2020版高考数学大一轮复习高考专题突破一高考中的导数应用问题试题理北师大版
- 格式:doc
- 大小:79.50 KB
- 文档页数:12
2019年4月高考大题专项一函数与导数的综合压轴大题突破1利用导数求极值、最值、参数范围1.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.2.(2018山东潍坊一模,21)已知函数f(x)=a ln x+x2.(1)若a=-2,判断f(x)在(1,+∞)上的单调性;(2)求函数f(x)在[1,e]上的最小值.3.(2018山东师大附中一模,21)已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.4.(2018辽宁抚顺3月模拟,21改编)已知函数f(x)=ax-2ln x(a∈R).若f(x)+x3>0对任意x∈(1,+∞)恒成立,求a的取值范围.5.设函数f(x)= x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.6.(2018江西南昌一模,21改编)已知函数f(x)=e x-aln x-e(a∈R),其中e为自然对数的底数.若当x∈[1,+∞)时,f(x)≥0恒成立,求a的取值范围.参考答案高考大题专项练参考答案高考大题专项一函数与导数的综合压轴大题突破1利用导数求极值、最值、参数范围1.解 (1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.所以f(x)的递减区间是(-∞,k-1),递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上递减,在[k-1,1]上递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;。
第十一节导数的应用(一)【考纲下载】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).1.函数的单调性与导数2.函数的极值(1)极大值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.(2)极小值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.(3)极值:极大值与极小值统称为极值,极大值点与极小值点统称为极值点.3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件:一般地,如果在区间[a,b]上,函数y=f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在[a,b]上的最大值与最小值的步骤为①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.1.若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a ,b )内单调递增的充要条件?提示:函数f (x )在(a ,b )内单调递增,则f ′(x )≥0,f ′(x )>0是f (x )在(a ,b )内单调递增的充分不必要条件.2.导数值为0的点一定是函数的极值点吗?“导数为0”是函数在该点取得极值的什么条件?提示:不一定.可导函数的极值点导数为零,但导数为零的点未必是极值点;如函数f (x )=x 3,在x =0处,有f ′(0)=0,但x =0不是函数f (x )=x 3的极值点;其为函数在该点取得极值的必要而不充分条件.3.函数的极值和函数的最值有什么联系和区别?提示:极值是局部概念,指某一点附近函数值的比较,因此,函数的极大(小)值,可以比极小(大)值小(大);最值是整体概念,最大、最小值是指闭区间[a ,b ]上所有函数值的比较.因而在一般情况下,两者是有区别的,极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值.1.如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( ) A .函数f (x )在区间(-3,0)上是减函数 B .函数f (x )在区间(-3,2)上是减函数 C .函数f (x )在区间(0,2)上是减函数 D .函数f (x )在区间(-3,2)上是单调函数解析:选A 当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确.2.函数f (x )=e x-x 的单调递增区间是( ) A .(-∞,1] B .[1,+∞) C .(-∞,0] D .(0,+∞)解析:选D ∵f (x )=e x-x ,∴f ′(x )=e x-1,由f ′(x )>0,得e x-1>0,即x >0. 3.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D f (x )=2x +ln x ,f ′(x )=-2x 2+1x =x -2x2,当x >2时,f ′(x )>0,此时f (x )为增函数;当x <2时,f ′(x )<0,此时f (x )为减函数,据此知x =2为f (x )的极小值点.4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是________.解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又∵x ∈[1,+∞),∴a ≤3,即a 的最大值是3. 答案:35.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173. 答案:-173[例1] (2013·重庆高考改编)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间.[自主解答] (1)因为f (x )=a (x -5)2+6ln x ,故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=x -x -x.令f ′(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.故函数f (x )的单调递增区间为(0,2)和(3,+∞),单调递减区间为(2,3).【互动探究】若函数f (x )=2x -k x +k3在(1,+∞)上是增函数,求k 的取值范围.解:由题意知f ′(x )=2+k x2≥0在(1,+∞)上恒成立,即k ≥-2x 2在(1,+∞)上恒成立,所以k ≥(-2x 2)max ,又y =-2x 2在(1,+∞)上单调递减,所以(-2x 2)max =-2,所以k ≥-2,即k 的取值范围是[-2,+∞).【方法规律】利用导数研究函数的单调性应注意三点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.(3)由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x ) ≤0 )恒成立问题,要注意“=”是否可以取到.已知函数f (x )=3x a-2x 2+ln x ,其中a 为常数.(1)若a =1,求函数f (x )的单调区间;(2)若函数f (x )在区间[1,2]上为单调函数,求a 的取值范围.解:(1)若a =1,则f (x )=3x -2x 2+ln x 的定义域为(0,+∞),f ′(x )=1x-4x +3=-4x 2+3x +1x=-x +x -x(x >0).当x ∈(0,1),f ′(x )>0时,函数f (x )=3x -2x2+ln x 单调递增.当x ∈(1,+∞),f ′(x )<0时,函数f (x )=3x -2x 2+ln x 单调递减.故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)f ′(x )=3a -4x +1x,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0,即3a -4x +1x ≥0或3a -4x +1x≤0在[1,2]上恒成立.即3a ≥4x -1x 或3a ≤4x -1x .令h (x )=4x -1x ,因为函数h (x )在[1,2]上单调递增,所以3a≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,解得a <0或0<a ≤25或a ≥1.1.函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.2.高考对函数极值的考查主要有以下几个命题角度:(1)知图判断函数极值的情况;(2)已知函数求极值;(3)已知极值求参数.[例2] (1)(2012·重庆高考)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)(2)(2014·鹰潭模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )A.2 B.3 C.6 D.9(3)(2013·福建高考)已知函数f(x)=x-a ln x(a∈R).①当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;②求函数f(x)的极值.[自主解答] (1)①当x<-2时,1-x>0.∵(1-x)f′(x)>0,∴f′(x)>0,即f(x)在(-∞,-2)上是增函数.②当-2<x<1时,1-x>0.∵(1-x)f′(x)<0,∴f′(x)<0,即f(x)在(-2,1)上是减函数.③当1<x<2时,1-x<0.∵(1-x)f′(x)>0,∴f′(x)<0,即f(x)在(1,2)上是减函数.④当x>2时,1-x<0.∵(1-x)f′(x)<0,∴f′(x)>0,即f(x)在(2,+∞)上是增函数.综上:f(-2)为极大值,f(2)为极小值.(2)∵f′(x)=12x2-2ax-2b,f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0,即a+b =6,又a >0,b >0,∴a +b ≥2ab ,∴ab ≤9,当且仅当a =b =3时等号成立,∴ab 的最大值为9.(3)函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. ①当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.②由f ′(x )=1-a x =x -ax,x >0知:当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a lna ,无极大值.[答案] (1)D (2)D函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.1.(2013·浙江高考)已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1 处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C 当k =1时,f (x )=(e x-1)(x -1),0,1是函数f (x )的零点.当0<x <1时,f (x )=(e x -1)(x -1)<0,当x >1时,f (x )=(e x -1)(x -1)>0,1不会是极值点.当k =2时,f (x )=(e x -1)(x -1)2,零点还是0,1,但是当0<x <1,x >1时,f (x )>0,由极值的概念,知选C.2.