山东省德州市2016届高三上学期期中数学试卷(文科)含解析
- 格式:doc
- 大小:974.50 KB
- 文档页数:17
2016年山东省德州市高考数学一模试卷(文科)一、选择题1.复数是虚数单位)的共轭复数为()A .B .C .D .2.若全集U=R,集合A={x|x2﹣x﹣2≥0},B={x|log3(2﹣x)≤1},则A∩(∁U B)=()A.{x|x<2}B.{x|x<﹣1或x≥2}C.{x|x≥2}D.{x|x≤﹣1或x>2}3.已知p:“直线l 的倾斜角”;q:“直线l的斜率k>1”,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.为了增强环保意识,某校从男生中随机制取了60人,从女生中随机制取了50人参加环保知识测试,统计数据如表所示,经计算K2=7。
822,则环保知识是否优秀与性别有关的把握为()优秀非优秀总计男生40 20 60女生20 30 50总计60 50 1100。
500 0。
100 0.050 0。
010 0。
001附:x2=P(K2≥k)k 0。
455 2。
706 3。
841 6。
635 10.828 A.90% B.95% C.99% D.99。
9%5.已知a=(),b=(),c=(),则()A.a<b<c B.c<b<a C.c<a<b D.b<c<a6.函数的图象大致为()A .B .C .D .7.已知抛物线y2=20x 的焦点到双曲线的一条渐近线的距离为4,则该双曲线的离心率为()A .B .C .D .8.已知点A(﹣2,0),B(2,0),若圆(x﹣3)2+y2=r2(r>0)上存在点P(不同于点A,B)使得PA⊥PB,则实数r的取值范围是()A.(1,5)B.[1,5]C.(1,3]D.[3,5]9.运行如图所示的程序框图,则输出的数是7的倍数的概率为()A.B.C.D.10.f(x)是定义在(0,+∞)上单调函数,且对∀x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是()A.(0,)B.(,1)C.(1,e)D.(e,3)二、填空题11.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为.12.已知两个单位向量的夹角为60°,,,若,则正实数t=.13.某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为.14.已知x,y满足,且z=2x﹣y的最大值是最小值的﹣2倍,则a的值是.15.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组").则下列函数中,恰有两个“伙伴点组”的函数是(填空写所有正确选项的序号)①y=;②y=;③y=;④y=.三、解答题16.某中学为了解某次竞赛成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图解决下列问题:频率分布表:组别分组频数频率第1组[50,60)9 0.18第2组[60,70) a ▓第3组[70,80)20 0。
2016-2017学年山东省德州市高三(上)期末数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知全集U=R,集合M={x|x2+2x﹣3≥0},N={x|log2x≤1},则(∁U M)∪N=()A.{x|﹣1≤x≤2}B.{x|﹣1≤x≤3}C.{x|﹣3<x≤2}D.{x|0<x<1} 2.(5分)复数z=,则=()A.i B.1+i C.﹣i D.1﹣i3.(5分)已知向量=(1,x),=(2x+3,﹣x)(x∈R),若∥,则x的值为()A.﹣2B.﹣2或0C.1或﹣3D.0或24.(5分)已知p:函数f(x)=x3﹣ax2+x+b在R上是增函数,q:函数f(x)=x a﹣2在(0,+∞)上是增函数,则p是¬q()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)如图所示的程序框图,若输入n,x的值分别为3,3,则输出v的值为()A.1B.5C.16D.486.(5分)已知sin(+α)=,则cos(﹣2α)=()A.B.C.﹣D.7.(5分)抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,且该焦点到双曲线C的渐近线的距离为1,则双曲线C的方程为()A.x2﹣=1B.y2﹣=1C.﹣y2=1D.﹣y2=18.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()cm2()A.80B.76C.72D.689.(5分)2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:根据以上调查数据,认为“生二胎与年龄有关”的把握有()参考公式:x2=,其中n=n11+n12+n21+n22.参考数据:A.90%B.95%C.99%D.99.9%10.(5分)方程x2+x﹣1=0的解可视为函数y=x+与函数y=的图象交点的横坐标,若x4+ax﹣4=0的各实根x1、x2、…、x k(k≤4)所对应的点(x i,)(i=1,2,…,k)均在直线y=x的同一侧,则实数a的取值范围是()A.(﹣∞,﹣6)B.(﹣∞,﹣6)∪(6,+∞)C.(6,+∞)D.(﹣6,6)二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知函数f(x)=则f(f(﹣2))的值.12.(5分)交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别;T∈[0,2]畅通;T∈[2,4]基本畅通;T∈[4,6]轻度拥堵;T∈[6,8]中度拥堵;T∈[8,10]严重拥堵.晚高峰时段(T≥2),从某市交能指挥中心选取了市区20个交能路段,依据其交能拥堵指数数据绘制的直方图如图所示,用分层抽样的方法从交通指数在[4,6],[6,8],[8,10]的路段中共抽取6个中段,则中度拥堵的路段应抽取个.13.(5分)若变量x,y满足,则x2+y2的最小值是.14.(5分)如图,正方形边长是2,直线x+y﹣3=0与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是.15.(5分)函数f(x)在[a,b]上有意义,若对任意x1、x2∈[a,b],有f()≤[f (x1)+f(x2)],则称f(x)在[a,b]上具有性质P,现给出如下命题:①f(x)=在[1,3]上具有性质P;②若f(x)在区间[1,3]上具有性质P,则f(x)不可能为一次函数;③若f(x)在区间[1,3]上具有性质P,则f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④若f(x)在区间[1,3]上具有性质P,则对任意x1,x2,x3,x4∈[1,3],有f()≤[f(x1)+f(x2)+f(x3)+f(x4)].其中真命题的序号为.三、解答题(共6小题,满分75分)16.(12分)已知向量=(2sin x,cos x),=(﹣sin x,2sin x),函数f(x)=•.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若角C为锐角,且f(﹣)=,a=,S△ABC=2,求c的值.17.(12分)某高校青年志愿者协会,组织大一学生开展一次爱心包裹劝募活动,将派出的志愿者,分成甲、乙两个小组,分别在两个不同的场地进行劝募,每个小组各6人,爱心人士每捐购一个爱心包裹,志愿者就将送出一个钥匙扣作为纪念,茎叶图记录了这两个小组成员某天劝募包裹时送出钥匙扣的个数,且图中乙组的一个数据模糊不清,用x 表示,已知甲组送出钥匙扣的平均数比乙组的平均数少一个.(1)求图中x的值;(2)在乙组的数据中任取两个,写出所有的基本事件并求两数据都大于甲组增均数的概率.18.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ACB,AA1=A1C=AC=2,BC=,且A1C⊥BC,点E,F分别为AB,A1C1的中点.(1)求证:BC⊥平面ACA1;(2)求证:EF∥平面BB1C1C;(3)求四棱锥A1﹣BB1C1C的体积.19.(12分)设数列{a n}的前n项和为S n,已知a1=2,a n+1=2S n+2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,数列{}的前n项和为T n,试证明:T n<.20.