2019-2020学年安徽省七年级第四次月考数学试题附答案
- 格式:doc
- 大小:9.01 MB
- 文档页数:6
安徽省六安市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.22.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π3.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-4.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=3 5.计算12-+的值()A.1 B.1-C.3 D.3-6.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°7.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a28.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm9.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169 乙组158 159 160 161 161 163 165 以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大10.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.11.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5 12.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.14.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O 的内接正方形. 作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =kx的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.16.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_____.17.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACB=__________°.18.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:﹣45﹣|4sin30°﹣5|+(﹣112)﹣120.(6分)问题探究(1)如图1,△ABC 和△DEC 均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD 、BE,求ADBE的值; (2)如图2,在Rt △ABC 中,∠ACB=90°,∠B=30°,BC=4,过点A 作AM ⊥AB ,点P 是射线AM 上一动点,连接CP ,做CQ ⊥CP 交线段AB 于点Q ,连接PQ ,求PQ 的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD ,要求BC=4cm ,∠BAD=135°,∠ADC=90°,AD=CD ,请你帮李师傅求出这个零件的对角线BD 的最大值.图321.(6分)如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数ky x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积22.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率.23.(8分)关于x 的一元二次方程mx 2+(3m ﹣2)x ﹣6=1. (1)当m 为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.24.(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)x ﹣1 0 1ax2 (1)ax2+bx+c 7 2 …(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.25.(10分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)26.(12分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.27.(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.2.B【解析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.3.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.4.C【解析】【详解】试题分析:∵分式13x-有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.5.A【解析】【分析】根据有理数的加法法则进行计算即可.【详解】12=1-+故选:A.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.6.D题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.8.B【解析】【分析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.9.D【解析】【分析】根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.故选D.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.10.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.11.B【解析】【分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C 、因为(a ﹣b )2=a 2﹣2ab+b 2,故本选项错误;D 、因为a 3与a 2不是同类项,而且是加法,不能运算,故本选项错误. 故选B . 【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键. 12.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593 ∵188>187,683>593,∴平均数变小,方差变小, 故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】 【详解】∵骑车的学生所占的百分比是126360×100%=35%, ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人), 故答案为1.14.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.15.-6【解析】如图,作AC⊥x轴,BD⊥x轴,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴OA OC AC OB BD OD==,∵∠OAB=60°,∴3 OAOB=,设A(x,2x ),∴BD=3OC=3x,OD=3AC=23,∴B(3x,-23x),把点B代入y=kx得,-23x=3x,解得k=-6,故答案为-6.16.(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.17.1.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.18.①②③【解析】【分析】①证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到AE AFBC CF=,由AE=12AD=12BC,得到12AFCF=,即CF=2AF;③作DM∥EB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;④设AE=a,AB=b,则AD=2a,根据△BAE∽△ADC,得到2b aa b=,即b=2a,可得tan∠CAD=2 22ba=.【详解】如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∵AE=12AD=12BC,∴12AFCF=,即CF=2AF,∴CF=2AF,故②正确;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC , ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故③正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,∴2b a a b=,即a ,∴tan ∠CAD=2b a = 故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣1.【解析】【分析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式=﹣2)﹣12=﹣﹣12=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.20.(1)2;(2(3【解析】【分析】(1)由等腰直角三角形的性质可得,∠ACB=∠DCE=45°,可证△ACD ∽△BCE ,可得AD CD BE CE ==2; (2)由题意可证点A ,点Q ,点C ,点P 四点共圆,可得∠QAC=∠QPC ,可证△ABC ∽△PQC ,可得PQ QC AB BC=,可得当QC ⊥AB 时,PQ 的值最小,即可求PQ 的最小值; (3)作∠DCE=∠ACB ,交射线DA 于点E ,取CE 中点F ,连接AC ,BE ,DF ,BF ,由题意可证△ABC ∽△DEC ,可得BC CE AC CD=,且∠BCE=∠ACD ,可证△BCE ∽△ACD ,可得∠BEC=∠ADC=90°,由勾股定理可求CE ,DF ,BF 的长,由三角形三边关系可求BD 的最大值.【详解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴,,∠ACB=∠DCE=45°,∴∠BCE=∠ACD ,∵BC AC =3,CE CD ,∴BC CE AC CD =,∠BCE=∠ACD , ∴△ACD ∽△BCE ,∴AD CD BE CE ==2; (2)∵∠ACB=90°,∠B=30°,BC=4,∴, ∵∠QAP=∠QCP=90°,∴点A ,点Q ,点C ,点P 四点共圆,∴∠QAC=∠QPC ,且∠ACB=∠QCP=90°,∴△ABC ∽△PQC , ∴PQ QC AB BC=,∴PQ=AB BC ×QC=3QC , ∴当QC 的长度最小时,PQ 的长度最小,即当QC ⊥AB 时,PQ 的值最小,此时QC=2,PQ的最小值为433;(3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴BC CE AC CD=,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=222∵点F是EC中点,∴DF=EF=122,∴22BE EF+10,∴102【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.21.(1)18yx=,N(3,6);(2)y=-x+2,S△OMN=3.【解析】【分析】(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【详解】解:(1)∵点M是AB边的中点,∴M(6,3).∵反比例函数y =k x 经过点M ,∴3=6k .∴k =1. ∴反比例函数的解析式为y =18x . 当y =6时,x =3,∴N(3,6).(2)由题意,知M(6,2),N(2,6). 设直线MN 的解析式为y =ax +b ,则6226a b a b +=⎧⎨+=⎩, 解得18a b =-⎧⎨=⎩, ∴直线MN 的解析式为y =-x +2.∴S △OMN =S 正方形OABC -S △OAM -S △OCN -S △BMN =36-6-6-2=3.【点睛】本题考查了反比例函数的系数k 的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M 、N 点的坐标是解题的关键.22.(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案. 试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.23.(1) m≠1且m≠2-3;(2) m=-1或m=-2.【解析】【分析】(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;(2) 解方程,得:12x=m,2x=-3,由m为整数,且方程的两个根均为负整数可得m的值. 【详解】解:(1) Q△=2b-4ac=(3m-2)2+24m=(3m+2)2≥1∴当m≠1且m≠2-3时,方程有两个不相等实数根.(2)解方程,得:12x=m,2x=-3,Q m为整数,且方程的两个根均为负整数,∴m=-1或m=-2.∴m=-1或m=-2时,此方程的两个根都为负整数【点睛】本题主要考查利用一元二次方程根的情况求参数.24.(1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.【解析】【分析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴抛物线的表达式为y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,∴点A到抛物线的距离与点B到抛物线的距离比为2:1.∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,∴点B到抛物线的距离为1,∴点B的横坐标为1+2=5,∴点B的坐标为(5,7).