已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,且对任意的x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)f ′(x )=a -1x =ax -1x,x >0,①当a ≤0时,f ′(x )<0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)单调递减,∴f (x )在(0,+∞)上没有极值点; ②当a >0时,令f ′(x )<0得0<x <1a ,令f ′(x )>0得x >1a,∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,即f (x )在x =1a处有极小值.综上所述,当a ≤0时f (x )在(0,+∞)上没有极值点;当a >0时,f (x )在(0,+∞)上有一个极值点.(2)∵函数f (x )在x =1处取得极值,∴由(1)可知a =1,∴f (x )=x -1-ln x . 又∵f (x )≥bx -2,∴x -1-ln x ≥bx -2,即1+1x -ln x x ≥b .令g (x )=1+1x -ln xx,g ′(x )=ln x -2x2,∴当0<x <e 2时,g ′(x )<0,即g (x )在(0,e 2)上为减函数;当x >e 2时,g ′(x )>0,即g (x )在(e 2,+∞)上为增函数,∴g (x )在x =e 2处取得最小值,∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2.故实数b 的取值范围为⎝⎛⎦⎥⎤-∞,1-1e 2.[例3] (2013·广东高考)设函数f (x )=(x -1)·e x-kx 2(k ∈R ). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .[自主解答] (1)当k =1时,f (x )=(x -1)e x-x 2,f ′(x )=e x +(x -1)e x -2x =x e x-2x =x (e x-2).令f ′(x )=0,得x 1=0,x 2=ln 2.当x 变化时,f ′(x ),f (x )的变化如下表:↗ ↘ ↗(2)f ′(x )=e x+(x -1)e x-2kx =x e x-2kx =x (e x-2k ),令f ′(x )=0,得x 1=0,x 2=ln(2k ),令g (k )=ln(2k )-k ,则g ′(k )=1k -1=1-k k ≥0,所以g (k )在⎝ ⎛⎦⎥⎤12,1上递增,所以g (k )≤ln 2-1=ln 2-ln e<0,从而ln(2k )<k ,所以ln (2k )∈[0,k ],所以当x ∈(0,ln(2k ))时,f ′(x )<0;当x ∈(ln (2k ),+∞)时,f ′(x )>0;所以M =max{f (0),f (k )}=max{-1,(k -1)e k-k 3}.令h (k )=(k -1)e k -k 3+1,则h ′(k )=k (e k-3k ),令φ(k )=e k -3k ,则φ′(k )=e k-3≤e -3<0,所以φ(k )在⎝ ⎛⎦⎥⎤12,1上递减,而φ⎝ ⎛⎭⎪⎫12·φ(1)=⎝ ⎛⎭⎪⎫e -32(e -3)<0,所以存在x 0∈⎝ ⎛⎦⎥⎤12,1使得φ(x 0)=0,且当k ∈⎝ ⎛⎭⎪⎫12,x 0时,φ(k )>0,当k ∈(x 0,1)时,φ(k )<0,所以φ(k )在⎝ ⎛⎭⎪⎫12,x 0上单调递增,在(x 0,1)上单调递减.因为h (12)=-12 e +78>0,h (1)=0,所以h (k )≥0在⎝ ⎛⎦⎥⎤12,1上恒成立,当且仅当k =1时等号成立.综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k-k 3.【方法规律】求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点.已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.解:(1)当a =1时,f ′(x )=6x 2-12x +6,所以f ′(2)=6.又因为f (2)=4,所以切线方程为y =6x -8.(2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值.f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ).令f ′(x )=0,得x 1=1,x 2=a . 当a >1时,↗↘↗比较f (0)=0和f (a )=a 2(3-a )的大小可得g (a )=⎩⎪⎨⎪⎧0,1<a ≤3,a 2-a ,a >3.当a <-1时,↘↗=⎩⎪⎨⎪⎧3a -1,a <-1,0,-1<a ≤3,a 2-a ,a >3.————————————[课堂归纳——通法领悟]————————————————个流程——解决函数极值问题的一般流程 求定义域x求极值 用极值 x =x =0根的情况验根左右f x 的符号得关于参数的方程不等式极值 参数值范围个关系——导数与单调性、极值的关系(1)f ′(x )>0在(a ,b )上成立,是f (x )在(a ,b )上单调递增的充分不必要条件. (2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件.3个注意点——利用导数求极值应注意三点(1)求单调区间时应先求函数的定义域,遵循定义域优先的原则; (2)f ′(x 0)=0时,x 0不一定是极值点;(3)求最值时,应注意极值点和所给区间的关系,关系不确定时应分类讨论.压轴大题巧突破(一)利用导数研究函数的极值、最值问题[典例] (2013·浙江高考)(14分)已知a ∈R ,函数f (x )=x 3-3x 2+3ax -3a +3. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值. [化整为零破难题](1)切点处的导数值即为切线的斜率,求导后计算出斜率,写出切线方程即可; (2)基础问题1:|f (x )|的最大值与f (x )的最值之间有什么关系?如果函数f (x )的最大值为M ,最小值为m ,则|f (x )|的最大值必定是|M |和|m |中的一个.因此要求|f (x )|的最大值,应求f (x )的最值.基础问题2:如何求函数y =f (x ),x ∈[0,2]的最值?由于f (x )是关于x 的三次函数,因此,f (x )在[0,2]上的最值为函数f (x )在[0,2]上的端点值或极值.从而只要求出f (x )在[0,2]上的端点值f (0),f (2)及其极值,然后比较其绝对值的大小即可.基础问题3:如何求f (x )在[0,2]上的极值?要求f (x )在[0,2]上的极值,应利用导数研究函数f (x )在区间[0,2]上的单调性,即研究f ′(x )=3(x -1)2+3(a -1)(0≤x ≤2)的函数值符号,由于0≤x ≤2,所以0≤3(x -1)2≤3.故应分3(a -1)≥0,3(a -1)≤-3,-3<3(a -1)<0,即a ≥1,a ≤0,0<a <1三种情况讨论.当a ≥1或a ≤0时,函数f (x )为单调函数,故只需比较|f (0)|与|f (2)|的大小即可;当0<a <1时,f (x )在区间[0,2]上存在极大值和极小值.基础问题4:如何比较|f (0)|、|f (2)|、|f (x )极大值|与|f (x )极小值|的大小?计算f (x )极大值+f (x )极小值=2>0,f (x )极大值-f (x )极小值>0,从而可确定f (x )极大值>|f (x )极小值|.因此|f (x )|max =max {}|f,|f,f x极大值,由于0<a <23时,|f (0)|>|f (2)|,23≤a <1时,|f (2)|=f (2)≥|f (0)|.故当0<a <23时,只需比较|f (0)|与f (x )极大值的大小即可;当23≤a <1时,只需比较f (2)与f (x )极大值的大小即可. [规范解答不失分](1)由题意得f ′(x )=3x 2-6x +3a ,故f ′(1)=3a -3. 2分又f (1)=1,所以所求的切线方程为y =(3a -3)x -3a +4. 4分 (2)由于f ′(x )=3(x -1)2+3(a -1),0≤x ≤2,故 (ⅰ)当a ≤0时①,有f ′(x )≤0,此时f (x )在[0,2]上单调递减,故|f (x )|max =max{|f (0)|,|f (2)|}=3-3a .5分(ⅱ)当a ≥1时①,有f ′(x )≥0,此时f (x )在[0,2]上单调递增,故|f (x )|max =max{|f (0)|,|f (2)|}=3a-1.6分(ⅲ)当0<a <1时,设x 1=1-1-a ,x 2=1+1-a ,则0<x 1<x 2<2,f ′(x )=3(x -x 1)(x -x 2).列表如下:↗↘↗由于f (x 1)=1+2(1-a )1-a ,f (x 2)=1-2(1-a )·1-a ,8分故f (x 1)+f (x 2)=2>0,f (x 1)-f (x 2)=4(1-a )· 1-a >0,从而f (x 1)>|f (x 2)|.②所以|f (x )|max=max{f (0),|f (2)|,f (x 1)}.10分a .当0<a <23时③,f (0)>|f (2)|.又f (x 1)-f (0)=2(1-a )1-a -(2-3a )=a 2-4a-a1-a +2-3a>0,故|f (x )|max =f (x 1)=1+2(1-a )1-a .11分b .当23≤a <1时③,|f (2)|=f (2),且f (2)≥f (0).又f (x 1)-|f (2)|=2(1-a )1-a -(3a -2)=a 2-4a-a1-a +3a -2,所以当23≤a <34时④,f (x 1)>|f (2)|.故f (x )max =f (x 1)=1+2(1-a )1-a .12分 当34≤a <1时④,f (x 1)≤|f (2)|.故f (x )max =|f (2)|=3a - 1.13分综上所述,|f (x )|max =⎩⎪⎨⎪⎧3-3a , a ≤0,1+-a 1-a ,0<a <34,3a -1, a ≥34.14分易错警示要牢记][全盘巩固]1.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C 依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ).2.(2014·淄博模拟)若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ′(x )的图象不可能是( )解析:选 D 若函数f (x )=ax 3+bx 2+cx +d 有极值,则此函数在某点两侧的单调性相反,也就是说导函数f ′(x )在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x 轴,观察四个选项中的图象只有D 项是不符合要求的,即f ′(x )的图象不可能是D.3.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)解析:选B 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =x -x +x,令y ′≤0,可得0<x ≤1.4.(2013·福建高考)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 解析:选D 取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f ⎝ ⎛⎭⎪⎫-33,排除A ;取函数f (x )=-(x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,排除B ;-f (x )=(x -1)2,-1不是-f (x )的极小值点,排除C.5.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( ) A .-2或2 B .-9或3 C .-1或1 D .-3或1解析:选A ∵y ′=3x 2-3,∴当y ′=0时,x =±1.