(13分)已知函数f(x)=e x(ax2+bx+c)的导函数y=f′(x)的两个零点为﹣3和0.(其中e=2.71828…)(Ⅰ)当a>0时,求f(x)的单调区间;(Ⅱ)若f(x)的极小值为﹣e3,求f(x)在区间[﹣5,1]上的最大值.21.(14分)如图,在平面平直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,在顶点为A(﹣2,0),过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.(1)求椭圆C的方程;(2)已知点P为AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ?若存在,求出点Q的坐标,若不存在,说明理由;(3)若过点O作直线l的平行线交椭圆C于点M,求的最小值.2016-2017学年山东省德州市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.【解答】解:M={x|x2+2x﹣3≥0}={x|x≥1或x≤﹣3},N={x|log2x≤1}={x|0<x≤2},则∁U M={x|﹣3<x<1},则(∁U M)∪N={x|﹣3<x≤2},故选:C.2.【解答】解:z==,则=i.故选:A.3.【解答】解:∵向量=(1,x),=(2x+3,﹣x)(x∈R),且∥,∴﹣x﹣x(2x+3)=0,即2x(x+2)=0,解得x=﹣2或x=0,故选:B.4.【解答】解:若函数f(x)=x3﹣ax2+x+b在R上是增函数,则f′(x)=x2﹣ax+1≥0恒成立,即判别式△=a2﹣4≤0,则﹣2≤a≤2,即p:﹣2≤a ≤2,若函数f(x)=x a﹣2在(0,+∞)上是增函数,则a﹣2>0,即a>2即q:a>2,¬q:a≤2,则p是¬q的充分不必要条件,故选:A.5.【解答】解:模拟程序的运行,可得n=3,x=3,v=1,i=2满足条件i≥0,执行循环体,v=5,i=1满足条件i≥0,执行循环体,v=16,i=0满足条件i≥0,执行循环体,v=48,i=﹣1不满足条件i≥0,退出循环,输出v的值为48.故选:D.6.【解答】解:∵sin(+α)==cos(﹣α),则cos(﹣2α)=2﹣1=﹣1=﹣,故选:C.7.【解答】解:∵抛物线y2=8x中,2p=8,∴抛物线的焦点坐标为(2,0).∵抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,∴c=2,∵双曲线C:﹣=1(a>0,b>0)的渐近线方程为y=±x,且该焦点到双曲线C的渐近线的距离为1,∴=1,即=1,解得b=1,∴a2=c2﹣b2=3,∴双曲线C的方程为﹣y2=1,故选:D.8.【解答】解:由三视图知,几何体是两个相同长方体的组合,长方体的长宽高分别为4,2,2,两个长方体的重叠部分是一个边长为2 的正方形,如图,该几何体的表面积为:S=2(2×2×2+2×4×4)﹣2(2×2)=72.故选:C.9.【解答】解:由题意,K2=≈3.030>2.706,∴有90%以上的把握认为“生二胎与年龄有关”.故选:A.10.【解答】解:方程的根显然x≠0,原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标;而曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的.若交点(x i,)(i=1,2,k)均在直线y=x的同侧,因直线y=x3与y=交点为:(﹣2,﹣2),(2,2);所以结合图象可得:或解得a>6或a<﹣6,即实数a的取值范围是(﹣∞,﹣6)∪(6,∞),故选:B.二、填空题(共5小题,每小题5分,满分25分)11.【解答】解:∵﹣2<0,∴f(﹣2)==9;∵9>0,∴f(9)=log39=2.∴f(f(﹣2))=2.故答案为2.12.【解答】解:由频率分布直方图知[4,6],[6,8],[8,10]的路段共有:(0.1+0.2)×20+(0.25+0.2)×20+(0.1+0.05)×20=18个,按分层抽样,从18个路段选出6个,∵T∈[6,8]中度拥堵,∴中度拥堵的路段应抽取:6×=3个.故答案为:3.13.【解答】解:变量x,y满足,如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(0,﹣1)到原点的距离的平方,即|AO|2=1,即x2+y2的最小值是:1.故答案为:1.14.【解答】解:观察这个图可知:阴影部分是正方形去掉一个小三角形,设直线与正方形的两个交点为A,B,∴在直线AB的方程为x+y﹣3=0中,令x=2得A(2,1),令y=2得B(1,2).∴三角形ABC的面积为s==,则飞镖落在阴影部分的概率是:P=1﹣=1﹣=1﹣=.故答案为:.15.【解答】解:①f(x)=在[1,3]上为减函数,则由图象可知对任意x1,x2∈[1,3],有ff()≤[f(x1)+f(x2)]成立,故①正确:②不妨设f(x)=x,则对任意x1,x2∈[a,b],有f()≤[f(x1)+f(x2)],故②不正确,③在[1,3]上,f(2)=f[]≤[f(x)+f(4﹣x)],∵F(x)在x=2时取得最大值1,∴,∴f(x)=1,即对任意的x∈[1,3],有f(x)=1,故③正确;∵对任意x1,x2,x3,x4∈[1,3],f()≤[f(x1)+f(x2)],f()≤[f(x3)+f(x4)],∴f()≤(f()+f())≤[f(x1)+f(x2)+f(x3)+f(x4)];即f()≤[f(x1)+f(x2)+f(x3)+f(x4)].故④正确;故答案为:①③④三、解答题(共6小题,满分75分)16.【解答】(本题满分为12分)解:(Ⅰ)∵=(2sin x,cos x),=(﹣sin x,2sin x),函数f(x)=•.∴f(x)=﹣2sin2x+2sin x cos x=sin2x+cos2x﹣1=2sin(2x+)﹣1,…3分∴令2kπ﹣≤2x+≤2kπ+,k∈Z,解得:kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z…6分(Ⅱ)∵f(﹣)=,可得:2sin C﹣1=,解得sin C=,∵C为锐角,可得:cos C==,…8分又∵a=,S△ABC=2=ab sin C=,解得:b=6,∴由余弦定理可得:c===…12分17.【解答】解:(1)由茎叶图知甲组送出钥匙扣的平均数为:,则乙组送出钥匙扣的平均数为17,∴,解得x=9.(2)乙组送出的钥匙扣的个数分别为8,12,18,19,22,23,若从乙组中任取两名志愿者送出钥匙扣的数字,基本事件总数n==15,甲组送出的钥匙扣的平均数为16个,符合条件的基本事件有:(18,19),(18,22),(18,23),(19,22),(19,23),(22,23),共有6个基本事件,故所求概率为p==.18.【解答】证明:(1)∵在△AA1C1中,AA1=A1C,取D为AC中点,∴A1D⊥AC,∵侧面AA1C1C⊥底面ABC,∴侧面AA1C1C∩底面ABC=AC,∴A1D⊥平面ABC,∵BC在平面ABC上,∴A1D⊥BC,又A1C⊥BC,A1C、AD都在平面ACA1上,且A1C∩AD=D,∴BC⊥平面ACA1.(2)设B1C1的中点为G,连结FG、GB,在四边形FGBE中,FG∥A 1B1,且FG A1B1,又∵EB∥A1B1,且EB=A1B1,∴,∴四边表FGBE是平行四边形,∴EF∥BG,又∵BG⊂平面BB1C1C,EF⊄平面BB1C1C,∴EF∥平面BB1C1C.解:(3)∵AA1=A1C=AC=2,∴,又由(1)知BC⊥平面ACA1,AC⊂平面ACA1,∴BC⊥AC,又BC=,∴S△ABC=,∴四棱锥A1﹣BB1C1C的体积:==.19.【解答】解:(1)由题意得a n+1=2S n+2,a n=2S n﹣1+2,(n≥2),两式相减得a n+1﹣a n=2S n﹣2S n﹣1=2a n,则a n+1=3a n,n≥2,所以当n≥2时,{a n}是以3为公比的等比数列.因为a2=2S1+2=4+2=6,满足对任意正整数成立{a n}是首项为2,公比为3的等比数列,∴数列{a n}的通项公式;a n=2×3n﹣1(2)证明:b n==,=,T n=×[+…+]=<.20.