(1)∠BAD和∠DCO互补,理由如下:当x=0时,y=x2﹣4x+2=2,∴点A的坐标为(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴点D的坐标为(2,﹣2).过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.设直线BD的表达式为y=mx+n(m≠0),将B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直线BD的表达式为y=1x﹣2.当y=2时,有1x﹣2=2,解得:x=,∴点N的坐标为(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互补.【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.25.3031)米【解析】【分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=AD CD,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=AD BD,∴3(60)3x x=+,∴30(31)x=米,答:山高AD为3031)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.26.(1)y=﹣x 2+2x+1;(2)P (97 ,127);(1)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似. 【解析】【分析】(1)先求得点B 和点C 的坐标,然后将点B 和点C 的坐标代入抛物线的解析式得到关于b 、c 的方程,从而可求得b 、c 的值;(2)作点O 关于BC 的对称点O′,则O′(1,1),则OP+AP 的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P 的坐标;(1)先求得点D 的坐标,然后求得CD 、BC 、BD 的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC ∽△DCB 和△ACQ ∽△DCB 两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C (0,1).把y=0代入y=﹣x+1得:x=1,∴B (1,0),A (﹣1,0).将C (0,1)、B (1,0)代入y=﹣x 2+bx+c 得:9303b c c -++=⎧⎨=⎩,解得b=2,c=1. ∴抛物线的解析式为y=﹣x 2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值=O′A=()()221330--+-=2. O′A 的方程为y=3344x +P点满足33443 y xy x⎧=+⎪⎨⎪=+⎩﹣解得:97127xy⎧=⎪⎪⎨⎪=⎪⎩所以P (97,127)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=2,BC=12,DB=25.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴13AO CDCO BC==.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=21025=AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.27.(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】【分析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】÷=(名)解:(1)本次调查共抽取的学生有36%50⨯=(名)选择“友善”的人数有5030%15∴条形统计图如图所示:÷=,(2)∵选择“爱国”主题所对应的百分比为205040%⨯︒=︒;∴选择“爱国”主题所对应的圆心角是40%360144⨯=名. (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。
安徽省合肥市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知二次函数y=(x+a )(x ﹣a ﹣1),点P (x 0,m ),点Q (1,n )都在该函数图象上,若m <n ,则x 0的取值范围是( ) A .0≤x 0≤1 B .0<x 0<1且x 0≠12C .x 0<0或x 0>1D .0<x 0<12.如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C在⊙O 上,且∠ODA=36°,则∠ACB 的度数为( )A .54°B .36°C .30°D .27°3.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是64.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点5.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是»AC 上的点,若∠BOC=40°,则∠D 的度数为( )A .100°B .110°C .120°D .130°6.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 7.在0.3,﹣3,0,﹣3这四个数中,最大的是( ) A .0.3B .﹣3C .0D .﹣38.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n )1020 50 100 200 500 …… 击中靶心次数(m ) 8 194492178451……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( ) A .0.6B .0.7C .0.8D .0.99.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( ) A .55×106B .0.55×108C .5.5×106D .5.5×10710.若x >y ,则下列式子错误的是( ) A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y>3311.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A.3cm B.6cm C.2.5cm D.5cm12.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1 x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.14.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.15.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.16123=________.17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.cm的矩形.设矩形的一边长为x cm,则可列方程为18.用一条长60 cm 的绳子围成一个面积为2162______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为1y千米、2y千米,1y、2y与x的函数关系图象如图所示,根据图象解答下列问题:直接写出1y、2y与x的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?甲、乙两班相距4千米时所用时间是多少小时?20.(6分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.22.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE 是平行四边形.23.(8分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值.24.(10分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.25.(10分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.26.(12分)如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF =BE ,求证:∠D =∠B .27.(12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 2.D【解析】解:∵AD 为圆O 的切线,∴AD ⊥OA ,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB 都对AB u u u r,∴∠ACB=12∠AOD=27°.故选D .3.D 【解析】 【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案. 【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键. 4.B 【解析】 【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧 故选B. 【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成. 5.B 【解析】 【分析】根据同弧所对的圆周角是圆心角度数的一半即可解题. 【详解】∵∠BOC=40°,∠AOB=180°, ∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半), 故选B. 【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键. 6.A 。
七年级数学上学期第四次大联考试题本卷共 8 大题,计23 小题,满分150 分,考试时间120 分钟.—、选择题 ( 本大题共 10 小题,每题 4 分,满分40 分 ) 每题都给出A、 B、 C、 D 四个选项,此中只有—个是正确的,请把正确答案的代号填在下表中.1.— 2 的倒数是B.1C.—1D.—2 2 22.在— 3,—1, 0, 0.2 这四个数中,最小的数是2A. —3 B.—1D.23.以下运算正确的选项是A. 5x—3x=2B.2a+3b=5abC.—(a—b)=b+a D.2ab—ba=ab4.单项式a2b3的系数和次数分别是和6 B .1和和 5 D .0和55.12月 2日1 时 30 分,“嫦娥三号”发射升空,携“玉兔”奔向距地球380 000 km 之遥的月球“作客” ,数字 380 000 可用科学记数法表示为A. 3.8 × 105 B .3.8 ×106 C . 3.8 × 107 D .3 8×1046.以下说法中,正确的有①两个有理数的和—定大于加数;②被减数—定大于减数;③0 是最小的有理数;④—个数的倒数—定小于它自己.个 B .1个 C2 个D.3个7.景德镇瓷器以其“白如玉、明如镜、薄如纸、声如磐”的瓷质著名中外.景德镇某瓷器厂共有工人 120 人,每个工人—天能生产20 只茶杯或 5 只茶壶.假如 4 只茶杯和 1 只茶壶为—套,请安排生产茶杯与茶壶的工人各多少时,可使该厂每日生产的茶杯、茶壶恰好配套 ?设安排生产茶杯的工人为x 人,则以下方程中正确的选项是A. 4× 20x=5(120—x)B.20x=4× 5(120—x)C. 4x=4 × (12 0— x)D.5x=4×20(120—x)8.如图,在利用量角器画—个40°的∠ AOB的过程中,关于先找点B,再画射线 OB这—步骤的绘图依照,乐乐同学以为是两点确立—条直线,洋洋同学以为是两点之间线段最短.你以为A. 乐乐说得对B.洋洋说得对 C.都对D.都不对9.计算 ( —2) 2+[18+( —3) ╳ 2] ÷4的结果是A.—7B.7C.—1D.110.如图,在无暗影的方格中选出两个画出暗影,使它们与原有的四个有暗影的方格—起构成正方体表面的睁开图,这样互不同样的画法共有A.11种 B .2种 C .3种 D .4种二、填空题 ( 本大题共 4小题,每题 5分,满分 20分 )11. A、 B两点在数轴上的地点以下图,则AB的长度为.12.假如 2a— b=2, ab=— 1,则代数式3ab+4a— 2b— 5的值是.13.以下由火柴棒拼出的图形中,第n个图形是由九个正方形构成的,请依据以下图所反应的规律,猜想第n个图形中火柴棒的根数是.(n是正整数且n≥1)14.已知点E、 F分别是线段 AB、 CD的中点,且 AB=8, CD=2,若将线段 AB、 CD的—端重合,并搁置在同—直线上,则E、 F两点的距离为.三、 ( 本大题共 2小题,每题8分,满分 16分 )15.先化简,再求值:2 2 2 2 2(5a — 3b ) — 3(a — b ) —( — b ) ,此中 a=5, b= — 3.16.解方程:2x1 — 5x1=1.2 6四、 ( 本大题共 2小题,每题 8分,满分 16分 )17.依据图中信息,求梅花鹿和长颈鹿此刻的高度.的18.蜗牛从某点开始沿—条东西方向的直线爬行,规定以出发点为原点,向东爬行的行程记为正数,向西爬行的行程记为负数,则蜗牛爬过的各段行程挨次为+5,— 3, +10,— 8,— 6, +12,—10. ( 单位:厘米 )(1)请判断蜗牛最后能否回到出发点 ?(2) 在爬行过程中,若蜗牛每爬1厘米就奖赏—粒芝麻,则蜗牛—共获得多少粒芝麻?五、 ( 本大题共 2小题,每题10分,满分 20分 )19.如图,点 A, B,C是不在同—条直线上的三点,请按以下要求绘图并作答( 绘图时工具不限,不需写出结论,只要画出图形、标明字母) .(1)画直线 BC,连结 AC;(2)画线段 BC的中点 D,连结 AD;(3)画出∠ ADC的均分线交 AC于点 E;(4) 若∠ BDA=100°40’,则∠ ADC=°’;∠EDC=°’20. 以下图的是—种盛装葡萄酒的瓶子,现量得瓶塞AB与标签 CD的高度之比为 2: 3,且瓶子底部 DE=1AB,点 C是 BD的中点,又量得A E=300 mm.设 DE 2的长为 x mm.(1) 用含 x的式子直接表示出AB、 BC的长,即 AB= mm , BC= mm(2)求标签 CD的高度.六、 ( 此题满分 12分 )21.某县“贡江新区”位于贡江南岸,由长征出发地体验区、文教体育综合区、贡江新城三大板块构成,与贡江北岸的老城区相响应,建立成“—江两岸”的城市新格局.为建设市民河堤闲步休闲通道,贡江新区现有—段长为180米的河堤整顿任务由A、 B两个工程队先后接力达成,A工程队每日整顿12米, B工程队每日整顿8米,共用时 20天.(1)依据题意,甲、乙两名同学分别列出的方程以下:甲: 12x+8(20 — x)=180 乙: x + 180 x=20.12 8依据甲、乙两名同学所列的方程,请你分别指出以下代数式表示的意义.甲: x表示 : 20 — x表示 :乙:x 表示 : 80 — x表示 :(2) 请你从甲、乙两名同学的解答思路中,选择你喜爱的—种思路求A、 B两个工程队分别整顿河堤的刻度,需写出完好的解答过程。