则x ,y ′,y 的变化情况如下表:↗↘↗2或c =2.6.(2013·湖北高考)已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:选D f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2. 即曲线y 1=1+ln x 与y 2=2ax 有两个不同交点,如图.由直线y =x 是曲线y 1=1+ln x的切线,可知:0<2a <1,且0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12.由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0,当x 1<x <x 2时,f ′(x )>0,当x >x 2时,f ′(x )<0,∴f (x 2)>f (1)=-a >-12.7.(2014·赣州模拟)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a的值为________.解析:∵f (x )=13x 3-32x 2+ax +4,∴f ′(x )=x 2-3x +a .又函数f (x )恰在[-1,4]上单调递减,∴-1,4是f ′(x )=0的两根,∴a =-1×4=-4.答案:-48.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________. 解析:∵f ′(x )=3x2+6mx+n ,∴由已知可得⎩⎪⎨⎪⎧f-=-3+3m -2+n -+m 2=0,f-=-2+6m -+n =0,∴⎩⎪⎨⎪⎧m =1,n =3或⎩⎪⎨⎪⎧m =2,n =9,当⎩⎪⎨⎪⎧ m =1,n =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0恒成立与x =-1是极值点矛盾,当⎩⎪⎨⎪⎧m =2,n =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3),显然x =-1是极值点,符合题意,∴m +n =11.答案:119.已知函数f (x )的定义域为[-1,5],部分对应值如表,f (x )的导函数y =f ′(x )的图象如图所示,下列是关于函数f (x )的命题: ①函数f (x )的值域为[1,2]; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的是________(填写序号).解析:由题意可知函数f (x )的单调增区间为(-1,0),(2,4);单调减区间为(0,2),(4,5),且f (x )的极小值为f (2),由于f (2)未知,故①④均错误,又因为f (x )的最大值为f (0)=f (4)=2,故③错误.答案:②10.(2013·新课标全国卷Ⅰ)已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x(x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x -12.令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).11.已知函数f (x )=(ax 2+bx +c )e x在[0,1]上单调递减且满足f (0)=1,f (1)=0. (1)求a 的取值范围;(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值.解:(1)由f (0)=1,f (1)=0得c =1,a +b =-1,则f (x )=[ax 2-(a +1)x +1]e x,f ′(x )=[ax 2+(a -1)x -a ]e x .依题意须对于任意x ∈(0,1),有f ′(x )<0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以须f ′(1)=(a -1)e<0,即0<a <1;当a =1时,对任意x ∈(0,1)有f ′(x )=(x 2-1)e x<0,f (x )符合条件; 当a =0时,对于任意x ∈(0,1),f ′(x )=-x e x<0,f (x )符合条件; 当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为[0,1].(2)因为g (x )=(-2ax +1+a )e x,所以g ′(x )=(-2ax +1-a )e x.①当a =0时,g ′(x )=e x>0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.②当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x<0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.③当0<a <1时,由g ′(x )=0得x =1-a2a>0.(ⅰ)若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.(ⅱ)若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值g ⎝ ⎛⎭⎪⎫1-a 2a =2a e 1-a 2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e. 12.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.解:(1)由题意得,函数f (x )的定义域为(0,+∞),f ′(x )=1x -ax +1=-ax 2-x -1x.①当a =0时,f ′(x )=1+x x,∵x >0,∴f ′(x )>0.∴函数f (x )的单调递增区间为(0,+∞).②当a ≠0时,令f ′(x )=0,得-ax 2-x -1x=0,∵x >0,∴ax 2-x -1=0,Δ=1+4a .(ⅰ)当Δ≤0,即a ≤-14时,得ax 2-x -1≤0,故f ′(x )≥0,∴函数f (x )的单调递增区间为(0,+∞).(ⅱ)当Δ>0,即a >-14时,方程ax 2-x -1=0的两个实根分别为x 1=1-1+4a 2a ,x 2=1+1+4a 2a .若-14<a <0,则x 1<0,x 2<0,此时,当x ∈(0,+∞)时,f ′(x )>0. ∴函数f (x )的单调递增区间为(0,+∞),若a >0,则x 1<0,x 2>0,此时,当x ∈(0,x 2)时,f ′(x )>0,当x ∈(x 2,+∞)时,f ′(x )<0.∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+1+4a 2a ,单调递减区间为⎝ ⎛⎭⎪⎫1+1+4a 2a ,+∞.综上所述,当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+1+4a 2a ,单调递减区间为⎝ ⎛⎭⎪⎫1+1+4a 2a ,+∞;当a ≤0时,函数f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)由(1)得,当a ≤0时,函数f (x )在(0,+∞)上单调递增,故函数f (x )无极值;当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+1+4a 2a ,单调递减区间为⎝ ⎛⎭⎪⎫1+1+4a 2a ,+∞,则f (x )有极大值,极大值为f (x 2)=ln x 2-12ax 22+x 2,其中x 2=1+1+4a2a. 而ax 22-x 2-1=0,即ax 22=x 2+1,∴f (x 2)=ln x 2+x 2-12.设函数h (x )=ln x +x -12(x >0),则h ′(x )=1x +12>0,则h (x )=ln x +x -12在(0,+∞)上为增函数.又h (1)=0,则h (x )>0等价于x >1.∴f (x 2)=ln x 2+x 2-12>0等价于x 2>1.即当a >0时,方程ax 2-x -1=0的正根大于1.设φ(x )=ax 2-x -1,由于φ(x )的图象是开口向上的抛物线,且经过点(0,-1),对称轴x =12a>0,则只需φ(1)<0,即a -1-1<0,解得a <2,又a >0,所以0<a <2.故存在满足条件的实数a ,且实数a 的取值范围为(0,2). [冲击名校] 设函数f (x )=x e x .(1)求f (x )的单调区间与极值;(2)(2)是否存在实数a ,使得对任意的x 1、x 2∈(a ,+∞),当x 1<x 2时恒有f x 2-f a x 2-a >f x 1-f ax 1-a成立?若存在,求a 的取值范围;若不存在,请说明理由.解:(1)f ′(x )=(1+x )e x.令f ′(x )=0,得x =-1.f ′(x ),f (x )随x 的变化情况如下:↘↗∴f (x )f (x )极小值=f (-1)=-1e.(2)设g (x )=f x -f ax -a,由题意,对任意的x 1、x 2∈(a ,+∞),当x 1<x 2时恒有g (x 2)>g (x 1),即y =g (x )在(a ,+∞)上是单调递增函数.(3)又g ′(x )=fxx -a -[f x -f ax -a 2=+xxx -a -x e x +a e a x -a 2=x 2+x -ax -a x-x e x+a eax -a2=x 2e x -ax e x -a e x +a e a x -a 2,∴∀x ∈(a ,+∞),g ′(x )≥0.令h (x )=x 2e x-ax e x-a e x+a e a,h ′(x )=2x e x+x 2e x-a (1+x )e x -a e x =x (x +2)e x-a (x +2)e x =(x +2)(x -a )e x.若a ≥-2,当x >a 时,h ′(x )>0,h (x )为(a ,+∞)上的单调递增函数,∴h (x )>h (a )=0,不等式成立.若a <-2,当x ∈(a ,-2)时,h ′(x )<0,h (x )为(a ,-2)上的单调递减函数,∴∃x 0∈(a ,-2),h (x 0)<h (a )=0,与∀x ∈(a ,+∞),h (x )≥0矛盾.综上,a 的取值范围为[-2,+∞).[高频滚动]1.过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条 D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程,利用导数的思想可知方程有三个解,故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条.2.已知函数f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,则函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是________.解析:由f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,可得f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,∴f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2f ′⎝ ⎛⎭⎪⎫23×23-1,解得f ′⎝ ⎛⎭⎪⎫23=-1,即f (x )=x 3-x 2-x .则f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫233-⎝ ⎛⎭⎪⎫232-23=-2227,故函数f (x )的图象在⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是y +2227=-⎝ ⎛⎭⎪⎫x -23,即27x +27y +4=0.答案:27x +27y +4=0。