【解答】解:(Ⅰ)∵函数f(x)=e x(ax2+bx+c),∴f′(x)=e x[ax2+(2a+b)x+b+c],∵导函数y=f′(x)的两个零点为﹣3和0,∴ax2+(2a+b)x+b+c=0的两根为﹣3和0,∴,即b=﹣c,a=﹣c,f′(x)=e x(ax2+3ax),a>0,令f′(x)>0,解得x>0或x<﹣3;令f′(x)<0,解得﹣3<x<0,∴f(x)的单调递增区间为(﹣∞,﹣3),(0,+∞),单调递减区间为(﹣3,0).(Ⅱ)由(Ⅰ)知f(x)=ae x(x2+x﹣1),当a>0时,由(Ⅰ)知f(0)=﹣e3,解得c=﹣e3,a=e3,在区间[﹣5,1]上,f(﹣3)=5,f(1)=e4,∴f(x)max=e4.当a<0时,f(﹣3)=﹣e3,解得a=﹣,在区间[﹣5,1]上,f(0)=,f(﹣5)=﹣,∴f(x)max=,综上所述,当a>0时,f(x)max=e4,当a<0时,.21.【解答】解:(1)由椭圆的左顶点A(﹣2,0),则a=2,又e==,则c=,又b2=a2﹣c2=1,∴椭圆的标准方程为:;(2)由直线l的方程为y=k(x+2),由,整理得:(4k2+1)x2+16k2x+16k2﹣4=0,由x=﹣2是方程的根,由韦达定理可知:x1x2=,则x2=,当x2=,y2=k(+2)=,∴D(,),由P为AD的中点,∴P点坐标(,),直线l的方程为y=k(x+2),令x=0,得E(0,2k),假设存在顶点Q(m,n),使得OP⊥EQ,则⊥,即•=0,=(,),=(m,n﹣2k),∴×m+×(n﹣2k)=0即(4m+2)k﹣n=0恒成立,∴,即,∴顶点Q的坐标为(﹣,0);(3)由OM∥l,则OM的方程为y=kx,,则M点横坐标为x=±,OM∥l,可知=,=,=,=,=+≥2,当且仅当=,即k=±时,取等号,∴当k=±时,的最小值为2.。
高三数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为 A .7 B .12 C .32 D .642.已知20<<a ,复数z 的实部为a ,虚部为1,则||z 的取值范围是 A .(1,5) B .(1,3) C .)5,1( D .)3,1( 3.若命题“p 或q ”与命题“非p ”都是真命题,则 A .命题p 不一定是假命题 B .命题q 一定是真命题 C .命题q 不一定是真命题 D .命题p 与命题q 同真同假4.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aaa aa a a中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .725.一个几何体的三视图如图所示,则该几何体的体积是A .6B .8C .10D .126.执行如右图所示的程序框图,如果输入的n 是4,则输出的p 的值是 A .8 B .5 C .3 D .27.函数()cos(2)f x x x π=-的图象大致为8.连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB 、CD 的长度分别为72、34,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ;②弦AB 、CD 可能相交于点N ;③MN 的最大值为5;④MN 的最小值为1. 其中真命题的个数为A .1B .2C .3D .49.若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则以b a ,为坐标的点),(b a P 所形成的平面区域的面积是A .21 B .4π C .1 D .2π 10.在锐角三角形ABC 中,角A ,B ,C 的对边分别是c b a ,,,A b a sin 2=,33=a ,5=c ,则=b A .7 B .7 C .97 D .7或97 11.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若)1(>=λλFB AF ,则λ的值为A .5B .4C .34 D .25 12.对任意实数y x ,,定义运算cxy by ax y x ++=*,其中c b a ,,为常数,等号右边的运算是通常意义的加、乘运算.现已知1*2=4,2*3=6,且有一个非零实数m ,使得对任意实数x ,都有x m x =*,则=mA .2B .3C .4D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置.13.若非零向量b a ,满足||||b a =,0)2(=⋅+b b a ,则a 与b 的夹角为______.14.某学校对1 000名高三毕业学生的体育水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是______.15.将一颗骰子先后投掷两次分别得到点数b a 、,则直线0=+by ax 与圆2)2(22=+-y x 有公共点的概率为_______.16.已知双曲线)0,0(12222>>=-b a by a x 的离心率2=e ,则一条渐近线与实轴所成锐角的值是_______.三、解答题:本大题共6个小题,共74分.解答应写文字说明、证明过程或演算步骤,把答案填写在答题纸的相应位置.17.(本小题满分12分)已知函数1)sin (cos cos 2)(+-=x x x x f ,R x ∈. (1)求函数)(x f 的最小正周期; (2)求函数)(x f 在区间]43,8[ππ上的最小值与最大值.18.(本小题满分12分)某企业新研制一种LED 节能灯管,为了测试其使用寿命,从中随机抽取50支灯管作为测试样本, 分别在使用了12个月、24个月、36个月时进行3次测试,得到未损坏的灯管支数如下表:(1)请补充完整如图所示的频率分布直方图; (2)试估计这种节能灯管的平均使用寿命;(3)某校一间功能室一次性换上5支这种灯管,在使用了12个月时随机取其中3支,求取到已损坏灯管的概率.19.(本小题满分12分)如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC= ︒90,CD 为∠ACB 的角平分线,点E 在线段AC 上,且CE=4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连接AB ,设点F 是AB 的中点.(1)求证:DE⊥平面BCD ;(2)若EF∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥DEG B -的体积.20.(本小题满分12分)已知常数0>p 且1=/p ,数列}{n a 的前n 项和)1(1n n a ppS --=,数列}{n b 满足121log -+=-n p n n a b b 且11=b .(1)求证:数列}{n a 是等比数列;(2)若对于在区间[0,1]上的任意实数λ,总存在不小于2的自然数k ,当k n ≥时,)23)(1(--≥n b n λ恒成立,求k 的最小值.21.(本小题满分13分)已知椭圆C :)0(12222>>=+b a by a x 的长轴长为4,离心率22=e(1)求椭圆的方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :3=x 分别交于M ,N 两点,求线段MN 的长度的最小值. 22.(本小题满分13分)已知函数xe xf =)(,若函数)(xg 满足)()(x g x f ≥恒成立,则称)(x g 为函数)(x f 的下界函数.(1)若函数kx x g =)(是)(x f 的下界函数,求实数k 的取值范围; (2)证明:对任意的2≤m ,函数x m x h ln )(+=都是)(x f 的下界函数.图1 图2一、1.D 【解析】集合Q P *中的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)共6个,故Q P *的子集个数为6426=.2.C 【解析】由于复数z 的实部为a ,虚部为1,且20<<a ,故由21||a z +=得5||1<<z . 3.B 【解析】由题可知“非p ”是真命题,所以p 是假命题,又因为“p 或q ”是真命题,所以q 是真命题.故选B .4.D 【解析】依题意得+++++++31232221131211a a a a a a a 3332a a +72933322322212==++=a a a a .5.D 【解析】该几何体是一个长方体在左边挖去一个三棱柱再拼接到右边而得到的,它的体积就是长方体的体积,体积为12)11(2)6.04.2(=+⨯⨯+=V .6.C 【解析】由题知,第一次进入循环,满足1<4,循环后1=p ,1=s ,1=t ,2=k ;第二次进入循环,满足2<4,循环后2=p ,=s 1,2=t ,3=k ;第三次进入循环,满足3<4,循环后3=p ,2=s ,3=t ,4=k ,因为4=4,不满足题意,所以循环结束.