2019-2020学年安徽省蚌埠市局属学校七年级(下)月考数学试卷(6月份)一、选择题(本大题共10小题,共30.0分) 1. 下列计算不正确的是( )A. 2a ÷a =2B. (2a 3−a 2)÷a 2=2a −1C. (13)0×3=3D. a 8÷a 2=a 42. 已知面积为10的正方形的边长为x ,那么x 的取值范围是( )A. 1<x <3B. 2<x <3C. 3<x <4D. 4<x <53. 分式12−x 的值为负,则x 的取值范围为( )A. x =2B. x ≥2C. x >2D. x <24. 下列说法错误的是( )A. 两个无理数的和一定是无理数B. √81的平方根是±3C. (−1)2020是最小的正整数D. 实数与数轴上的点一一对应5. 把(x −a)3−(a −x)2分解因式的结果为( )A. (x −a)2(x −a +1)B. (x −a)2(x −a −1)C. (x −a)2(x +a)D. (a −x)2(x −a −1)6. 若3x =4,3y =6,则3x+y 的值是( )A. 24B. 10C. 3D. 27. 计算2xx−y +x−2y y−x−yx−y 的结果是( )A. 1B. 3C. x+yx−yD.3x−y x−y8. 若√1−2x 3与√3x −53互为相反数,则1−√x 的值为( )A. −1或3B. −3或5C. −3D. −19. 若ab <0,且a <b ,下列解不等式正确的是( )A. 由ax <b ,得x <ba B. 由(a −b)x >2,得x >2a−b C. 由bx <a ,得x >abD. 由(b −a)x <2,得x <2b−a10. 已知4x 2+1加上一个单项式后能成为一个整式的完全平方,给出下面五个单项式①4x ,②−2x ,③−4x 2,④4x 4,⑤−1.其中,正确的个数共有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)11.用科学记数法表示0.0102为______.12.计算:(−x3)2⋅x2=______ .13.不等式组{12x<03x+6>0的整数解为______.14.在(x−1)(ax3+3x2−bx+1)的运算结果中不含x3,且x2的系数是−2,那么a=______ ,b=______ .15.若a≠0,s1=−3a,s2=3s1,s3=3s2,s4=3s3,…,s2020=3s2019,则s2020=______.三、解答题(本大题共7小题,共75.0分)16.计算:(1)(a2)3÷(−a)2;(2)(a+2b)(a+b)−3a(a+b).17.(1)计算:√4+(π−1)0−(12)−1;(2)化简:(m+2)(m−2)−(2−m)2.18. 解不等式组{−x +4<23x −4≤8,并把解集在数轴上表示.19. 已知:关于x 的方程x+m 3−2x−12=m 的解为非正数,求m 的取值范围.20. 先将分式(1+3x−1)÷x+2x 2−1进行化简,然后请你给x 选择一个合适的值,求原式的值.21. 下面是某同学对多项式(x 2−4x +2)(x 2−4x +6)+4进行因式分解的过程.解:设x 2−4x =y原式=(y +2)(y +6)+4(第一步) =y 2+8y +16(第二步) =(y +4)2(第三步) =(x 2−4x +4)2(第四步) 请问:(1)该同学第二步到第三步运用了因式分解的______A.提取公因式法B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解22.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为______,图2中阴影部分面积为______,对照两个图形的面积可以验证____公式(填公式名称)请写出这个乘法公式______.(2)应用(1)中的公式,完成下列各题:①已知x2−4y2=15,x+2y=3,求x−2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.答案和解析1.【答案】D【解析】解:A.2a÷a=2,故A不符合题意;B.(2a3−a2)÷a2=2a−1,故B不符合题意;)0×3=3,故C不符合题意;C.(13D.a8÷a2=a6,故D符合题意;故选:D.根据零指数幂,整式的除法,同底数幂的除法法则进行计算即可解答.本题考查了零指数幂,整式的除法,同底数幂的除法,熟练掌握它们的运算法则是解题的关键.2.【答案】C【解析】解:根据题意,得正方形的边长是√10.∵9<10<16,∴3<√10<4.故选:C.根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.此题考查了正方形的面积公式和无理数的估算方法,熟悉1−20的整数的平方.3.【答案】C的值为负,【解析】解:∵12−x∴2−x<0,解得x>2,故选:C.由1的值为负可知,分子分母异号,即得2−x<0,可解得x的取值范围.2−x本题考查分式值的符号问题,解题的关键是掌握分子分母异号时,分式的值是负数.4.【答案】A【解析】解:A、无理数π与−π的和为0,0是有理数,故本选项说法错误,符合题意;B、√81=9,9的平方根是±3,故本选项说法正确,不符合题意C、(−1)2010=1,1是最小的正整数,故本选项说法正确,不符合题意;D、实数与数轴上的点一一对应,故本选项说法正确,不符合题意;故选:A.根据无理数的定义以及运算法则判断A;根据算术平方根、平方根的定义判断B;根据正整数的定义判断C;根据实数与数轴的关系判断D.本题考查了算术平方根、平方根的定义,无理数的定义,正整数的定义,实数与数轴的关系等知识,都是基础知识,需熟练掌握.5.【答案】B【解析】解:原式=(x−a)3−(x−a)2=(x−a)2(x−a−1),故选B.原式变形后,提取公因式即可得到结果.此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.6.【答案】A【解析】【分析】本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.根据同底数幂的乘法法则解答即可.【解答】解:∵3x=4,3y=6,∴3x+y=3x⋅3y=4×6=24.故选:A.【解析】 【分析】本题考查了分式的加减运算,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.先化为同分母的分式,再根据同分母的分式的加减法则进行计算即可. 【解答】 解:原式=2xx−y −x−2y x−y−y x−y=2x −x +2y −yx −y=x+yx−y . 故选C .8.【答案】D【解析】解:根据题意得:√1−2x 3+√3x −53=0,∴1−2x +3x −5=0, ∴x =4, ∴原式=1−√4 =1−2 =−1, 故选:D .根据题意求出x 的值,代入代数式求值即可.本题考查了实数的性质,立方根,得到1−2x +3x −5=0是解题的关键.9.【答案】D【解析】 【分析】本题主要考查了不等式的基本性质,解题的关键是确定x 系数的正负值.先求出a ,b 的大小关系,再运用不等式的基本性质判定.解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>b,故A选项错误;aB、由(a−b)x>2,a−b<0,得x<2,故B选项错误;a−bC、由bx<a,得x<a,故C选项错误;bD、由(b−a)x<2,b−a>0,得x<2,故D选项正确.b−a故选D.10.【答案】D【解析】解:∵4x2+1+4x=(2x+1)2,4x2+1−4x2=12,4x2+1+4x4=(2x2+ 1)2,4x2+1−1=4x2=(2x)2,而和−2x相加不能得出一个式子的平方,∴正确的个数是4,故选D.根据完全平方公式的特点逐个进行判断,即可得出答案.本题考查了对完全平方公式的应用,注意:a2±2ab+b2=(a±b)2,题目比较好,难度适中.11.【答案】1.02×10−2【解析】解:0.0102=1.02×10−2.故答案为:1.02×10−2.绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】x8【解析】解:(−x3)2⋅x2=x8.故答案为:x8.先根据幂的乘方计算,再根据同底数幂的乘法计算即可.此题考查整式的乘法,关键是根据法则和运算顺序进行计算.13.【答案】−1【解析】解:{12x<0①3x+6>0②解不等式①得:x<0,解不等式②得:x>−2,∴不等式组的解集是−2<x<0,∴不等式组的整数解为−1,故答案为:−1.先求出不等式组的解集,再求出不等式组的整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.14.【答案】3;−1【解析】解:(x−1)(ax3+3x2−bx+1)=ax4+3x3−bx2+x−ax3−3x2+bx−1=ax4+(3−a)x3+(−b−3)x2+(1+b)x−1,∵在(x−1)(ax3+3x2−bx+1)的运算结果中不含x3,且x2的系数是−2,∴3−a=0,−b−3=−2,解得:a=3,b=−1,故答案为:3,−1.根据多项式乘以多项式法则展开,再合并同类项即可得出3−a=0,−b−3=−2,求出即可.本题考查了多项式乘以多项式法则的应用,能灵活运用法则进行计算是解此题的关键.15.【答案】−1a【解析】解:∵s1=−3a,∴s2=3s1=3−3a=1−a,,s3=3s2=31−a=−3a,s4=3s33−3a=1−a,…,∴这数列以−3a,−1a不断循环出现,∴s2020=s2=−1a,故答案为:−1a.求出前几个数,再分析其规律,即可求s2020的值.本题主要考查分式的混合运算,数字的变化规律,解答的关键是由所给的式子总结出存在的规律.16.【答案】解:(1)原式=a6÷a2=a4;(2)原式=a2+ab+2ab+2b2−3a2−3ab=−2a2+2b2.【解析】(1)先算乘方,再算除法即可;(2)先算乘法,再合并同类项即可.本题考查了整式的混合运算的应用,主要考查学生的计算能力.17.【答案】解:(1)原式=2+1−2=1;(2)原式=m2−4−(4−4m+m2)=m2−4−4+4m−m2=4m−8【解析】(1)根据二次根式的性质,零指数幂和负整数指数幂的意义即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.本题考查学生的计算能力,解题的关键是熟练运算二次根式的性质,整式运算的相关运算公式,乘法公式,本题属于基础题型.18.【答案】解:{−x+4<2①3x−4≤8②,解不等式①得x>2,解不等式②得x⩽4,∴原不等式组的解集为2<x≤4,在数轴上表示如下:.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.19.【答案】解:方程x+m3−2x−12=m,2x+2m−6x+3=6m,−4x=4m−3,x=−4m−34.因为它的解为非正数,即x≤0,∴−4m−34≤0,得m≥34.【解析】本题是于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得m的值.当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.20.【答案】解:原式=x+2x−1×(x+1)(x−1)x+2=x+1,取值时注意x≠±1,−2,当x=3时,原式=4.故答案为4.【解析】先算小括号里的,再把除法统一成乘法,约分化为最简,各分母的分母不为0决定x的取值.分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.21.【答案】解:(1)C;(2)不彻底;(x−2)4;(3)原式=(x2−2x)2+2(x2−2x)+1=(x2−2x+1)2=(x−1)4.【解析】此题考查了因式分解−运用公式法,熟练掌握因式分解的方法是解本题的关键.(1)观察分解过程发现利用了完全平方公式;(2)该同学分解不彻底,最后一步还能利用完全平方公式分解;(3)仿照题中方法将原式分解即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式,选择C,故答案为C;(2)该同学因式分解的结果不彻底,最后结果为(x−2)4;故答案为不彻底;(x−2)4;(3)见答案.22.【答案】(1)a2−b2;(a+b)(a−b);平方差;a2−b2=(a+b)(a−b);(2)①∵x2−4y2=(x+2y)(x−2y),∴15=3(x−2y),∴x−2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2−1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22−1)(22+1)(24+1)(28+1)……(264+1)+1=(24−1)(24+1)(28+1)……(264+1)+1=(28−1)(28+1)……(264+1)+1=(264−1)(264+1)+1=2128−1+1=2128.【解析】本题主要考查了平方差公式的几何表示,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.表示出图形阴影部分面积是解题的关键.(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2−4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=3代入即可求解;②利用平方差公式化成式子相乘的形式即可求解.【解答】解:(1)图1中阴影部分面积为a2−b2,图2中阴影部分面积为(a+b)(a−b),对照两个图形的面积可以验证平方差公式:a2−b2=(a+b)(a−b).故答案为:a2−b2,(a+b)(a−b),平方差,a2−b2=(a+b)(a−b).(2)①,②见答案.。