课时规范练14导数的概念及运算基础巩固组1.已知函数f(x)=+1,则的值为()A.-B.C. D.02.若f(x)=2xf'(1)+x2,则f'(0)等于()A.2B.0C.-2D.-43.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是()A.x+y+1=0B.x+y-1=0C.3x-y-1=0D.3x-y+1=04.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为()A.1B.C. D.5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=3x+1B.y=-3xC.y=-3x+1D.y=3x-36.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图像可以为()7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是()A.4 s末B.8 s末C.0 s末与8 s末D.4 s末与8 s末8.(2018河北衡水中学17模,14)函数y=f(x)的图像在点M(2,f(2))处的切线方程是y=2x-8,则=.9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为.10.(2018河南六市联考一,14)已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=.11.函数f(x)=x e x的图像在点(1,f(1))处的切线方程是.12.若函数f(x)= x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是.综合提升组13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D. x-y+1=014.下面四个图像中,有一个是函数f(x)= x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图像,则f(-1)=()A. B.-C. D.-15.(2018全国3,理14)直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.创新应用组16.(2018湖南长郡中学四模,4)已知f(x)=3+2cos x,f'(x)是f(x)的导函数,则在区间任取一个数x0使得f'(x0)<1的概率为()A. B.C. D.17.(2018河北衡水中学押题二,12)已知函数f(x)=若关于x的方程f(x)=kx-恰有四个不相等的实数根,则实数k的取值范围是()A.B.C.D.参考答案课时规范练14导数的概念及运算1.A∵f'(x)=,∴=-=-f'(1)=-=-.2.D f'(x)=2f'(1)+2x,令x=1,则f'(1)=2f'(1)+2,得f'(1)=-2,所以f'(0)=2f'(1)+0=-4.故选D.3.B由函数y=f(x)为奇函数,可得f(x)在[0,+∞)内的解析式为f(x)=-x2+x,故切点为(1,0).因为f'(x)=-2x+1,所以f'(1)=-1,故切线方程为y=-(x-1),即x+y-1=0.4.B因为定义域为(0,+∞),所以y'=2x-,令2x-=1,解得x=1,则曲线在点P(1,1)处的切线方程为x-y=0,所以两平行线间的距离为d==.故所求的最小值为.5.B因为f(x)=x3+ax2+(a-3)x,所以f'(x)=3x2+2ax+(a-3).又f'(x)为偶函数,所以a=0,所以f(x)=x3-3x,f'(x)=3x2-3.所以f'(0)=-3.故所求的切线方程为y=-3x.6.C根据题意得g(x)=cos x,则y=x2g(x)=x2cos x为偶函数.又x=0时,y=0,故选C.7.D s'=t2-12t+32,由导数的物理意义可知,速度为零的时刻就是s'=0的时刻,解方程t2-12t+32=0,得t=4或t=8.故选D.8.-由导数的几何意义可知f'(2)=2,又f(2)=2×2-8=-4,所以=-.9.e∵f(x)=e x ln x,∴f'(x)=e x ln x+.∴f'(1)=eln 1+=e.10.-8∵f'(x)=1-=,∴f'(1)=1-a=2,∴a=-1,f(1)=1+a+b=b,∴在点(1,f(1))处的切线方程为y-b=2(x-1),∴b-2=5,b=7,∴a-b=-8.11.y=2e x-e∵f(x)=x e x,∴f(1)=e,f'(x)=e x+x e x,∴f'(1)=2e,∴f(x)的图像在点(1,f(1))处的切线方程为y-e=2e(x-1),即y=2e x-e.12.[2,+∞)∵f(x)= x2-ax+ln x,∴f'(x)=x-a+.∵f(x)的图像存在垂直于y轴的切线,∴f'(x)存在零点,∴x+-a=0有解,∴a=x+≥2(x>0).13.B设直线l的方程为y=kx-1,直线l与f(x)的图像相切于点(x0,y0),则解得∴直线l的方程为y=x-1,即x-y-1=0.14.D∵f'(x)=x2+2ax+a2-1,∴f'(x)的图像开口向上,故②④排除.若f'(x)的图像为①,则a=0,f(-1)=;若f'(x)的图像为③,则a2-1=0.又对称轴x=-a>0,∴a=-1,∴f(-1)=-.15.-3设f(x)=(ax+1)e x,∵f'(x)=a·e x+(ax+1)e x=(ax+a+1)e x,∴f(x)=(ax+1)e x在点(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.16.D由f'(x)=-2sin x<1,x∈得x∈,因此所求概率为=,故选D.17.C方程f(x)=kx-恰有四个不相等的实数根转化为y=f(x)的图像与y=kx-的图像有四个不同的交点,如图所示,直线y=kx-过定点,且过点(1,0)时,函数y=f(x)的图像与y=kx-的图像有三个不同的交点,此时k==.设直线y=kx-与y=ln x(x>1)切于点(x0,ln x0),则过该切点的切线方程为y-ln x0=(x-x0).把点代入切线方程,可得--ln x0=-1,解得x0=,所以切点为,则切线的斜率为=,所以方程f(x)=kx-恰有四个不相等的实数根,则实数k的取值范围是,故选C.。
高考专题打破一高考取的导数应用问题试题理北师大版1.若函数f ( x) 在 R 上可导,且知足f ( x) -xf′(x)>0 ,则 ()A. 3f (1)< f (3)B. 3f (1)> f (3)C.3 (1) =f (3)D.(1) =f(3)f f答案Bf x f ′x x- f x f x分析因为 f ( x)> xf ′(x),则x′=x2<0 恒成立,所以x在 R 上是减函数,f3f1,即 3f(1)> f (3).应选 B.∴3<12.若函数f ( x) =kx- ln x 在区间(1,+∞)上是增添的,则k 的取值范围是()A. ( -∞,- 2]B. ( -∞,- 1]C. [2 ,+∞ )D. [1 ,+∞)答案D11分析因为 f ′(x)= k-x,f ( x)=kx -ln x 在区间(1,+∞)上是增添的? f ′(x)= k-x≥0在 (1 ,+∞ ) 上恒成立.11因为 k≥x,而0<x<1,所以 k≥1.即 k 的取值范围为[1,+∞).2x3+3x2+ 1x≤0,3.(2016 ·宝鸡模拟 ) 函数f ( x) =e ax x>0在 [ - 2,2] 上的最大值为2,则a 的范围是()11A. [ 2ln 2,+∞ )B. [0 ,2ln 2]C. ( -∞, 0]1 D. ( -∞, ln 2]2答案D分析当 x≤0时, f ′(x)=6x2+6x=6x( x+1),所以 f ( x)在(-∞,-1)上为增函数,在 ( - 1,0] 上为减函数,所以 f ( x)在 x∈[-2,0]上的最大值为 f (-1)=2,欲使得函数 f ( x)=2x3+ 3x2+ 1 x≤0,在 [ - 2,2] 上的最大值为2,axx>0e则当2a的值一定小于等于2,= 2 时, ex即 e2a1.≤2,解得a∈( -∞, ln 2]24.(2016 ·全国甲卷 ) 若直线y=kx+b是曲线y= ln x+2的切线,也是曲线y=ln( x+1)的切线,则= ________.b答案1- ln 2分析y=ln x+21·x+ln x +1(设切点横坐标为 x ),的切线为 y=x1111x2y=ln( x+1)的切线为y=x2+1x+ln( x2+1)-x2+1( 设切点横坐标为x2),1 1=,x1x2+1∴ln x1+ 1= ln x2+ 1 -x2,x2+ 1解得11b=lnx1+1=1-ln 2. 1=,2=-,∴x2x25.(2016 ·陕西西工大附中模拟) 设函数f ( x) 为 ( -∞,0) 上的可导函数,其导函数为f′(x) ,且有2(x ) +xf′( )>2,则不等式 (x+2 016) 2f(x+2 016)-9 ( - 3)>0 的解集为 ________.f x x f 答案 { x| x<- 2 019}分析由2f ( x) +xf′(x)> x2( x<0) ,得 2xf (x)+2′( )<3,x f x x即 [ x2f ( x)] ′<x3<0.令 F( x)= x2f ( x),则当 x<0时, F′(x)<0,即 F( x)在(-∞,0)上是减函数,∴F( x+2 016)=( x+2 016)2f ( x+2 016),F(-3)=9f (-3),即不等式等价为F( x+2 016)- F(-3)>0.∵ F( x)在(-∞,0)上是减函数,∴由 F( x+2 016)> F(-3),得 x+2 016<-3,∴x<-2 019.题型一利用导数研究函数性质例 1 (2015 ·课标全国Ⅱ ) 已知函数 f ( x)=ln x+ a(1- x).(1)议论 f ( x)的单一性;(2) 当f ( x) 有最大值,且最大值大于2a- 2 时,求a的取值范围.1解 (1) f ( x) 的定义域为 (0 ,+∞ ) ,f′(x) =x-a.若 a≤0,则 f ′(x)>0,所以 f ( x)在(0,+∞)上是增添的.111若 a>0,则当 x∈0,a时,f ′(x)>0;当 x∈a,+∞时,f′(x)<0.所以f(x)在0,a 1上是增添的,在a,+∞ 上是减少的.(2)由 (1) 知,当a≤0时,f ( x) 在(0 ,+∞ ) 上无最大值;1111当 a>0时, f ( x)在 x=a获得最大值,最大值为 f a=ln a+ a 1-a=-ln a+ a-1.1所以 f a>2a-2等价于ln a+ a-1<0.令 g( a)=ln a+ a-1,则 g( a)在(0,+∞)上是增添的,g(1)=0.于是,当0<a< 1 时,g( a) < 0;当 a>1时, g( a)>0.所以, a 的取值范围是(0,1).思想升华利用导数主要研究函数的单一性、极值、最值.已知 f ( x)的单一性,可转变为不等式 f ′(x)≥0或 f ′(x)≤0在单一区间上恒成立问题;含参函数的最值问题是高考的热门题型,解此类题的重点是极值点与给定区间地点关系的议论,此时要注意联合导函数图像的性质进行剖析.已知 a∈R,函数 f ( x)=(- x2+ ax)e x( x∈R,e为自然对数的底数) .(1)当 a=2时,求函数 f ( x)的递加区间;(2)若函数 f ( x)在(-1,1)上是增添的,求 a 的取值范围.解 (1) 当a= 2 时,f ( x) = ( -x2+ 2x)e x,所以 f ′(x)=(-2x+2)e x+(- x2+2x)e x=( -x2+ 2)e x.令 f ′(x)>0,即(- x2+2)e x>0,因为e x>0,所以- x2+2>0,解得-2<x< 2.所以函数 f ( x)的递加区间是(-2,2) .(2)因为函数 f ( x)在(-1,1)上是增添的,所以 f ′(x)≥0对 x∈(-1,1)都成立.