输出p 的值为3,选C .7.A 【解析】因为()cos(2)cos f x x x x x π=-=,)(cos )cos()()(x f x x x x x f -=-=--=-,所以函数x x x f cos )(=为奇函数,排除B ,C ;又因为当20π<<x 时,=)(x f 0cos >x x ,故选择A .8.C 【解析】设球的球心O 到直线AB 、CD 的距离分别为d d 、',利用勾股定理可求出3='d ,2=d ,所以CD 可以经过M ,而AB 不会经过N ,所以①正确,②不正确;又5='+d d ,1=-'d d ,所以③④正确.故选C .9.C 【解析】由题意可得,当0=x 时,1≤by 恒成立,0=b 时,1≤by 显然恒成立;0=/b 时,可得by 1≤恒成立,解得10≤<b ,所以10≤≤b ;同理可得10≤≤a .所以点),(b a P 确定的平面区域是一个边长为1的正方形,故面积为1.10.B 【解析】因为A b a sin 2=,所以由正弦定理得A B A sin sin 2sin =,角A 为三角形的内角,则0sin =/A ,所以21sin =B ,由△ABC 为锐角三角形得6π=B .根据余弦定理得=-+=B ac c a b cos 22227452527=-+.所以7=b .11.B 【解析】 根据题意设),(11y x A ,),(22y x B .由FB AF λ=得),2(),2(2211y px y x p -=--λ,故21y y λ=-,即=λ21y y -.设直线AB 的方程为)2(34px y -=,联立直线与抛物线方程,消元得02322=--p py y .故p y y 2321=+,=21y y 2p -,492)(122121221-=++=+y y y y y y y y ,即=+--21λλ49-.又1>λ,故4=λ. 12.D 【解析】由定义可知,⎩⎨⎧=++==++=66323*24222*1c b a c b a ,解得⎩⎨⎧+=-=226c b ca ,又对任意实数x ,都有x m x =*,即++-=+++-=c x c cm cxm m c cx m x 2()6()22(6*x m =)2恒成立,则⎩⎨⎧=+=-0)22(16m c c cm ,解得⎩⎨⎧=-=51m c 或⎪⎩⎪⎨⎧=-=061m c (舍). 二、13.︒120【解析】由题意得⋅=+⋅=⋅+22||22)2(a b b a b b a 0,cos 2=+><a b a ,所以21,cos ->=<b a ,所以b a ,的夹角为︒120.14.600【解析】不低于70分的人数的频率为⨯++)01.0015.0035.0(6.010=,故合格的人数是6006.01000=⨯.15.127【解析】依题意,将一颗骰子先后投掷两次得到的点数所形成的数组),(b a 有(1,1), (1,2),(1,3),…,(6,6),共 36种,其中满足直线0=+by ax 与圆2)2(22=+-y x 有公共点,即2222≤+ba a ,b a ≤的数组),(b a 有(1,1),(1,2),(1,3),(1 ,4),……,(6,6),共21654321=+++++种,因此所求的概率等于1273621=. 16.4π【解析】因为2=e ,所以22=e ,即222=a c ,又222b a c +=,所以122=a b ,即1=ab ,所以一条渐近线与实轴所成锐角的值是4π. 三、17.【解析】(1)1)sin (cos cos 2)(+-=x x x x f 1sin cos 2cos 22+-=x x x)432sin(2222sin 2cos π++=+-=x x x .(4分) 因此,函数)(x f 的最小正周期为π.(6分) (2)由题易知)432sin(22)(π++=x x f 在区间]83,8[ππ上是减函数, 在区间]43,83(ππ上是增函数,(8分) 又2)8(=πf ,22)83(-=πf ,3)43(=πf ,(10分)所以,函数)(x f 在区间]43,8[ππ上的最大值为3,最小值为22-.(12分)有=-40501018.【解析】(1)由题意知这种节能灯管的使用寿命在[0,12]上的支,在]24,12(上的有=-104030支,在]36,24(上的有10支,易知使用寿命在[0,12]上与使用寿命在]36,24(上的频数相等,(2分)故补充完整的频率分布直方图如图所示,(4分) (2)取每组的组中值计算灯管的平均使用寿命得185010303018106=⨯+⨯+⨯,即这种节能灯管的平均使用寿命为18个月.(6分)(3)由题易知,S 支灯管在使用了12个月时未损坏的有⨯545040=支,记作4321,,,A A A A ,已损坏的有1支,记作B .从中随机取3支的所有可能结果有:),,(321A A A ,,,(21A A )4A ,),,(21B A A ,),,(431A A A ,),,(31B A A ,),,(41B A A ,,(2A ),43A A ,),,(32B A A ,),,(42B A A ,),,(43B A A ,共10个.(8分) 取到已损坏灯管的事件有:),,(21B A A ,),,(31B A A ,,,(41A A )B ,),,(32B A A ,),,(42B A A ,),,(43B A A ,共6个,(10分)所以取到已损坏灯管的概率6.0106==P .(12分) 19.【解析】(1)在图1中,因为AC=6,BC=3,所以︒=∠90ABC ,︒=∠60ACB .因为CD 为∠ACB 的角平分线,所以︒=∠=∠30ACD BCD ,32=CD .(2分)因为CE=4,︒=∠30DCE ,由余弦定理可得CDCE DE CD CE ⋅-+=︒230cos 222,即3242)32(423222⨯⨯-+=DE ,解得DE=2. 则222EC DE CD =+,所以︒=∠90CDE ,DE⊥DC.(4分)在图2中,因为平面BCD⊥平面ACD ,平面BCD I 平面ACD= CD ,DE ⊂平面ACD .且DE⊥DC,所以DE⊥平面BCD .(6分)(2)在图2中,因为EF∥平面BDG ,EF ⊂平面ABC , 平面ABC I 平面BDG= BG ,所以EF//BG .因为点E 在线段AC 上,CE=4,点F 是AB 的中点, 所以AE=EG=CG=2.(8分)作BH⊥CD 于点H .因为平面BCD⊥平面ACD , 所以BH⊥平面ACD . 由已知可得=⋅=DC BCBD BH 233233=⨯.(10分) ACD DEG S S ∆∆=31330sin 2131=︒⨯⨯⨯⨯=CD AC ,所以三棱锥DEG B -的体积BH S V DEG ⋅=∆312323331=⨯⨯=.(12分) 20.【解析】(1)当2≥n 时,-----=-=-1(1)1(11pp a p p S S a n n n n )1-n a ,整理得1-=n n pa a .(3分)由)1(1111a p p S a --==,得=1a 0>p ,则恒有0>=n n p a ,从而p a an n =-1.所以数列}{n a 为等比数列.(6分)(2)由(1)知nn p a =,则12log 121-==--+n a b b n P n n ,所以=+-++-+-=---112211)()()(b b b b b b b b n n n n n Λ222+-n n ,(8分)所以)23)(1(222--≥+-n n n λ,则+-+-n n n 5)23(2λ04≥在]1,0[∈λ时恒成立. 记45)23()(2+-+-=n n n f λλ,由题意知,⎩⎨⎧≥≥0)1(0)0(f f ,解得4≥n 或1≤n .(11分)又2≥n ,所以4≥n .综上可知,k 的最小值为4.(12分) 21.【解析】(1)由题意得42=a ,故2=a ,(1分) 因为22==a c e ,所以2=c ,2)2(2222=-=b ,(3分) 所以所求的椭圆方程为12422=+y x .(4分) (2)依题意,直线AS 的斜率k 存在,且0>k , 故可设直线AS 的方程为)2(+=x k y ,从而)5,3(k M ,由⎪⎩⎪⎨⎧=++=124)2(22y x x k y 得+1(0488)22222=-++k x k x k .