七年级第二学期4月份月考数学试卷含答案一、选择题1.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7!2.在下列各数22 ,,3π⋯⋯ (两个1之间,依次增加1个0),其中无理数有( )A .6个B .5个C .4个D .3个 3.2-是( )A .负有理数B .正有理数C .自然数D .无理数 4.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n 5.若2(1)|2|0x y -++=,则x y +的值等于( )A .-3B .3C .-1D .1 6.下列说法正确的是 ( ) A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等7.若a ,b 均为正整数,且a >b <+a b 的最小值是( ) A .3 B .4 C .5 D .68.设4a ,小整数部分为b ,则1a b -的值为( )A . BC .12+D .12-9.若m 、n 满足()210m -+=的平方根是( )A .4±B .2±C .4D .2 10.3的平方根是( )A .B .9CD .±9 二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.已知,x 、y 是有理数,且y 4,则2x +3y 的立方根为_____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.16.如果某数的一个平方根是﹣5,那么这个数是_____.17.写出一个大于3且小于4的无理数:___________.18.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.19.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 20.2x -﹣x|=x+3,则x 的立方根为_____.三、解答题21.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…… 在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 22.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 23.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.24.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 25.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.26.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接根据题目所给新定义化简计算即可.【详解】根据题中的新定义得:原式=7×6×5×4×3×2×1=7!.故选:B .【点睛】本题考查的知识点是有理数的混合运算,读懂题意,理解题目所给定义的运算方法是解此题的关键.2.D解析:D【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【详解】在下列各数22 , ,3π⋯⋯(两个1之间,依次增加1个0),其中有理数有:222,,63=-=-,π,0.1010010001……共3个.故选:D .【点睛】此题考查无理数的定义.解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D 错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B 、C 错误;∴2-是负有理数,A 正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.4.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.5.C解析:C【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】根据题意得,x-1=0,y+2=0,解得x=1,y=-2,所以x+y=1-2=-1.故选:C.【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.6.D解析:D【分析】当m是负数时,-m表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A选项错误;B. 平方根等于它本身的数为0,故B选项错误;C. 倒数是本身的数为1和﹣1,故C选项错误;D. 互为相反数的绝对值相等,故D 选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键. 7.B解析:B【分析】的范围,然后确定a 、b 的最小值,即可计算a +b 的最小值.【详解】23.∵a a 为正整数,∴a 的最小值为3.12.∵b b 为正整数,∴b 的最小值为1,∴a +b 的最小值为3+1=4.故选B .【点睛】本题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.8.D解析:D【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=-2∴1222122a b -==-=-. 故选D .【点睛】本题考查估算无理数的大小.9.B解析:B【分析】根据非负数的性质列式求出m 、n ,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.10.A解析:A【分析】直接根据平方根的概念即可求解.【详解】解:∵(2=3,∴3的平方根是为.故选A .【点睛】本题主要考查了平方根的概念,比较简单.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.-2.根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(解析:-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:20 20 xx-≥⎧⎨-≥⎩,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.2=-.故答案是:﹣2.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.16.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x ≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.17.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.18.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a -【解析】由数轴得,a +b <0,b-a >0,=-a-b +b-a =-2a.故答案为-2a.点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.19.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】20.3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】∴x﹣2≥0,解得:x≥2,﹣2=x+3,5,故x﹣2=25,解得:x=27,故x的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.三、解答题21.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.22.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯)=12×5051=25 51.点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.23.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.24.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数,所以当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2. 故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【点睛】 本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.25.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.26.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴223++的平方根是±12.2a b c【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.。
七年级(下)学期4月份月考检测数学试题含答案一、选择题1.设n 为正整数,且20191n n <<+,则n 的值为( )A .42B .43C .44D .45 2.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=3 3.若24a =,29b =,且0ab <,则-a b 的值为( ) A .5±B .2-C .5D .5- 4.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C .m 倍D .2m 倍 5.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n6.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B .5C .6D .37.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边8.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡=⎣=按照此规定, 101⎡⎤⎣⎦的值为( )A 101B 103C 104D 101+9.在下列实数中,无理数是( )A .337B .πC 25D .1310.下列运算正确的是( )A 42=±B 222()-=-C 382-=-D .|2|2--=二、填空题11.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 12.若()2320m n ++-=,则m n 的值为 ____.13.与0.5_____0.5.(填“>”、“=”、“<”)14.+(y+2)2=0,则(x+y)2019等于_____.15.已知,x 、y 是有理数,且y 4,则2x +3y 的立方根为_____.16.=__________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.﹣x|=x+3,则x 的立方根为_____.19.如果a =b 的整数部分,那么ab =_______.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________. 三、解答题21.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++22.阅读下列解题过程:(12====;(2== 请回答下列问题: (1)观察上面解题过程,的结果为__________________. (2)利用上面所提供的解法,请化简: ......23.定义☆运算:观察下列运算:☆两数进行☆运算时,同号 ,异号 . 特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.24.计算(1)+|-5|1)2020(22|25.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2) 请解答:(1的整数部分是 ,小数部分是 ;(2a b ,求a +b26.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到4445<<,再根据已知条件即可求得答案.【详解】解:∵193620192025<<∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+ ∴44n =.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.B解析:B【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【详解】A 5,故选项A 错误;B 9,故选项B 正确;C =10,故选项C 错误;D 、=±3,故选项D 错误.故选:B .【点睛】本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义与性质.3.A解析:A【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴,故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.5.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】n ,解:这个自然数是2n,则和这个自然数相邻的下一个自然数是21.故选:D.【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.6.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.B解析:B【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3,故选:B.