因为 f ′(x)=(-2x+ a)e x+(- x2+ ax)e x=[ -x2+ ( a- 2) x+a]e x,所以 [ -x2+ ( a-2) x+a]e x≥0对x∈( - 1,1) 都成立.因为 e x>0,所以-x2+ ( a- 2) x+a≥0对x∈( - 1,1) 都成立,x2+2x x+12- 1即 a≥x+1=x+11=( x+1) -对x∈(-1,1)都成立.x+111>0,令 y=( x+1)-x+1,则 y′=1+x+121所以 y=( x+1)-x+1在(-1,1)上是增添的,133所以 y<(1+1)-1+1=2,即 a≥2.3所以 a 的取值范围为[2,+∞).题型二利用导数研究方程的根或函数的零点问题例 2(2015 ·北京 ) 设函数f ( x) =x2-k ln x,k>0. 2(1)求 f ( x)的单一区间和极值;(2) 证明:若 f ( x)存在零点,则 f ( x)在区间(1,e] 上仅有一个零点.2-k2(1)解函数的定义域为 (0 ,+∞ ) .由f(x) =x -ln(k>0) ,得f′()== x - k.xxx2由f ′( ) = 0,解得x=k(负值舍去 ).xf ( x)与 f ′(x)在区间(0,+∞)上随 x 的变化状况以下表:x(0 ,k)k(k,+∞)f ′(x)-0+f ( x)↘错误 !↗所以, f ( x)的递减区间是(0,k),递加区间是(k,+∞).f ( x)在 x= k处获得极小值k1- ln kf ( k)=.2(2) 证明由 (1) 知,f ( x) 在区间 (0 ,+∞ ) 上的最小值为k1-ln k f ( k)=.2k1-ln k因为 f ( x)存在零点,所以≤0,进而k≥e,2当k =e 时,f( ) 在区间 (1,e] 上是减少的且f( e) = 0,x所以 x=e是f ( x) 在区间 (1 ,e] 上的独一零点.1e-k当 k>e时, f ( x)在区间(0,e) 上是减少的且 f (1)=2>0, f (e) =2<0,所以 f ( x)在区间(1,e] 上仅有一个零点.综上可知,若 f ( x)存在零点,则 f ( x)在区间(1,e] 上仅有一个零点.思想升华函数零点问题一般利用导数研究函数的单一性、极值等性质,并借助函数图像,依据零点或图像的交点状况,成立含参数的方程( 或不等式 ) 组求解,实现形与数的和睦一致.已知函数 f ( x)=x3-3x2+ ax+2,曲线 y= f ( x)在点(0,2)处的切线与x 轴交点的横坐标为- 2.(1)求 a;(2)证明:当 k<1时,曲线 y= f ( x)与直线 y= kx-2只有一个交点.(1)解 f ′(x)=3x2-6x+ a, f ′(0)= a.曲线 y= f ( x)在点(0,2)处的切线方程为y= ax+2.2由题设得-a=- 2,所以a= 1.(2) 证明由(1)知,f(x)=x3-3x2+x+ 2.设 g( x)= f ( x)- kx +2=x3-3x2+(1- k) x+4.由题设知1-k>0.当 x≤0时, g′(x)=3x2-6x+1- k>0, g( x)是增添的,g(-1)= k-1<0, g(0)=4,所以 g( x)=0在(-∞,0]上有独一实根.当 x>0时,令 h( x)= x3-3x2+4,则 g( x)= h( x)+(1- k) x>h( x).h′(x)=3x2-6x=3x( x-2), h( x)在(0,2)上是减少的,在(2 ,+∞ ) 上是增添的,所以 g( x)> h( x)≥ h(2)=0.所以 g( x)=0在(0,+∞)上没有实根.综上, g( x)=0在R上有独一实根,即曲线 y= f ( x)与直线 y= kx-2只有一个交点.题型三利用导数研究不等式问题例 3 已知f ( x) =x ln x,g( x) =-x2+ax-3.(1)对全部 x∈(0,+∞),2f ( x)≥ g( x)恒成立,务实数 a 的取值范围;(2) 证明:对全部x ∈(0 ,+∞ ) ,都有 lnx12对全部x∈(0 ,+∞ ) ,有>x-成立. (1) 解e e x23设 h( x)=2ln x+ x+x( x>0),x+3x-1则 h′(x)=x2,当 x∈(0,1)时, h′(x)<0, h( x)是减少的,当 x∈(1,+∞)时, h′(x)>0,h( x)是增添的,所以 h( x)min= h(1)=4.因为对全部x∈(0,+∞),2f ( x) ≥g( x) 恒成立,所以 a≤ h( x)min=4.(2)证明问题等价于证明x2x l n x>e x-e( x∈(0 ,+∞ )) .f (x) =ln( ∈(0 ,+∞ )) 的最小值是-1,x x x e1x 21-x当且仅当 x=e时取到,设 m( x)=e x-e( x∈(0,+∞)),则 m′(x)=e x ,易知m(x) max=m(1) 1=-e,当且仅当 x=1时取到.1 2进而对全部 x∈(0,+∞),都有ln x>e x-e x成立.思想升华求解不等式恒成立或有解时参数的取值范围问题,一般常用分别参数的方法,可是假如分别参数后对应的函数不便于求解其最值,或许求解其函数最值烦杂时,可采纳直接结构函数的方法求解.已知函数f (x) =x3x2+, (x9x1∈[-1,2],存- 2+) =- 2 +,若对随意的x a g xx在x 2∈[2,4],使得f(x1)=(2),则实数a的取值范围是 ________________ .g x7 3答案 [ -4,-2]分析问题等价于 f ( x)的值域是 g( x)的值域的子集,1明显, g( x)是减少的,∴ g( x)max= g(2)=2,23g( x)min= g(4)=-4;关于 f ( x), f ′(x)=3x2-4x+1,令 f ′(x)=0,解得 x=3或 x=1,当 x 变化时, f ′(x ) , f ( x ) 的变化状况列表以下:x11 1- 1( -1, 3)3 ( 3,1)1 (1,2) 2f ′(x )+0 -+4f ( x ) a - 4 ↗27+ a↘ a ↗a + 2∴ f ( x ) max = a + 2, f ( x ) min =a - 4,1a + 2≤ 2,∴23a -4≥-,4∴ a ∈[ - 7,- 3] .42x a31.已知函数 f ( x ) = 4+ x - ln x - 2,此中 a ∈ R ,且曲线 y = f ( x ) 在点 (1 , f (1)) 处的切线垂1直于直线 y = 2x . (1) 求 a 的值;(2) 求函数 f ( x ) 的单一区间.1 a 1解 (1) 对 f ( x ) 求导得 f ′(x ) =4- x 2- x ,1 3 5由 f ( x ) 在点 (1 , f (1)) 处的切线垂直于直线 y = 2x ,知 f ′(1) =- 4- a =- 2,解得 a = 4.x 5 3 (2) 由 (1) 知 f ( x ) = 4+ 4x - ln x - 2,则 f x 2-4x - 5′()=2.4x令 f ′(x ) = 0,解得 x =- 1 或 x = 5.因为 x =- 1 不在 f ( x ) 的定义域 (0 ,+∞ ) 内,故舍去.当 x ∈(0,5) 时, f ′(x )<0 ,故 f ( x ) 在 (0,5) 内为减函数;当 x ∈(5 ,+∞ ) 时, f ′(x )>0 ,故 f ( x ) 在 (5 ,+∞ ) 内为增函数.综上, f ( x ) 的单一增区间为 (5 ,+∞ ) ,单一减区间为 (0,5) .2.(2016 ·千阳中学模拟 ) 已知函数 f ( x ) = x ln x .(1) 求 f ( x ) 的最小值;(2) 若对全部 x ≥1都有 f ( x ) ≥ ax - 1,务实数 a 的取值范围.解 (1)f ( x ) 的定义域为 (0 ,+∞ ) , f ( x ) 的导数′( ) = 1+lnx ,fx令f′( )>0 ,解得 x > 1, x e1令 f ′(x )<0 ,解得 0<x <e ,进而 f ( x 11 ) 在 (0 , ) 上是减少的,在 (,+∞ ) 上是增添的.e e11所以,当 x = e 时, f ( x ) 获得最小值- e .(2) 依题意,得 f ( x ) ≥ ax - 1 在 [1 ,+∞ ) 上恒成立,1即不等式 a ≤ln x + x 关于 x ∈[1 ,+∞ ) 恒成立.1令 g ( x ) = ln x + x ,则1 1 1 1′()= - 2= (1- ).g xx x x x11当 x >1 时,因为 g ′(x ) = x (1 - x )>0 , 故 g ( x ) 在 [1 ,+∞ ) 上是增添的,所以 g ( x ) 的最小值是 g (1) = 1,进而 a 的取值范围是 ( -∞, 1] .3x 2+ ax3.(2015 ·重庆 ) 设函数 f ( x ) =e x ( a ∈R) .(1) 若 f ( x ) 在 x = 0 处获得极值, 确立 a 的值,并求此时曲线y = f ( x ) 在点 (1 ,f (1)) 处的切线方程;(2) 若 f ( x ) 在 [3 ,+∞ ) 上为减函数,求a 的取值范围.解 (1) 对 f ( x ) 求导得6 + a e x-3 2+ ax e xf ′(x ) =e x2- 3x 2+ 6- a x + a=x,e因为f ( x ) 在 x =0 处获得极值,所以f ′(0) = 0,即 = 0.a3x 2- 3x 2+ 6 x3 3当 a = 0 时, f ( x ) = e x , f ′(x ) =e x,故 f (1) = e , f ′(1) = e ,进而 f ( x ) 在点 (1 ,3 3f (1)) 处的切线方程为y - e = e ( x - 1) ,化简得 3x - e y = 0.- 3x 2+ 6-a x + a(2) 由 (1) 知 f ′(x ) =x.e令 g ( x ) =- 3x 2+(6 - a ) x + a ,由 ( ) =0,解得x 1=6-a - a 2+ 36,g x66-a + a 2+36x 2=.6当 x <x 1 时, g ( x ) < 0,即 f ′(x ) < 0,故 f ( x ) 为减函数;当 x 1<x < x 2 时, g ( x ) > 0,即 f ′(x ) > 0,故 f ( x ) 为增函数;当 x >x 2 时, g ( x ) < 0,即 f ′(x ) < 0,故 f ( x ) 为减函数.6- a + a 2+ 36由 f ( x ) 在 [3 ,+∞ ) 上为减函数,知x 2=≤3,解得69a ≥- 2,9故 a 的取值范围为 - ,+∞ . 24.已知函数 f ( x ) = x 2+ x sin x + cos x .(1) 若曲线 y = f ( x ) 在点 ( a , f ( a )) 处与直线 y = b 相切,求 a 与 b 的值;(2) 若曲线 y = f ( x ) 与直线 y = b 有两个不一样交点,求 b 的取值范围.解 由 f ( x ) = x 2+ x sin x + cos x ,得 f ′(x ) = x (2 + cos x ) .(1) 因为曲线 y = f ( x ) 在点 ( a , f ( a )) 处与直线 y = b 相切,所以 f ′(a ) = a (2 + cos a ) = 0,b= f ( a ) .解得 a = 0, b =f (0) = 1.(2) 令 f ′(x ) =0,得 x =0.当 x 变化时, f ( x ) 与 f ′(x ) 的变化状况以下:x ( -∞, 0)0 (0 ,+∞)f ′(x )- 0 + f ( x )↘1↗所以函数 f ( x ) 在区间 ( -∞, 0) 上是减少的,在区间 (0 ,+∞ ) 上是增添的, f (0) = 1 是 f ( x ) 的最小值.当 b ≤1时,曲线 y = f ( x ) 与直线 y = b 最多只有一个交点;当 b>1, f (-2b)= f (2 b)≥4b2-2b-1>4b-2b-1>b,f (0) =1<,所以存在x1∈(-2b,0) ,2∈(0,2b) ,b x使得 f ( x) =f ( x ) =b.12因为函数 f ( x)在区(-∞,0)和 (0 ,+∞ ) 上均,所以当 b>1曲 y= f ( x)与直 y= b 有且有两个不一样交点.