(6分)设),(11y x S ,则2212148)2(k k x +-=⨯-,得2212142k k x +-=,从而21214k ky +=, 即)214,2142(222kkk k S ++-,(8分) 又由B(2,0)可得直线SB 的方程为22142202140222-+--=-+-kk x k ky , 化简得)2(21--=x ky ,由⎪⎩⎪⎨⎧=--=3)2(21x x k y 得⎪⎩⎪⎨⎧-==k y x 213,所以)21,3(k N -,故|215|||kk MN +=,(11分) 又因为0>k ,所以102152215||=•≥+=kk k k MN , 当且仅当kk 215=,即1010=k 时等号成立,所以1010=k 时,线段MN 的长度取最小值10.(13分) 22.【解析】(1)若kx x g =)(为xe xf =)(的下界函数,易知0<k 不成立,而0=k 必然成立.当0>k 时,若kx x g =)(为xe xf =)(的下界函数,则)()(xg x f ≥恒成立,即0≥-kx e x恒成立.(2分)令kx e x x-=)(ϕ,则k e x x-=')(ϕ.易知函数)(x ϕ在)ln ,(k -∞单调递减,在),(ln +∞k 上单调递增.(4分)由0)(≥x ϕ恒成立得0ln )(ln )(min ≥-==k k k k x ϕϕ,解得e k ≤<0. 综上知e k ≤≤0.(6分)(2)解法一 由(1)知函数ex x G =)(是xe xf =)(的下界函数,即)()(x G x f ≥恒成立, 若2≤m ,构造函数)0(ln )(>--=x m x ex x F ,(8分) 则x ex x e x F 11)(-=-=,易知02)1()(min ≥-==m eF x F , 即x m x h ln )(+=是ex xG =)(的下界函数,即)()(x h x G ≥恒成立.(11分)所以)()()(x h x G x f ≥≥恒成立,即2≤m 时,x m x h ln )(+=是=)(x f xe 的下界函数.(13分) 解法二 构造函数m x e x h xf x H x--=-=ln )()()(,)2(≤m ,xe x H x 1)(-='. 易知必有00>x 满足0)(0='x H ,即010x ex =.(8分) 又因为)(x H 在),0(0x 上单调递减,在),(0+∞x 上单调递增,故m x e x H x H x --==00min ln )()(0-+=--=-0001ln 10x x m e x x 02≥-≥m m ,所以)()(x h x f ≥恒成立.(11分)即对任意的2≤m ,x m x h ln )(+=是xe xf =)(的下界函数.(13分)。
2016年山东省德州市高考数学二模试卷(文科)一、选择题:本大题共l0小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)R表示实数集,集合M={x|0<x<2},N={x|x2+x﹣6≤0},则下列结论正确的是()A.M∈N B.∁R M⊆N C.M∈∁R N D.∁R N⊆∁R M 2.(5分)已知复数z满足z•(1﹣i)=2,则z2的虚部是()A.﹣2B.﹣2i C.2i D.23.(5分)已知命题p:∃x∈R,x2+2x+3=0,则¬p是()A.∀x∈R,x2+2x+3≠0B.∀x∈R,x2+2x+3=0C.∃x∈R,x2+2x+3≠0D.∃x∈R,x2+2x+3=04.(5分)函数f(x)=的图象大致为()A.B.C.D.5.(5分)两个相关变量满足如表关系:根据表格已得回归方程:=9.4x+9.2,表中有一数据模糊不清,请推算该数据是()A.37B.38.5C.39D.40.56.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.7.(5分)设集合M={(m,n)|0<m<2,0<n<3,m,n∈R},则任取(m,n)∈M,关于x的方程+nx+m=0有实根的概率为()A.B.C.D.8.(5分)已知双曲线C:﹣=1(a>0,b>0)的焦距为2,抛物线y=x2+与双曲线C的渐近线相切,则双曲线C的方程为()A.﹣=1B.﹣=1C.x2﹣=1D.﹣y2=19.(5分)一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为()A.B.C.D.10.(5分)已知函数f(x)=且方程[f(x)]2﹣af(x)+2=0恰有四个不同的实根,则实数a的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,3)C.(2,3)D.(2,4)二、填空题:本大题共5小题.每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是.12.(5分)执行如图所示的程序框图,若输入x=6,则输出y的值为.13.(5分)已知变量x,y满足,则的最大值为.14.(5分)已知x>1,y>1,且lnx,,lny成等比数列,则xy的最小值为.15.(5分)已知函数f(x)=,g(x)=a cos+5﹣2a(a>0)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)为了解甲、乙两个班级(人数均为60人,入学数学平均分和优秀率都相同,学生勤奋程度和自觉性都一样)的数学成绩,现随机抽取甲、乙两个班级各8名同学的数学考试成绩,并做出茎叶图,但是不慎污损.已知两个班级所抽取的同学平均成绩相同,回答下面的问题并写出计算过程:(I)求出甲班中被污损的一名学生的成绩;(Ⅱ)样本中考试分数在70~90分之问的同学里,两班各任选一名同学座谈,甲乙两班被选出的两名同学分数均在80~90分的概率为多少.17.(12分)已知函数f(x)=sin(2x+)﹣cos2x.(1)求f(x)的最小正周期及x∈[,]时f(x)的值域;(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=,c=2,f(C+)=﹣.求a,b的值.18.(12分)已知数列{a n}满足a1=1,a1+a2+a3+…+a n=a n+1﹣1(n∈N),数列{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)设b n=,T n是数列{b n}的前n项和,求使得T n<对所有n∈N,都成立的最小正整数m.19.(12分)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.20.(13分)已知函数f(x)=在x=e处的切线经过点(1,e).(e=2.71828…)(Ⅰ)求函数f(x)在[,e]上的最值;(Ⅱ)若方程g(x)=tf(x)﹣x在上有两个零点,求实数t的取值范围.21.(14分)如图,椭圆E:=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且(Ⅰ)求椭圆E的方程;(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.2016年山东省德州市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共l0小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)R表示实数集,集合M={x|0<x<2},N={x|x2+x﹣6≤0},则下列结论正确的是()A.M∈N B.∁R M⊆N C.M∈∁R N D.∁R N⊆∁R M【解答】解:∵N={x|x2+x﹣6≤0}={x|﹣3≤x≤2},而M={x|0<x<2},∴M⊊N;∴∁R N⊆∁R M,故选:D.2.(5分)已知复数z满足z•(1﹣i)=2,则z2的虚部是()A.﹣2B.﹣2i C.2i D.2【解答】解:复数z满足z•(1﹣i)=2,可得z===1+i.z2=(1+i)2=2i.则z2的虚部是:2.故选:D.3.(5分)已知命题p:∃x∈R,x2+2x+3=0,则¬p是()A.∀x∈R,x2+2x+3≠0B.∀x∈R,x2+2x+3=0C.∃x∈R,x2+2x+3≠0D.∃x∈R,x2+2x+3=0【解答】解:因为特称命题的否定是全称命题,所以命题p:∃x∈R,x2+2x+3=0,则¬p是:∀x∈R,x2+2x+3≠0.故选:A.4.(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:函数f(x)=是偶函数,并且x=0时,f(0)=1,故选:C.5.