【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.9.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.C解析:C【分析】分别计算四个选项,找到正确选项即可.【详解】2=,故选项A 错误;2==,故选项B 错误;2=-,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题11.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…, ∴1()2019f 2019, ∴1(2019)()2019f f 2018-2019=-1. 故答案为:-1.【点睛】 本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可. 【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键.15.-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(解析:-2.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后计算出2x+3y的值,进而可得立方根.【详解】解:由题意得:20 20 xx-≥⎧⎨-≥⎩,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.2=-.故答案是:﹣2.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10=1+2+3+n+=1+2+326+=351故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1=1.故答案为:1【点睛】本题考查平方解析:1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*)=(2+2)*(3-4)=4*(-1)==2-1=1.故答案为:1【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键. 18.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x的取值范围进而得出x的值,求出答案.【详解】∴x﹣2≥0,解得:x≥2,﹣2=x+3,5,故x﹣2=25,解得:x=27,故x的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.19.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<<∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯=111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭ 1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.22.(1-2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】解:(1==(2......==-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.23.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.24.(1)0;(2)4.【分析】 (1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|=43(25-+=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.25.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.26.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.。
安徽省六安市2019-2020学年中考第四次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16πD.82.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.成绩人数(频数)百分比(频率)5 0.210 515 0.420 5 0.1根据表中已有的信息,下列结论正确的是()A.共有40名同学参加知识竞赛B.抽到的同学参加知识竞赛的平均成绩为10分C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D.抽到同学参加知识竞赛成绩的中位数为15分3.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+14.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )A .B .C .D .6.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③BC=2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个7.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱8.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个9.下列运算不正确的是 A . B .C .D .10.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A.255B.55C.2D.1211.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B.C.D.12.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C 处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.14.将2.05×10﹣3用小数表示为__.15.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.16.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.17.如图,在矩形ABCD 中,AB =4,BC =5,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE .延长AF 交边BC 于点G ,则CG 为_____.18.已知'''ABC A B C ∆∆:且''':1:2ABC A B C S S ∆∆=,则:''AB A B =__________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(6分)如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为¶AB ,P 是半径OB 上一动点,Q 是¶AB 上的一动点,连接PQ .(1)当∠POQ = 时,PQ 有最大值,最大值为 ;(2)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求¶BQ的长; (3)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积.21.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(8分)计算:2﹣1+|﹣3|+12+2cos30°23.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;PC ,求⊙O的半径.(2)若2525.(10分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?26.(12分)解方程组:222232() x yx y x y ⎧-=⎨-=+⎩.27.(12分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.2.B【解析】【分析】根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同学参加知识竞赛的平均成绩为:0505030010050++++=10,故选项B正确;∵0分同学10人,其频率为0.2,∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;∵第25、26名同学的成绩为10分、15分,∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.故选:B.【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键. 3.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.4.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质5.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C6.D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=,∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣22)=4+22,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.B【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.8.B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!【解析】,B是错的,A、C、D运算是正确的,故选B10.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.11.A【解析】【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-12ba->0,即可进行判断.【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根.∴函数y=ax2+(b-1)x+c与x轴有两个交点,又∵-2ba >0,a >0 ∴-12b a -=-2b a +12a>0∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件, 故选A . 12.D 【解析】 【分析】过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,根据折叠得出∠C′AB=∠CAB ,根据角平分线性质得出BN=BM ,根据三角形的面积求出BN ,即可得出点B 到AD 的最短距离是8,得出选项即可. 【详解】解:如图:过B 作BN ⊥AC 于N ,BM ⊥AD 于M ,∵将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C′处, ∴∠C′AB=∠CAB , ∴BN=BM ,∵△ABC 的面积等于12,边AC=3, ∴12×AC×BN=12, ∴BN=8, ∴BM=8,即点B 到AD 的最短距离是8, ∴BP 的长不小于8, 即只有选项D 符合, 故选D . 【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B 到AD 的最短距离,注意:角平分线上的点到角的两边的距离相等. 二、填空题:(本大题共6个小题,每小题4分,共24分.)【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.14.0.1【解析】试题解析:原式=2.05×10-3=0.1.【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.15.1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故答案为1.【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:5 6 7 8 95 ﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6 (5、6)﹣﹣﹣(7、6)(8、6)(9、6)7 (5、7)(6、7)﹣﹣﹣(8、7)(9、7)8 (5、8)(6、8)(7、8)﹣﹣﹣(9、8)9 (5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=82. 205故答案为2 5 .【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.17.4 5【解析】【分析】如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF =AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°; 在Rt △EFG 与Rt △ECG 中,EF ECEG EG =⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ; 同理可证:AF =AD =5,∠FEA =∠DEA , ∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE, ∴2EF AF FG =g ∴22=5•x ,∴x =45, ∴CG =45,故答案为:45.【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.18.【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可. 