上可知,假如曲y=f ( x)与直 y= b 有两个不一样交点,那么 b 的取范是(1,+∞).5.(2016 ·四川 ) 函数f ( x) =ax2-a- ln x,此中 a∈R.(1)f ( x)的性;(2)确立 a 的全部可能取,使得 f ( x)>1x-e1-x在区(1,+∞)内恒成立(e=2.718⋯自然数的底数 ) .解 (1) f′(x) = 2ax-1=2ax2-1( x>0) .x x当 a≤0 , f ′(x)<0, f ( x)在(0,+∞)内是减少的.当a>0,由 f ′(x)=0,有 x=1.2a此,当 x∈0,1, f ′(x)<0, f ( x)是减少的;2ax 1x当∈,+∞,′( )>0 ,() 是增添的.2a fx f11x - 1(2) 令g( x) =x-e x-1,s( x) = e- x.s′(x)=e x-1-1.而当 x>1, s′(x)>0,所以 s( x)在区(1,+∞)内是增添的.又由 s(1)=0,有 s( x)>0,进而当 x>1, g( x)>0.当 a≤0, x>1, f ( x)=a( x2-1)-ln x<0.故当 f ( x)> g( x)在区(1,+∞)内恒成立,必有a>0.1 1当 0<a<2,>1.2a1由 (1) 有f2a <f (1) = 0,1>0,而 g2a所以此 f ( x)> g( x)在区(1,+∞)内不恒成立.1111 / 121当 a≥2时,令 h( x)= f ( x)- g( x)( x≥1).1 11-x当 x>1时, h′(x)=2ax-x+x2-e111>x-x+x2-xx3-2x+1 x2-2x+1=x2>x2>0.所以, h( x)在区间(1,+∞)内是增添的.又因为 h(1)=0,所以当 x>1时,h( x)=f ( x)- g( x)>0,即 f ( x)> g( x)恒成立.1综上, a∈2,+∞.1212 / 12。
课后限时集训(十六)(建议用时:60分钟)A组基础达标一、选择题1.方程x3-6x2+9x-10=0的实根个数是( )A.3 B.2C.1 D.0C[设f(x)=x3-6x2+9x-10,f′(x)=3x2-12x+9=3(x-1)(x-3),由此可知函数的极大值为f(1)=-6<0,极小值为f(3)=-10<0,所以方程x3-6x2+9x-10=0的实根个数为1.] 2.若存在正数x使2x(x-a)<1成立,则实数a的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)D[∵2x(x-a)<1,∴a>x-12x .令f(x)=x-12x,∴f′(x)=1+2-x ln 2>0.∴f(x)在(0,+∞)上是增加的,∴f(x)>f(0)=0-1=-1,∴实数a的取值范围为(-1,+∞).] 3.某银行准备设一种新的定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k(k>0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x(x∈(0,0.048)),则银行获得最大收益的存款利率为 ( )A.3.2% B.2.4%C.4% D.3.6%A[设y表示收益,则存款量是kx2,贷款收益为0.048kx2,存款利息为kx3,则y=0.048kx2-kx3,x∈(0,0.048),y′=0.096kx-3kx2=3kx(0.032-x)令y′=0得x=0.032,且当x∈(0,0.032)时y′>0,当x∈(0.032,0.048)时y′<0,因此收益y在x=0.032时取得最大值,故选A.]4.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为( )A.0 B.1C.0或1 D.无数个A[因为g(x)=xf(x)+1(x>0),g′(x)=xf′(x)+f(x)>0,所以g(x)在(0,+∞)上递增,因为g(0)=1,y=f(x)为R上的连续可导函数,所以g(x)为(0,+∞)上的连续可导函数,g(x)>g(0)=1,所以g(x)在(0,+∞)上无零点.]5.若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( )A.(-∞,0) B.(-∞,4]C.(0,+∞)D.[4,+∞)B [由题意知a ≤2ln x +x +3x对x ∈(0,+∞)恒成立,令g (x )=2ln x +x +3x ,则g ′(x )=2x +1-3x 2=x 2+2x -3x2, 由g ′(x )=0得x =1或x =-3(舍),且x ∈(0,1)时,g ′(x )<0,x ∈(1,+∞)时,g ′(x )>0.因此g (x )min =g (1)=4.所以a ≤4,故选B.]二、填空题6.已知函数f (x )=x +4x ,g (x )=2x+a ,若任意x 1∈⎣⎢⎡⎦⎥⎤12,1,存在x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________.(-∞,1] [当x ∈⎣⎢⎡⎦⎥⎤12,1时,f ′(x )=1-4x 2<0,f (x )min =f (1)=5.当x ∈[2,3]时,g (x )=2x+a 是增函数,g (x )min =4+a . 由题意知5≥4+a ,即a ≤1.]7.若函数f (x )=2x 3-9x 2+12x -a 恰好有两个不同的零点,则a =________. 4或5 [f ′(x )=6x 2-18x +12,令f ′(x )=0得x =1或x =2, 又当x <1或x >2时,f ′(x )>0,当1<x <2时,f ′(x )<0. 因此x =1和x =2分别是函数f (x )的极大值点和极小值点. 由题意知f (1)=0或f (2)=0,即5-a =0或4-a =0. 解得a =4或a =5.]8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为________元时利润最大,利润的最大值为________元.30 23 000 [设该商品的利润为y 元,由题意知,y =Q (p -20)=-p 3-150p 2+11 700p -166 000,则y ′=-3p 2-300p +11 700, 令y ′=0得p =30或p =-130(舍),当p ∈(0,30)时,y ′>0,当p ∈(30,+∞)时,y ′<0, 因此当p =30时,y 有最大值,y max =23 000.] 三、解答题9.已知函数f (x )=e x+ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围.[解] (1)由f (0)=1-a =2,得a =-1.易知f (x )在[-2,0)上递减,在(0,1]上递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)f ′(x )=e x+a ,由于e x>0,①当a >0时,f ′(x )>0,f (x )是增函数,当x >1时,f (x )=e x+a (x -1)>0.当x <0时,取x =-1a,则f ⎝ ⎛⎭⎪⎫-1a <1+a -1a-1=-a <0.所以函数f (x )存在零点,不满足题意. ②当a <0时,f ′(x )=e x+a , 令f ′(x )=0,得x =ln(-a ).在(-∞,ln(-a ))上,f ′(x )<0,f (x )递减, 在(ln(-a ),+∞)上,f ′(x )>0,f (x )递增, 所以当x =ln(-a )时,f (x )取最小值. 函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a<0.综上所述,所求实数a 的取值范围是(-e 2,0). 10.已知函数f (x )=2a -x2e x (a ∈R ).(1)求函数f (x )的单调区间;(2)若任意x ∈[1,+∞),不等式f (x )>-1恒成立,求实数a 的取值范围. [解] (1)f ′(x )=x 2-2x -2aex,当a ≤-12时,x 2-2x -2a ≥0,故f ′(x )≥0,∴函数f (x )在(-∞,+∞)上递增,∴当a ≤-12时,函数f (x )的递增区间为(-∞,+∞),无递减区间.当a >-12时,令x 2-2x -2a =0⇒x 1=1-2a +1,x 2=1+2a +1,列表由表可知,当a >-2时,函数f (x )的递增区间为(-∞,1-2a +1)和(1+2a +1,+∞),递减区间为(1-2a +1,1+2a +1).(2)∵f (x )>-1⇔2a -x 2e x >-1⇔2a >x 2-e x,∴由条件2a >x 2-e x,对任意x ≥1成立.令g (x )=x 2-e x ,h (x )=g ′(x )=2x -e x, ∴h ′(x )=2-e x,当x ∈[1,+∞)时,h ′(x )=2-e x≤2-e <0, ∴h (x )=g ′(x )=2x -e x在[1,+∞)上递减, ∴h (x )=2x -e x≤2-e <0,即g ′(x )<0, ∴g (x )=x 2-e x在[1,+∞)上递减, ∴g (x )=x 2-e x≤g (1)=1-e ,故f (x )>-1在[1,+∞)上恒成立,只需2a >g (x )max =1-e , ∴a >1-e 2,即实数a 的取值范围是⎝ ⎛⎭⎪⎫1-e 2,+∞. B 组 能力提升1.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( ) A .3 B .4 C .6D .5A [设圆柱的底面半径为R ,母线长为l ,则V =πR 2l =27π,∴l =27R2,要使用料最省,只需使圆柱的侧面积与下底面面积之和S 最小.由题意,S =πR 2+2πRl =πR 2+2π·27R.∴S ′=2πR -54πR2,令S ′=0,得R =3,则当R =3时,S 最小.故选A .]2.若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2C [令f (x )=exx,则f ′(x )=x e x -e x x 2=e x x -x 2.当0<x <1时,f ′(x )<0,即f (x )在(0,1)上递减,因为0<x 1<x 2<1, 所以f (x 2)<f (x 1),即e x 2x 2<e x 1x 1,所以x 2e x 1>x 1e x 2,故选C .] 3.若函数f (x )=ax -aex+1(a <0)没有零点,则实数a 的取值范围为________.(-e 2,0) [f ′(x )=a e x -ax -axe2x=-a x -ex(a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0,∴当x =2时,f (x )有极小值f (2)=ae2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0.解之得a >-e 2,因此-e 2<a <0.]4.(2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上递增.若a <0,则当x ∈⎝⎛⎭⎪⎫0,-12a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a .所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0.设g (x )=ln x -x +1, 则g ′(x )=1x-1.当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,所以g (x )在(0,1)上递增,在(1,+∞)上递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0,即f (x )≤-34a -2.。