(5分)两个相关变量满足如表关系:根据表格已得回归方程:=9.4x+9.2,表中有一数据模糊不清,请推算该数据是()A.37B.38.5C.39D.40.5【解答】解:=,∴=9.4×4+9.2=46.8.设看不清的数据为a,则25+a+50+56+64=5=234.解得a=39.故选:C.6.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选:A.7.(5分)设集合M={(m,n)|0<m<2,0<n<3,m,n∈R},则任取(m,n)∈M,关于x的方程+nx+m=0有实根的概率为()A.B.C.D.【解答】解:方程+nx+m=0有实根⇔△≥0⇔n2﹣m2≥0,集合A={(m,n)|0<m<2,0<n<3,m,n∈R},面积SΩ=2×3=6;设“方程有实根”为事件A,所对应的区域为A={(m,n)|0<m<2,0<n<3,m,n∈R,n2﹣m2≥0},其面积S A=4,所以P(A)=.故选:C.8.(5分)已知双曲线C:﹣=1(a>0,b>0)的焦距为2,抛物线y=x2+与双曲线C的渐近线相切,则双曲线C的方程为()A.﹣=1B.﹣=1C.x2﹣=1D.﹣y2=1【解答】解:由题意可得c=,即a2+b2=5,双曲线的渐近线方程为y=±x,将渐近线方程和抛物线y=x2+联立,可得x2±x+=0,由直线和抛物线相切的条件,可得△=﹣4××=0,即有a2=4b2,解得a=2,b=1,可得双曲线的方程为﹣y2=1.故选:D.9.(5分)一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为()A.B.C.D.【解答】解:由三视图可知几何体为四棱锥P﹣ABCD,其中底面ABCD为正方形,P A⊥平面ABCD,且P A=AB=1,∴几何体的最长棱为PC==.故选:B.10.(5分)已知函数f(x)=且方程[f(x)]2﹣af(x)+2=0恰有四个不同的实根,则实数a的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,3)C.(2,3)D.(2,4)【解答】解:作函数f(x)=的图象如下,结合图象可知,当1<b≤2时,f(x)=b有两个不同的解,方程[f(x)]2﹣af(x)+2=0,恰有四个不同的实根,转化为t2﹣at+2=0在(1,2]上有两个不同的根,故,解得,<a<3,故选:B.二、填空题:本大题共5小题.每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是600.【解答】解:由频率分布直方图得合格的频率=(0.035+0.015+0.01)×10=0.6合格的人数=0.6×1000=600故答案为:60012.(5分)执行如图所示的程序框图,若输入x=6,则输出y的值为﹣.【解答】解:模拟执行程序,可得x=6y=2不满足条件|y﹣x|<1,执行循环体,x=2,y=0不满足条件|y﹣x|<1,执行循环体,x=0,y=﹣1不满足条件|y﹣x|<1,执行循环体,x=﹣1,y=﹣满足条件|y﹣x|<1,退出循环,输出y的值为﹣.故答案为:﹣.13.(5分)已知变量x,y满足,则的最大值为.【解答】解:作出不等式组对应的平面区域:的几何意义为区域内的点到P(﹣2,2)的斜率,由图象知,P A的斜率最大,由,得,即A(2,3),故P A的斜率k==.故答案为:.14.(5分)已知x>1,y>1,且lnx,,lny成等比数列,则xy的最小值为e.【解答】解:∵x>1,y>1,∴lnx>0,lny>0,又∵lnx,,lny成等比数列,∴=lnxlny由基本不等式可得lnx+lny≥2=1,当且仅当lnx=lny,即x=y=时取等号,故ln(xy)=lnx+lny≥1=lne,即xy≥e,故xy的最小值为:e故答案为:e15.(5分)已知函数f(x)=,g(x)=a cos+5﹣2a(a>0)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[,5].【解答】解:∵函数f(x)=,∴f(x)∈[0,];∵g(x)=a cos+5﹣2a(a>0),当x2∈[0,1]时,∴a cos∈[0,a]∴g(x)∈[5﹣2a,5﹣a]∵存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,∴[5﹣2a,5﹣a]∩[0,]≠∅,∴只需排除[5﹣2a,5﹣a]∩[0,]=∅的情况,即5﹣2a>,或5﹣a<0,得a<或a>5∴a的取值范围是[,5].三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)为了解甲、乙两个班级(人数均为60人,入学数学平均分和优秀率都相同,学生勤奋程度和自觉性都一样)的数学成绩,现随机抽取甲、乙两个班级各8名同学的数学考试成绩,并做出茎叶图,但是不慎污损.已知两个班级所抽取的同学平均成绩相同,回答下面的问题并写出计算过程:(I)求出甲班中被污损的一名学生的成绩;(Ⅱ)样本中考试分数在70~90分之问的同学里,两班各任选一名同学座谈,甲乙两班被选出的两名同学分数均在80~90分的概率为多少.【解答】解:(Ⅰ)∵两班样本总数都为8人,平均数相等,∴=,解得x=85.(Ⅱ)根据题意,甲班在70~90分之间共有6人,分别为88,85,84,81,79,72,乙班在70~90分之间共有6人,分别为87,82,81,79,77,76,设事件A为“两班各任选一名同学座谈,两名同学分数在80~90”之间,则基本事件空间为:Ω={(88,87),(88,82),(88,81),(88,79),(88,77),(88,76),(85,87),(85,82),(85,81),(85,79),(85,77),(85,76),(84,87),(84,82),(84,81),(84,79),(84,77),(84,76),(81,87),(81,82),(81,81),(81,79),(81,77),(81,76),(79,87),(79,82),(79,81),(79,79),(79,77),(79,76),(72,87),(72,82),(72,81),(72,79),(72,77),(72,76)},共有36个基本事件,事件A包含的基本事件有:(88,87),(88,82),(88,81),(85,87),(85,82),(85,81),(84,87),(84,82),(84,81),(81,87),(81,82),(81,81),共12个基本事件,∴甲乙两班被选出的两名同学分数均在80~90分的概率P(A)=.17.(12分)已知函数f(x)=sin(2x+)﹣cos2x.(1)求f(x)的最小正周期及x∈[,]时f(x)的值域;(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=,c=2,f(C+)=﹣.求a,b的值.【解答】解:(1)f(x)=sin(2x+)﹣cos2x=sin2x+cos2x﹣(2cos2x﹣1)﹣,=sin2x﹣,f(x)的最小正周期π,x∈[,],2x∈[,],f(x)的值域[﹣,﹣];(2)f(x)=sin2x﹣,f(C+)=sin2(C+)﹣=﹣,∴sin(2C+)=,cos2C=,角C为锐角,C=,S=,S△ABC=,ab=4,由余弦定理可知:c2=a2+b2﹣2ab cos C,a2+b2=16,解得b=2,a=2或b=2,a=2,18.(12分)已知数列{a n}满足a1=1,a1+a2+a3+…+a n=a n+1﹣1(n∈N),数列{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)设b n=,T n是数列{b n}的前n项和,求使得T n<对所有n∈N,都成立的最小正整数m.【解答】解:(1)∵a1+a2+a3+…+a n﹣1+a n=a n+1﹣1(n∈N),∴当n≥2时,a1+a2+a3+…+a n﹣1=a n﹣1,两式相减得:a n=a n+1﹣a n,即=,又∵==满足上式,∴=(n∈N),∴当n≥2时,a n=••…••a1=••…•2•1=n,又∵a1=1满足上式,∴数列{a n}的通项公式a n=n;(2)由(1)可知b n===2(﹣),∴T n=2(1﹣+﹣+…+﹣)=2(1﹣)=,∵随着n的增大而增大,∴不等式T n<对所有n∈N都成立⇔求数列{T n}的最大值,又∵=2,∴≥2,即m≥20,故满足题意的最小正整数m=20.19.(12分)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.