详解:∵△ABC ∽△A′B′C′, ∴S △ABC :S △A′B′C′=AB 2:A′B′2=1:2,∴AB :A′B′=1点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)23;(2)这两个数字之和是3的倍数的概率为13. 【解析】 【分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率. 【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23, 故答案为23; (2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为39=13. 【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.20.(1)90︒;(2)103π;(3)25100π- 【解析】 【分析】(1)先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论; (2)先判断出∠POQ =60°,最后用弧长用弧长公式即可得出结论;(3)先在Rt △B'OP 中,OP 2+210) =2( 10 - O P ) ,解得OP =10- ,最后用面积的和差即可得出结论. 【详解】解:(1)∵P 是半径OB 上一动点,Q 是¶AB 上的一动点, ∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ =90°,PQ ==,故答案为:90°, ; (2)解:如图,连接OQ , ∵点P 是OB 的中点, ∴OP =12OB =12OQ . ∵QP ⊥OB , ∴∠OPQ =90°在Rt △OPQ 中,cos ∠QOP =OP 12=OQ , ∴∠QOP =60°, ∴l BQ 6010101803ππ=⨯= ; (3)由折叠的性质可得,,102''===BP B P AB AB ,在Rt △B'OP 中,OP 2+2(10210)- =2( 10 - O P ) ,解得OP =10210-, S 阴影=S 扇形AOB ﹣2S △AOP =290110210(10210)2510021003602ππ⨯-⨯⨯⨯-=-+.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键. 21.-17.1 【解析】 【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的. 【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2), =﹣8﹣14﹣9÷(﹣2), =﹣62+4.1, =﹣17.1. 【点睛】此题要注意正确掌握运算顺序以及符号的处理. 22.123 【解析】 【分析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值. 【详解】 原式=1233+2×32=123【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.23.(1)详见解析;(2)详见解析.【解析】【详解】试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换24.(1)证明见解析;(2)1.【解析】【分析】(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(52﹣(5﹣r)2,求出r的值即可.【详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(25)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(25)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.25.(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图26.111, 1x y =⎧⎨=-⎩;223232xy⎧=-⎪⎪⎨⎪=⎪⎩;331252xy⎧=-⎪⎪⎨⎪=-⎪⎩.【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解. 详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩(Ⅱ),解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩ , ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.27.(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人. 【解析】 【分析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可; (2)由“主动质疑”占的百分比乘以360°即可得到结果; (3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果. 【详解】(1)根据题意得:224÷40%=560(名), 则在这次评价中,一个调查了560名学生; 故答案为:560; (2)根据题意得:84560×360°=54°, 则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度; 故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800×168840 560⨯=(人),则“独立思考”的学生约有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
安徽省六安市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列函数中,二次函数是( ) A .y =﹣4x+5 B .y =x(2x ﹣3) C .y =(x+4)2﹣x 2D .y =21x2.-sin60°的倒数为( ) A .-2B .12C .-33D .-2333.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A .B .C .D .4.如图,⊙O 的直径AB=2,C 是弧AB 的中点,AE ,BE 分别平分∠BAC 和∠ABC ,以E 为圆心,AE 为半径作扇形EAB ,π取3,则阴影部分的面积为( )A 1324﹣4 B .2﹣4C .6﹣524D 3255.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A.2 B.3 C.4 D.56.计算22783-⨯的结果是()A.3B.43C.533D.237.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,48.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣29.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差10.下列运算正确的是()A.2a2+3a2=5a4B.(﹣12)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2D.8ab÷4ab=2ab 11.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133 -=.12.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B 重合),则2PD+PB的最小值为()A.B.C.10 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.(1)AB的长等于_____;(2)点F 是线段DE 的中点,在线段BF 上有一点P ,满足53BP PF =,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.14.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是_____.15.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.16.如图,在直角坐标平面xOy 中,点A 坐标为()3,2,90AOB ∠=o ,30OAB ∠=o ,AB 与x 轴交于点C ,那么AC :BC 的值为______.17.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.18.一艘货轮以18km/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB 的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.20.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.22.(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.23.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.24.(10分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?25.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P 为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PC CECD CB=; (2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)若PE =1,求△PBD 的面积.26.(12分)先化简,再求值:2222+244a b a b a b a ab b --÷++﹣1,其中a=2sin60°﹣tan45°,b=1. 27.(12分)先化简,再求值:2231422a a a a a a-÷--+-,其中a 与2,3构成ABC ∆的三边,且a 为整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x-3)=2x 2-3x ,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x 是组合函数,故此选项错误. 故选B. 2.D 【解析】分析:3sin 60-︒=根据乘积为1的两个数互为倒数,求出它的倒数即可. 详解:3sin 60-︒=1,⎛⎛⨯= ⎝⎭⎝⎭Q的倒数是3-. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键. 3.C 【解析】 【分析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可. 【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意; B 、由一次函数图象可知,k >0,∴﹣k <0,-22k -=1k>0,∴二次函数的图象开口向下,且对称轴在x 轴的正半轴,故B 选项不合题意; C 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故C 选项符合题意; D 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故D 选项不合题意; 故选:C . 【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等. 4.A 【解析】∵O 的直径AB=2, ∴∠C=90°,∵C 是弧AB 的中点,∴»»AC BC=, ∴AC=BC ,∴∠CAB=∠CBA=45°,∵AE ,BE 分别平分∠BAC 和∠ABC , ∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°, 连接EO ,∵∠EAB=∠EBA , ∴EA=EB , ∵OA=OB , ∴EO ⊥AB ,∴EO 为Rt △ABC 内切圆半径, ∴S △ABC =12(AB+AC+BC)⋅EO=12AC ⋅BC , ∴2−1,∴AE 2=AO 2+EO 2=122−1)22, ∴扇形EAB 的面积135(422)π-9(22)-△ABE 的面积=12AB ⋅2−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积22132-, ∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−(221324-)=1324−4,故选:A. 5.C 【解析】 【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AECD CE=;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB ACACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDEAEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CEBD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CEBD ∴= 同理可得:ABE CDE ∆~∆AB AE CD CE ∴=,即8AB CD CE= AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB ACACB ADB ABC ADC BD CD ∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅=故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键. 6.C 【解析】 【分析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可. 【详解】原式=33﹣22·63=33﹣433=533.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.7.