.122-y x D.412-x 3.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 4.下列多项式分解结果为()()y x y x -+-22的是( )A.224y x +B.224y x -C.224y x +-D.224y x -- 5.对于任何整数m ,多项式2(45)9m +-都能( )A.被8整除B.被m 整除C.被(m -1)整除D.被(2m -1)整除6.要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对7.已知a=2012x+2009,b=2012x+2010,c=2012x+2011,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A.0B.1C.2D.38.满足m 2+n 2+2m -6n +10=0的是( )A.m=1, n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3 二、耐心填一填(每空4分,总共36分)1.分解因式a 2b 2-b 2= .2.分解因式2x 2-2x +21=______________ 3.已知正方形的面积是2269y xy x ++ (0x >,0y >),利用分解因式,写出表示该正方形的边长的代数式 . 4.若x 2+mx +16=(x -4)2,那么m =___________________.5.若x -y=2,xy=3则-x 2y +xy 2的值为________ . 6.学习了用平方差公式分解因式后,在完成老师布置的练习时,小明将一道题记错了一个符号,他记成了-4x 2-9y 2,请你帮小明想一想,老师布置的原题可能是________. 7.如果多项式142+x 加上一个单项式以后,将成为一个整式完全平方式,那么加上的单项式是 .8.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________. 三、用心算一算(共44分)1.(16分)分解因式(1)-x 3+2x 2-x (2) a 2-b 2+2b -12.(8分) 利用分解因式计算:20112010201020082010220102323-+-⨯-3.(10分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解4.(10分)若3-=+b a ,1=ab ,求32232121ab b a b a ++的值四、拓广探索(共28分)1. (14分)阅读下题的解题过程:已知a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵ 222244a cbc a b -=- (A )∴ 2222222()()()c a b a b a b -=+- (B ) ∴ 222c a b =+ (C )∴ △ABC 是直角三角形 (D ) 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因为 ; (3)本题正确的结论是 ;参考答案:一、1.C 2.A 3.D 4.B 5.A 6.D 7.D 8.A二、1. 2ab 2. x +1 3. 2(a +2)(a -2) 4. x +3 5. 2011 6. (2a-1)27. 3a-4 8.22 、-22三、1.(1)解原式=4(x 2-4y 2)=4(x +2y)(x -2y) (2)解原式=(a -b)(x -y +x +y)=2x(a -b)(3)解原式=(x -5)2(4)解原式=(x 2+1+2x)(x 2+1-2x)=(x +1)2(x -1)22.解原式=13.6(7.46+0.54+2)13.6×10=1363.解当m -n=-2时,原式=22)2(2)(222222=-=-=+-n m n mn m 4.因为()()()()()161616882121212121+-=++-,()()()()1684421212121=+++-,又因为42117+=,42115-=,所以3221-可以被10和20之间的15,17两个数整除.四、1.长为a +2b ,宽为a +b2. 解:(1)原式=x 2-4x +4-1=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2) 原式=x 2+2x +1+1=(x +1)2+1 因为(x +1)2≥0 所以原式有最小值,此时,x=-1参考答案:一、1.C 2.B 3.D 4.C 5.A 6.C 7.D 8.D 二、1.b2(a +1)(a -1) 2. 2(x -21)23. 3x +y4. -85.-66. -4x 2+9y 2或4x 2-9y 27. -4x 2、4x 、-4x 、4x 4、-18.答案不唯一如:a 2x -2ax +x x(a -1)2三、1.解原式=-x(x 2-2x +1)=-x(x -1)22. 解原式=a 2-(b 2-2b +1)=a 2-(b -1)2=(a +b -1)(a -b +1)3.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+- 4.解:当a +b=-3,ab=1时, 原式=21ab(a 2+2ab +b 2)=21ab(a +b)2=21×1×(-3)2=29 四、 1. (1)(C )(2)()22a b -可以为零(3)本题正确的结论是:由第(B )步2222222()()()c a b a b a b -=+-可得:()()222220a bca b ---=所以△ABC 是直角三角形或等腰三角第三章分式单元测试一、选择题(每小题3分,共30分)1.在下列各式mam x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个 2.要使分式733-x x有意义,则x 的取值范围是( )A.x=37B.x>37C.x<37D.x ≠=373.若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D.0 4.如果分式x+16的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )A.n m 1- B.1-n m C.n m 1+ D.1+nm6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.b a ax +千克 B.b a bx +千克 C.b a x a ++千克 D.b ax 千克 7.计算)1(1x x x x -÷-所得的正确结论wei ( ) A.11-x B.1 C.11+x D.-1 8.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x x D.48222-+x x 9.当x=33时,代数式)23(232x x x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。
一、选择题
1、“两直线平行,同位角互补”是 命题(填真、假)
2、把命题“对顶角相等”改写成“如果…那么…”的形式
3、如图所示,∠1+ ∠2=180°,若∠3=50°,则∠4=
4、如图所示,△ABC 中,∠ACD=115°,∠B=55°,则∠A= , ∠ACB=
5、如图,一个任意的五角星,它的五个内角的度数和为
6、△ABC 的三个外角度数比为3∶4∶5,则它的三个外角度数分别为
7、在△ABC 中,∠ABC 和∠ACB 的平分线交于点I, 若∠A=60°,则∠BIC=
8、如图,已知AB ∥CD ,=∠=∠=∠α则, 12021001 ;
9、如图,设αα∠∠∠∠∠=∠与,,,则C B A BDC 的关系是 ;
10
、如图,已知 ABCD 中BE 平分=∠=∠∠AEB A ABC ,则, 110 。
二、选择题
1、下列语句中,是命题的是( ) A .直线AB 和CD 垂直吗 B .过线段AB 的中点C 画AB 的垂线 C .同旁内角不互补,两直线不平行 D .连结A 、B 两点
2、下列语句错误的是( )
A.同角的补角相等
B.同位角相等
C.同垂直于一条直线的两直线平行
D.两条直线相交只有一个交点
3、如图,AB∥EF∥CD,EG∥DB,则图中与∠1相等的角(∠1
除外)共有()
A、6个
B、5个
C、4个
D、3个
4、如图,AB∥EF,∠C=90°,
则α、β、γ的关系为()
A、β=α+γ
B、α+β+γ=180°
C、β+γ-α=90°
D、α+β-γ=90°
5、命题“垂直与同一条直线的两条直线互相平行”的题设是()
A、垂直
B、两条直线
C、同一条直线
D、两条直线垂直于同一条直线
三、解答题
1、举例说明“两个锐角的和是锐角”是假命题.
2、画图,并写出已知,求证:两条平行线被第三条直线所截,一组同位角的角平分线互相平行.
3、已知如图,在△ABC中,∠1是它的一个外角,
E为边AC上一点,延长BC到D,连接DE。
求证:∠1 > ∠2。