【解答】(Ⅰ)证明:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE⊂平面BCEG,∴EC⊥平面ABCD,…(3分)又CD⊂平面BCDA,故EC⊥CD…(4分)(Ⅱ)证明:在平面BCEG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且,∴MG∥AD,MG=AD,故四边形ADMG为平行四边形,∴AG∥DM…(6分)∵DM⊂平面BDE,AG⊄平面BDE,∴AG∥平面BDE…(8分)(Ⅲ)解:V EG﹣ABCD=V D﹣BCEG+V G﹣ABD=××2×2+××1×1×2=(12分)20.(13分)已知函数f(x)=在x=e处的切线经过点(1,e).(e=2.71828…)(Ⅰ)求函数f(x)在[,e]上的最值;(Ⅱ)若方程g(x)=tf(x)﹣x在上有两个零点,求实数t的取值范围.【解答】解:由题意,f(x)的定义域为(0,1)∪(1,+∞),∵f′(x)=,∴f′(e)=ae,∴f(x)在x=e处的切线方程为y﹣ae2=ae(x﹣e),即y=eax,∵函数f(x)=在x=e处的切线经过点(1,e),∴a=1.(Ⅰ)由f′(x)>0得f(x)的单调递增区间为(,+∞),由f′(x)<0得f(x)的单调递减区间为(0,1)(1,),∴f(x)在[,]上单调递减,在[,e]上单调递增,∵f()=2e,f()=4,f(e)=e2,e2,∴函数f(x)在[,e]上的最大值为e2,最小值为2e;(Ⅱ)函数g(x)=tf(x)﹣x在[,1)∪(1,e2]上有两个零点,等价于h(x)=与y=t在[,1)∪(1,e2]上有两个不同的交点.由h′(x)=>0得0<x<e,h′(x)=<0得x>e,所以当x=e时y=h(x)有极大值,即最大值h(e)=,又h()=﹣e,h(e2)=,h(1)=0且>0>﹣e,所以实数t的取值范围为[,).21.(14分)如图,椭圆E:=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且(Ⅰ)求椭圆E的方程;(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.【解答】解:(Ⅰ)∵椭圆E:=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,∴由抛物线方程y2=4x得焦点F2(1,0),∴设椭圆E的方程为+=1,解方程组,得C(1,2),D(1,﹣2),∵抛物线、椭圆都关于x轴对称,∴==2,|F2S|=,∴S(1,),∴+=1,解得b2=1,∴a2=1+1=2,∴椭圆方程为.(Ⅱ)由题意知直线AB的斜率存在,设AB:y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由,得(1+2k2)x2﹣8k2x+8k2﹣2=0,△=64k2﹣4(2k2+1)(8k2﹣2)>0,解得k2<,,,∵|AB|<,∴(1+k2)[]<,∴(4k2﹣1)(14k2+13)>0,∴k2>,∴,∵,∴(x1+x2,y1+y2)=t(x,y),∴,y=[k(x1+x2)﹣4k]=,∵点P在椭圆上,∴+2=2,∴16k2=t2(1+2k2),∴t2==8﹣,∴,∴﹣2<t<﹣或,∴实数t的取值范围为(﹣2,﹣)∪(,2).。
山东省德州市高三上学期期中数学试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高一上·临河月考) 如果集合,那么等于()A .B .C .D .2. (2分) (2019高二上·大庆月考) 命题“若A∪B=A,则A∩B=B”的否命题是()A . 若A∪B≠A,则A∩B≠BB . 若A∩B=B,则A∪B=AC . 若A∩B≠B,则A∪B≠AD . 若A∪B≠A,则A∩B=B3. (2分)定义在R上奇函数,f(x)对任意x∈R都有f(x+1)=f(3﹣x),若f(1)=﹣2,则2012f(2012)﹣2013f(2013)=()A . ﹣4026B . 4026C . ﹣4024D . 40244. (2分)椭圆()的左右顶点分别为A、B,左右焦点分别为、,若,,成等差数列,则此椭圆的离心率为()A .B .C .D .5. (2分)=()A .B . 1C .D .6. (2分) (2019高三上·承德月考) 已知函数若函数有4个零点,则实数的取值范围是()A .B .C .D .7. (2分)已知函数(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A .B .C .D .8. (2分)阅读程序框图,运行相应的程序,则输出 i 的值为()A . 3B . 4C . 5D . 69. (2分)已知函数y=Asin(ωx+φ)+b的一部分图象如图所示(A>0,ω>0,|φ|<),则函数表达式为()A . y=2sin( x+ )+2B . y=2sin(2x+ )+2C . y=4sin(2x+ )+2D . y=4sin(2x+ )+210. (2分)定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A . 8<<16B . 4<<8C . 3<<4D . 2<<311. (2分) (2016高二上·呼和浩特期中) 已知x,y,z∈R* ,满足x﹣2y+3z=0,则的最小值是()A . 2B . 3C . 4D . 512. (2分)在自然数集N上定义的函数f(n)= 则f(90)的值是()A . 997B . 998C . 999D . 1000二、填空题 (共4题;共4分)13. (1分)(2017·枣庄模拟) 已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则 =________.14. (1分) (2016高一下·高淳期末) 在△ABC中角A,B,C对应边分别为a,b,c,若,那么c=________.15. (1分)(2016·上海模拟) 若cos(α+β)= ,cos(α﹣β)=﹣,,,则sin2β=________16. (1分) (2019高一上·银川期中) 定义在上的偶函数满足:对任意的,有,且,则不等式的解集是________.三、解答题 (共5题;共40分)17. (5分)(2017·嘉兴模拟) 已知数列{an}满足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).(Ⅰ)求a2 , a3;并证明:2 ﹣≤an≤ •3 ;(Ⅱ)设数列{an2}的前n项和为An ,数列{ }的前n项和为Bn ,证明: = an+1 .18. (10分)如图:A是单位圆与x轴正半轴的交点,点B在单位圆上且B(﹣,),P是劣弧上一点(不包括端点A、B),∠AOP=θ,∠BOP=α, = + ,四边形OAQP的面积为S.(1)当θ= 时,求cosα;(2)求• +S的取值范围.19. (10分) (2019高三上·柳州月考) 某地对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,分别记录了3月1日到3月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日101113128温差发芽数y(颗)2325302616他们所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对选取的2组数据进行检验.参考公式:,其中(1)求选取的2组数据恰好是相邻2天数据的概率;(2)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;并预报当温差为时的种子发芽数.20. (10分) (2016高一下·晋江期中) 已知tan( +x)=﹣.(1)求tan2x的值;(2)若x是第二象限的角,化简三角式 + ,并求值.21. (5分) (2020高二上·吉林期末) 如果函数f(x)= (a>0)在x=±1时有极值,极大值为4,极小值为0,试求函数f(x)的解析式.四、选做题 (共2题;共20分)22. (10分)在直角坐标xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程及直线l的直角坐标方程;(2) P为直线l上一动点,当P到圆心C的距离最小时,求点P的坐标.23. (10分)若关于x的不等式|2x+5|+|2x﹣1|﹣t≥0的解集为R.(1)求实数t的最大值s;(2)若正实数a,b满足4a+5b=s,求y= + 的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共40分)18-1、18-2、19-1、19-2、20-1、20-2、21-1、四、选做题 (共2题;共20分)22-1、22-2、23-1、23-2、。