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.8.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.D【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;∴平均数不发生变化.B. ∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C. ∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-; ∴方差发生了变化.故选D. 点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 10.B【解析】【分析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A. 2a 2+3a 2=5a 2,故本选项错误;B. (−12)-2=4,正确; C. (a+b)(−a−b)=−a 2−2ab−b 2,故本选项错误;D. 8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.11.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.12.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB的最小值为4,故选D.【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13109见图形【解析】分析:(Ⅰ)利用勾股定理计算即可;(Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:(Ⅰ)AB的长=22=109;310(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格点G、H,连接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.连接EK交BF于P,可证BP:PF=5:3.109;(Ⅱ)由题意:连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F.因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K.因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3.点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.14.1【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:372 291xx+≥⎧⎨-<⎩①②解①得:x≥﹣53,解②得:x<1,∴不等式组的解集为﹣53≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.15.1【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.16.3【解析】过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.先证△ADO ∽△OEB ,再根据∠OAB =30°求出三角形的相似比,得到OD:OE=2∶3,根据平行线分线段成比例得到AC:BC=OD:OE=2∶3=23 【详解】解:如图所示:过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.∵∠OAB =30°,∠ADE =90°,∠DEB =90°∴∠DOA+∠BOE =90°,∠OBE+∠BOE =90°∴∠DOA=∠OBE∴△ADO ∽△OEB∵∠OAB =30°,∠AOB =90°,∴OA ∶3∵点A 坐标为(3,2)∴AD=3,OD=2 ∵△ADO ∽△OEB∴3AD OA OE OB==∴OE 3=∵OC ∥AD ∥BE根据平行线分线段成比例得:AC:BC=OD:OE=2323 23. 【点睛】 本题考查三角形相似的证明以及平行线分线段成比例.17.1【分析】利用△ACD∽△CBD,对应线段成比例就可以求出.【详解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴CD BD AD CD=,∴49CDCD=,∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.18.1【解析】【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE⊥AB于E,1km/h×30分钟=9km,∴AC=9km,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解析】【分析】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=3,∴BE=BD+DE=7+3,故答案为:7+3或7﹣3.【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】【分析】利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高【详解】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.【点睛】此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.21.(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.考点:列表法或树状图法求概率.22.(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为83或2或8﹣2..【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC224+4=42∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴AH AC AC AG=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(42)2=1.∴△AGH的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC 上取一点M ,使得BM =BE ,∴∠BME =∠BEM =43°,∵∠BME =∠MCE+∠MEC ,∴∠MCE =∠MEC =22.3°,∴CM =EM ,设BM =BE =m ,则CM =EM 2m , ∴m+2m =4,∴m =4(2﹣1),∴AE =4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m 的值为83或2或8﹣42. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.300米【解析】【详解】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.24.(1)0<x≤200,且 x 是整数(2)175【解析】【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:105010505635x x⨯=⨯+,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.25.(1)见解析;(2) AC∥BD,理由见解析;(3)5 2【解析】【分析】(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.【详解】(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)解:结论:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵PC CE CD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB =90°,∴∠ACB =∠CBD ,∴AC ∥BD ;(3)解:如图所示:作PM ⊥BD 于M ,∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4,∵△PCE ∽△DCB , ∴EC PE CB BD=,即4142BD =, ∴BD =2,∵∠PBM =∠CBD ﹣∠CBP =45°,BP =BE +PE =4+1=5,∴PM =5sin45°=52 ∴△PBD 的面积S =12BD•PM =12×2×522=52.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.263【解析】【分析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得2-+a b a b ×()()()22a b a b a b ++--1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a 的值,再将a 、b 的值代入化简结果中计算即可解答本题.【详解】原式=2-+a b a b ×()()()22a b a b a b ++--1 =2++a b a b -1 =2a b a b a b a b++-++ =b a b+,当a═2sin60°﹣tan45°=2×2﹣﹣1,b=1时,原式3=. 【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.27.1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233aa a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a<3+2,即1<a<5,又∵a 为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式=14-3=1。
安徽省七年级下学期数学4月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八上·蕉城月考) 在, -0.01, -5 , 700, 4 ,,, 0中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)(2016·福田模拟) 下列命题中,不正确的是()A . 有一个角是60°的等腰三角形是等边三角形B . 一组对边平行且一组对角相等的四边形是平行四边形C . 对角线互相垂直且相等的四边形是矩形D . 对角线相等的菱形是正方形3. (2分) (2017七下·长安期中) 如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A . ∠D+∠DAB=180°B . ∠B=∠DCEC . ∠1=∠2.D . ∠3=∠44. (2分) (2019七下·安阳期末) 下列各式中,正确的是()A .B .C .D .5. (2分) (2019八上·滨海期末) 在平面直角坐标系中,点P(-3.2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)(2019·朝阳模拟) 现有A、B两种商品,买3件A商品和2件B商品用了160元,买2件A商品和3件B商品用了190元.如果准备购买A、B两种商品共10件,下列方案中费用最低的为()A . A商品7件和B商品3件B . A商品6件和B商品4件C . A商品5件和B商品5件D . A商品4件和B商品6件7. (2分)(2018·金华模拟) 如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A . 85°B . 70°C . 75°D . 60°8. (2分)在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1-a,-b)在第()象限A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2020八上·济阳月考) 若方程组,则a+b等于()A . 3B . 4C . 2D . 110. (2分) (2019七下·吉安期末) 如图,已知,,,则的度数为A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2017八上·三明期末) 在直角坐标系中,有点P(﹣2,3),则点P到x轴的距离是________.12. (1分) (2018八上·兰考期中) 命题“同位角相等”改写成“如果,那么”的形式是:________.13. (1分) (2020八下·北京月考) 若,则m+n的值为________.14. (1分) (2020七下·李沧期末) 如图,在△ABC中,AB=AC=8cm,BC=5cm.D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点A′的位置,点A′在△ABC的外部,则阴影部分图形的周长为________cm.15. (1分) (2020八下·宝安期中) 如图,在中,,,,将沿射线的方向平移2个单位后,得到,连结,则的周长为________.16. (1分) (2020七上·江都月考) 池塘里浮萍面积每天长大一倍,若经过12天长满整个池塘,问需________天浮萍长满半个池塘;三、解答题 (共7题;共61分)17. (10分) (2021八下·绍兴期中) 计算:(1);(2)18. (10分) (2019八上·榆林期末) 解方程组:19. (5分) (2019七下·杨浦期末) 如图,点A、B、C和点D、E、F分别在同一直线上,,,试说明相等的理由.解:因为(已知)所以DF//AC(________)所以(________)又因为(已知),所以.所以________// ________;所以∠________;又∠________;所以.20. (6分) (2020八下·寻乌期中) 如图,直线的解析式为:,且与轴交于点,直线经过点,,直线,交于点.(1)求直线的解析表达式;(2)求△ADC的面积.21. (5分) (2020七下·营口期中) 如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠▲(▲)∵∠3=∠4(已知)∴∠3=∠▲(▲)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(▲)即∠▲=∠▲(▲)∴∠3=∠▲∴AD∥BE(▲)22. (10分)某商场经销水杯,电热水壶两种商品,水杯每个进价15元,售价20元;电热水壶每个进价35元,售价45元.(1)若该商场同时购进水杯、电热水壶共100件,恰好用去2700元,求能购进水杯、电热水壶各多少个?(2)商场要求小明用1050元的钱(必须全部用完)采购水杯、电热水壶(或其中一种商品),且还要求总利润不少于340元(假设商品全部卖完),请你确定所有的进货方案.23. (15分) (2020七下·阳东期末) 如图,已知,试再添上一个条件,使成立.(1)要求给出两个答案;(2)选择其中一个进行证明.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共61分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