高考专题突破一 高考中的导数应用问题试题 理 北师大版1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3) D .f (1)=f (3)答案 B解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f x x ′=f ′x x -f x x 2<0恒成立,因此f x x 在R上是减函数, ∴f 33<f 11,即3f (1)>f (3).故选B.2.若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.(2016·宝鸡模拟)函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1x ≤0,e axx >0在[-2,2]上的最大值为2,则a 的范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]答案 D解析 当x ≤0时,f ′(x )=6x 2+6x =6x (x +1), 所以f (x )在(-∞,-1)上为增函数, 在(-1,0]上为减函数,所以f (x )在x ∈[-2,0]上的最大值为f (-1)=2,欲使得函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1x ≤0,e axx >0在[-2,2]上的最大值为2,则当x =2时,e 2a的值必须小于等于2,即e 2a≤2,解得a ∈(-∞,12ln 2].4.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=lnx 2+1-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.5.(2016·陕西西工大附中模拟)设函数f (x )为(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 016)2f (x +2 016)-9f (-3)>0的解集为________. 答案 {x |x <-2 019}解析 由2f (x )+xf ′(x )>x 2(x <0), 得2xf (x )+x 2f ′(x )<x 3, 即[x 2f (x )]′<x 3<0. 令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数, ∴F (x +2 016)=(x +2 016)2f (x +2 016),F (-3)=9f (-3),即不等式等价为F (x +2 016)-F (-3)>0. ∵F (x ) 在(-∞,0)上是减函数,∴由F (x +2 016)>F (-3),得x +2 016<-3, ∴x <-2 019.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是增加的.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增加的,在⎝ ⎛⎭⎪⎫1a,+∞上是减少的.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上是增加的,g (1)=0.于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的递增区间;(2)若函数f (x )在(-1,1)上是增加的,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x, 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x >0,因为e x>0, 所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上是增加的, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=[-x 2+(a -2)x +a ]e x,所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=x +12-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1x +12>0,所以y =(x +1)-1x +1在(-1,1)上是增加的, 所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为[32, +∞).题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:x (0,k ) (k ,+∞)f ′(x ) - 0+ f (x )↘↗所以,f (x )的递减区间是(0,k ),递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k 1-ln k2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k 1-ln k2.因为f (x )存在零点,所以k 1-ln k2≤0,从而k ≥e,当k =e 时,f (x )在区间(1,e]上是减少的且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上是减少的且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图像,根据零点或图像的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )是增加的,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上是减少的,在(2,+∞)上是增加的,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对一切x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +3x -1x2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的, 所以h (x )min =h (1)=4. 因为对一切x ∈(0,+∞), 2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明x ln x >x ex -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值烦琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是________________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )是减少的,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:∴f (x )max min ∴⎩⎪⎨⎪⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.(2016·千阳中学模拟)已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,从而f (x )在(0,1e )上是减少的,在(1e ,+∞)上是增加的.所以,当x =1e 时,f (x )取得最小值-1e.(2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立, 即不等式a ≤ln x +1x对于x ∈[1,+∞)恒成立.令g (x )=ln x +1x,则g ′(x )=1x -1x 2=1x (1-1x).当x >1时,因为g ′(x )=1x (1-1x)>0,故g (x )在[1,+∞)上是增加的, 所以g (x )的最小值是g (1)=1, 从而a 的取值范围是(-∞,1].3.(2015·重庆)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=6x +ae x -3x 2+ax exex 2=-3x 2+6-a x +a ex, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+6-a x +aex.令g (x )=-3x 2+(6-a )x +a , 由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.4.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ).解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:所以函数f (x )在区间(在区间(0,+∞)上是增加的,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点; 当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调, 所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).5.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的.当a >0时,由f ′(x )=0,有x =12a . 此时,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )是减少的; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )是增加的. (2)令g (x )=1x -1ex -1,s (x )=e x -1-x . 则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内是增加的.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1. 由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0, 而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1). 当x >1时,h ′(x )=2ax -1x +1x2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内是增加的.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.。