安徽省六安市七年级下学期数学4月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·萧山月考) 下列方程中,是二元一次方程的是()A . 4x=B . 3x﹣2y=4zC . 6xy+9=0D . +4y=62. (2分) (2018八上·营口期末) 下列计算正确的是()A . (x﹣y)2=x2﹣y2B . (﹣a2b)3=a6b3C . a10÷a2=a5D . (﹣3)﹣2=3. (2分)(2012·葫芦岛) 下列各数中,是不等式2x﹣3>0的解的是()A . ﹣1B . 1C . ﹣2D . 24. (2分) (2017八下·顺义期末) 下列图形中,内角和与外角和相等的是()A .B .C .D .5. (2分) (2018八上·靖远期末) 在下列四个命题中,是真命题的是()A . 两条直线被第三条直线所截,内错角相等B . 如果x2=y2 ,那么x=yC . 三角形的一个外角大于这个三角形的任一内角D . 直角三角形的两锐角互余6. (2分) (2019七下·中山期末) 如图,AB∥CD ,∠CED=90°,∠AEC=35°,则∠D的大小()A . 35°B . 45°C . 55°D . 65°7. (2分) (2016七上·磴口期中) 若,则x2+y2的值是()A . 0B .C .D . 18. (2分)如图,已知直线AB和CD相交于O点,是直角,OF平分,,则的大小为()A .B .C .D .二、填空题 (共8题;共9分)9. (1分)(2012·辽阳) 微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000000 7平方毫米,用科学记数法表示为________平方毫米.10. (1分)(2020·西安模拟) 如图,五边形ABCDE的每一个内角都相等,则外角∠CBF=________.11. (1分) (2015七下·滨江期中) 已知am=4,an= ,则a2m﹣3n=________.12. (2分)(2020七下·宁波期中) 若,,则代数式的值是________.13. (1分) (2017七下·广州期中) 如果是方程的一个解,那么a=________;14. (1分) (2018八上·嵊州期末) 已知不等式﹣4x≤﹣8,两边同时除以“﹣4”得________15. (1分)(2017·滨海模拟) 在△ABC中,点D、E分别在AB、AC上,且CD于BE相交于点F,已知△BDF 的面积为12,△BCF的面积为16,△CEF的面积为12,则四边形ADFE的面积为________.16. (1分)在等腰三角形ABC中,AC为腰,O为BC中点,OD平行AC,∠C=30°,求∠AOD=________.三、解答题 (共7题;共62分)17. (10分) (2017七下·扬州期中) 计算(1)2a3•(a2)3÷a;(2)(3)(x﹣1)2﹣x(x+1);(4) 20172﹣2016×201818. (20分) (2020八上·大冶期末) 分解因式:(1) x2y﹣4y;(2)(a+2)(a﹣2)+3a.19. (10分)综合题。
安徽省2017~2020学年度七年级第四次月考数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案1.算术平方根等于它本身的数是()A. 0B. -1C. 1D. 0和12.中国有着丰富的物种资源,其中蝴蝶就有1600种.我国于1963年发行了一套特种邮票,共收集了我国其有代表性的20种蝴蝶,这是第6枚--美丽的粉绿燕风蝶.下图所示的蝴蝶哪个可以通过平移得到()A B C D3.已知如图①~④,其中∠1与∠2是同位角的有()A. ①②③④B. ①②③C. ①③D. ①4.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120° B.130°C.140° D.150°5.下列命题中,假命题是()A.邻补角的平分线互相垂直B.平行于同一直线的两条直线互相平行C.垂直于同一直线的两条直线互相垂直D.平行线的一组内错角的平分线互相平行6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是()A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A. 30°B. 45°C. 60°D. 75°第7题图第9题图第10题图8.关于代数式3−4x的说法正确的是()A.x=0时最大 B.x=0时最小 C.x=-4时最大 D.x=-4时最小9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.20cm B.21cm C.16cm D.18cm10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2 B.3∠A=2∠1+∠2C.2∠A=∠1+∠2 D.3∠A=2(∠1+∠2)得分评卷人二、填空题(每题5分,共20分)11.写出一个有理数和无理数,使它们都是大于-2的负数:.12.如图,直线AB、CD、EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF= .得分评卷人第12题图第13题图第14题图13.如图,数轴上A、B两点表示的数分别为1和3,且AB=AC,那么数轴上C点表示的数为.14.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:①OB∥AC ②∠EOC=45°③∠OCB :∠OFB=1:3 ④若∠OEB=∠OCA,则∠OCA=60°得分评卷人三、解答题(共90分)15.计算|3-2|+|3-1|-417.如图,方格中有一条美丽可爱的小金鱼.(1)若每个小方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).18.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,求证∠B+∠F=180°.证明:∵∠B= (已知),∴AB∥C( ),∵∠DGF= (已知),∴CD∥EF( ),∴AB∥ ( )∴∠B+ =180°( ).19.如图,AC∥BD,AE平分∠BAC交BD于点E. 若∠1=64°,∠2等于多少度?20.(1)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根;(2)若2a-4与3a+1是同一个正数的平方根,求a的值.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗? 为什么?(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由。
22.阅读理解题:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a+bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似. 例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i ;(1+i)×(2-i)=1×2-i+2×i -i 2=2+(-1+2)i+1=3+i ; 根据以上信息,完成下列问题: (1)填空:i 3= ,i 4= ; (2)计算:(1+i)×(3-4i);(3)计算:i+i 2+i 3+…+i 2018.23.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解 决许多问题。
(1)小明遇到了下面的问题:如图1,l 1∥l 2,点P 在l 1、l 2内部,探究∠A ,∠APB , ∠B 的关系.小明过点P 作l 1的平行线,可证∠APB ,∠A ,∠B 之间的数量关系是: ∠APB= .l 2l 1图1P BA(2)如图2,若AC ∥BD ,点P 在AB 、CD 外部,∠A ,∠B ,∠APB 的数量关系是 否发生变化?请写出证明过程.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC ,求证:∠A +∠B +∠C =180°.安徽省2017~2020学年度七年级第四次月考数学试题 参考答案完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号1 2 3 4 5 6 7 8 9 10 答案DCCBCDDCAC1.算术平方根等于它本身的数是( D )A. 0B. -1C. 1D. 0和12.中国有着丰富的物种资源,其中蝴蝶就有1600种.我国于1963年发行了一套特种邮票,共收集了我国其有代表性的20种蝴蝶,这是第6枚--美丽的粉绿燕风蝶.下图所示的蝴蝶哪个可以通过平移得到( C )得 分 评卷人A B C D3.已知如图①~④,其中∠1与∠2是同位角的有( C )A. ①②③④B. ①②③C. ①③D. ①4.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( B )A.120° B.130°C.140° D.150°5.下列命题中,假命题是( C )A.邻补角的平分线互相垂直B.平行于同一直线的两条直线互相平行C.垂直于同一直线的两条直线互相垂直D.平行线的一组内错角的平分线互相平行6.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E、G为垂足,则下列说法中错误的是( D )A.CE∥FGB.CE=FGC.A、B两点的距离就是线段AB的长D.直线a、b间的距离就是线段CD的长7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( D )A. 30°B. 45°C. 60°D. 75°第7题图第9题图第10题图8.关于代数式3−4x的说法正确的是( C )A.x=0时最大 B.x=0时最小 C.x=-4时最大 D.x=-4时最小9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是( A )A.20cm B.21cm C.16cm D.18cm10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是( C )A.∠A=∠1+∠2 B.3∠A=2∠1+∠2C.2∠A=∠1+∠2 D.3∠A=2(∠1+∠2)得分评卷人二、填空题(每题5分,共20分)11.写出一个有理数和无理数,使它们都是大于-2的负数: -1(或-1.5等),-2(或-3等).12.如图,直线AB、CD、EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF= 30°.第12题图第13题图第14题图13.如图,数轴上A、B两点表示的数分别为1和3,且AB=AC,那么数轴上C点表示的数为 2-3.14.已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是①④:①OB∥AC ②∠EOC=45°③∠OCB :∠OFB=1:3 ④若∠OEB=∠OCA,则∠OCA=60°得分评卷人三、解答题(共90分)15.计算|3-2|+|3-1|-4解:原式=2-3+3-1-2=-116.求x的值:4(x+1)2=64解:(x +1)2=16,x +1=4或x +1=-4, x =3或x =-5.17.如图,方格中有一条美丽可爱的小金鱼.(1)若每个小方格的边长为1,则小鱼的面积为 12.5 ; (2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).18.推理填空:如图,已知∠B =∠CGF ,∠DGF =∠F ,求证∠B +∠F =180°. 证明:∵∠B= ∠CGF (已知),∴AB ∥C( 同位角相等,两直线平行 ), ∵∠DGF= ∠F (已知),∴CD ∥EF( 内错角相等,两直线平行 ),∴AB ∥ EF ( 平行于同一条直线的两条直线平行 ) ∴∠B+ ∠F =180°( 两直线平行,同旁内角互补 ).19.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E. 若∠1=64°, ∠2等于多少度?解:如图所示:∵∠1=64°,∴∠BAC=180°-∠1=180°-64°=116°, ∵AE 平分∠BAC ,∴∠3=21∠BAC=58°. ∵AC ∥BD ,∴∠2=180°-∠3=180°-58°=122°.20.(1)已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根;(2)若2a -4与3a +1是同一个正数的平方根,求a 的值. 解:(1)依题意,得2a -1=9且3a +b -1=16,∴a =5,b =2. ∴a +2b =5+4=9. ∴a +2b 的平方根为±3, 即±a +2b =±3.(2) ∵2a -4与3a -1是同一个正数的平方根, ∴2a -4+3a -1=0 ∴5a -5=0 ∴5a =5∴a =121.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F .(1)CD 与EF 平行吗? 为什么?(2)如果∠1=∠2,试判断DG 与BC 的位置关系,并说明理由。