高考专题突破一 高考中的导数应用问题试题 理 北师大版1.若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( ) A .3f (1)<f (3) B .3f (1)>f (3) C .3f (1)=f (3) D .f (1)=f (3)答案 B解析 由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f x x ′=f ′x x -f x x 2<0恒成立,因此f x x 在R上是减函数, ∴f 33<f 11,即3f (1)>f (3).故选B.2.若函数f (x )=kx -ln x 在区间(1,+∞)上是增加的,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上是增加的⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.(2016·宝鸡模拟)函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1x ≤0,e axx >0在[-2,2]上的最大值为2,则a 的范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]答案 D解析 当x ≤0时,f ′(x )=6x 2+6x =6x (x +1), 所以f (x )在(-∞,-1)上为增函数, 在(-1,0]上为减函数,所以f (x )在x ∈[-2,0]上的最大值为f (-1)=2,欲使得函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1x ≤0,e axx >0在[-2,2]上的最大值为2,则当x =2时,e 2a的值必须小于等于2,即e 2a≤2,解得a ∈(-∞,12ln 2].4.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=lnx 2+1-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.5.(2016·陕西西工大附中模拟)设函数f (x )为(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 016)2f (x +2 016)-9f (-3)>0的解集为________. 答案 {x |x <-2 019}解析 由2f (x )+xf ′(x )>x 2(x <0), 得2xf (x )+x 2f ′(x )<x 3, 即[x 2f (x )]′<x 3<0. 令F (x )=x 2f (x ),则当x <0时,F ′(x )<0,即F (x )在(-∞,0)上是减函数, ∴F (x +2 016)=(x +2 016)2f (x +2 016),F (-3)=9f (-3),即不等式等价为F (x +2 016)-F (-3)>0. ∵F (x ) 在(-∞,0)上是减函数,∴由F (x +2 016)>F (-3),得x +2 016<-3, ∴x <-2 019.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上是增加的.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上是增加的,在⎝ ⎛⎭⎪⎫1a,+∞上是减少的.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上是增加的,g (1)=0.于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图像的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的递增区间;(2)若函数f (x )在(-1,1)上是增加的,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x, 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x >0,因为e x>0, 所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上是增加的, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=[-x 2+(a -2)x +a ]e x,所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=x +12-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1x +12>0,所以y =(x +1)-1x +1在(-1,1)上是增加的, 所以y <(1+1)-11+1=32,即a ≥32.因此a 的取值范围为[32, +∞).题型二 利用导数研究方程的根或函数的零点问题 例2 (2015·北京)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上随x 的变化情况如下表:x (0,k ) (k ,+∞)f ′(x ) - 0+ f (x )↘↗所以,f (x )的递减区间是(0,k ),递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k 1-ln k2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k 1-ln k2.因为f (x )存在零点,所以k 1-ln k2≤0,从而k ≥e,当k =e 时,f (x )在区间(1,e]上是减少的且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上是减少的且f (1)=12>0,f (e)=e -k2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图像,根据零点或图像的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. (1)解 f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-2,所以a =1.(2)证明 由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )是增加的,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]上有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ).h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上是减少的,在(2,+∞)上是增加的,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)上没有实根. 综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 题型三 利用导数研究不等式问题例3 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.(1)解 对一切x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +3x -1x2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的, 所以h (x )min =h (1)=4. 因为对一切x ∈(0,+∞), 2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明x ln x >x ex -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值烦琐时,可采用直接构造函数的方法求解.已知函数f (x )=x 3-2x 2+x +a ,g (x )=-2x +9x,若对任意的x 1∈[-1,2],存在x 2∈[2,4],使得f (x 1)=g (x 2),则实数a 的取值范围是________________. 答案 [-74,-32]解析 问题等价于f (x )的值域是g (x )的值域的子集, 显然,g (x )是减少的,∴g (x )max =g (2)=12,g (x )min =g (4)=-234;对于f (x ),f ′(x )=3x 2-4x +1, 令f ′(x )=0,解得x =13或x =1,当x 变化时,f ′(x ),f (x )的变化情况列表如下:∴f (x )max min ∴⎩⎪⎨⎪⎧a +2≤12,a -4≥-234,∴a ∈[-74,-32].1.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 2.(2016·千阳中学模拟)已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x , 令f ′(x )>0,解得x >1e ,令f ′(x )<0,解得0<x <1e,从而f (x )在(0,1e )上是减少的,在(1e ,+∞)上是增加的.所以,当x =1e 时,f (x )取得最小值-1e.(2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立, 即不等式a ≤ln x +1x对于x ∈[1,+∞)恒成立.令g (x )=ln x +1x,则g ′(x )=1x -1x 2=1x (1-1x).当x >1时,因为g ′(x )=1x (1-1x)>0,故g (x )在[1,+∞)上是增加的, 所以g (x )的最小值是g (1)=1, 从而a 的取值范围是(-∞,1].3.(2015·重庆)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=6x +ae x -3x 2+ax exex 2=-3x 2+6-a x +a ex, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+6-a x +aex.令g (x )=-3x 2+(6-a )x +a , 由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.4.已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 解 由f (x )=x 2+x sin x +cos x , 得f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ).解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0.当x 变化时,f (x )与f ′(x )的变化情况如下:所以函数f (x )在区间(在区间(0,+∞)上是增加的,f (0)=1是f (x )的最小值. 当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点; 当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调, 所以当b >1时曲线y =f (x )与直线y =b 有且仅有两个不同交点. 综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).5.(2016·四川)设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).解 (1)f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的.当a >0时,由f ′(x )=0,有x =12a . 此时,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )是减少的; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )是增加的. (2)令g (x )=1x -1ex -1,s (x )=e x -1-x . 则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内是增加的.又由s (1)=0,有s (x )>0,从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1. 由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0, 而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1). 当x >1时,h ′(x )=2ax -1x +1x2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内是增加的.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.。