山东省德州市2016届高三上学期期中考试数学文试题第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上. 1.已知集合A ={x |x 2一4x 一5<0},B ={x |2<x <4},则AB = A .(1,3) B .(1,4) C .(2,3) D .(2,4) 2.已知向量a =(l ,2),b =(0,1),c =(一2,k ),若(a 十2b )//c ,则k = A .-8 B .- C . D .8 3、若,且为第四象限角,则的值等于A 、B 、-C 、3D 、-3 4.下列说法正确的是A .命题“若x 2=1,则x =l”的否命题为:“若x 2=1,则x≠l”B .若命题p :,则命题2:,10p x R x x ⌝∀∈-+> C .命题“若x =y ,则sinx =siny”的逆否命题为真命题 D .“”的必要不充分条件是“x =一l” 5、曲线在点(1,-1)处的切线方程为 A 、y =x -2 B 、y =-2x +3 C 、y =2x -3 D 、y =-2x +1 6、已知是等差数列的前n 项和,若=3,则= A 、 B 、5 C 、7 D 、9 7·函数的图象是4.已知指数函数y =f (x )的图象过点(),则f (2)的值为 A . B .一 C .一2 D .2 8.下列四个命题,其中正确命题的个数①若a >|b |,则 ②若a >b ,c >d ,则a 一c >b 一d ③若a >b ,c >d ,则ac >bd ④若a >b >0, A .3个 B .2个 C .1个 D .0个9.已知定义在R 上的函数f (x )=一1(m 为实数)为偶函数,记a =f (2一3),b =f (3m ), c =f (),则A .a <b <cB .a <c <bC .c <a <bD .c <b <a10.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +2)=f (x ),当一1≤x <1时, ,若函数()()log ||a g x f x x =-至少6个零点,则a 取值范围是A .B .C .(5,7)D .[5,7)第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位里.11.已知f (x )=1233,3log (6),3x e x x x -⎧<⎪⎨-≥⎪⎩,则f (f ())的值为 12.已知等比数列满足13541,4(1)4a a a a ==-,则=___ 13.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .已知b=,sin sin A C B +=,则角A =14.若x .y 满足20449x y y x x y -≥⎧⎪≥⎨⎪+≤⎩,则的最大值为15.设函数是定义在(-,0)上的可导函数,其导函数为,且有, 则不等式的解集是____三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数的最小正周期为。
高三期末模拟考试数学(文)试题2016年1月25本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共2页。
满分150分,考试时间120分钟。
考试结束后,将本试卷以及答题卡和答题纸一并交回。
答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在试卷、答题卡和答题纸规定的地方。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10 小题,每小题5 分,共50 分1。
设复数z满足2)1(=+z i,其中i为虚数单位,则z=( )A.1i+B.1i-C.22i+D.22i-2. 集合2{|lg0},{|4},M x x N x x=>=≤则M N =()A.(1,2)B.[1,2)C.(1,2]D.[1,2]3。
,则,,a b c的大小关系是()A. a b c>> B. b c a>> C. c a b>>D。
c b a>>4. 设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n(x)=f n -1′(x),n∈N,则f2 013(x)=()A.sin x B.-sin x C.cos x D.-cos x5。
已知f(x)是定义在R上的周期为2的周期函数,当x∈[0,1)时,f(x)=4x-1,则f(-5.5)的值为( )A.2 B.-1 C.-21D.16。
若△ABC 的一个内角为120°,且三边长构成公差为4的等差数列,则三角形的面积为( )A .12错误!B .15错误!C .12D .15 7。
已知变量x ,y满足1,2,0.x y x y ≥⎧⎪≤⎨⎪-≤⎩则x y +的最小值是( )A. 2B. 3C. 4 D 。
58. 执行右面的程序框图,算法执行完毕后,输出的S为( )A .8B .63C .92D .129 9. 函数()f x 满足)()3(x f x f -=+且定义域为R ,当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =,则f (1)+f (2)+f (3) +…+f (2013) =( )A . 338B .337C .1678D .201310. 双曲线错误!-错误!=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ).A .2错误!B .2错误!C .4错误!D .4错误!第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题, 每小题5分,共25分 11 。
2014-2015学年山东省德州市高三(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)已知全集U=R,集合A={x|y=},B={x|<2x<4},则(∁U A)∩B 等于()A.{x|﹣1<x<2}B.{x|﹣1<x<0}C.{x|x<1}D.{x|﹣2<x<0} 2.(5分)下列说法正确的是()A.命题“若x=1则x2=1”的否命题为“若x2≠1,则x≠1”B.命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1>0”C.“x=y”是“sinx=siny”的充分不必要条件D.“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分不必要条件3.(5分)在△ABC中,若sinA+cosA=,则tanA=()A.B.C.﹣ D.﹣4.(5分)已知=(1,2),=(0,1),=(一2,k),若(+2)⊥,则k=()A.B.2 C.﹣ D.﹣25.(5分)一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣6.(5分)已知不等式ax2﹣5x+b>0的解集为{x|x<﹣或x>},则不等式bx2﹣5x+a>0的解集为()A.{x|﹣<x<} B.{x|x<﹣或x>} C.{x|﹣3<x<2}D.{x|x<﹣3或x>2}7.(5分)一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.8.(5分)已知函数f(x)是R上的偶函数,若对于x≥0都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f(2014)=()A.0 B.C.1 D.29.(5分)若函数y=a x(a>0,且a≠l)的图象如图所示,则下列函数图象正确的是()A. B. C.D.10.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共5小题.每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)如果实数x,y满足条件,那么z=2x﹣y的最大值为.12.(5分)在△ABC中,边a,b,c与角A,B,C分别成等差数列,且△ABC 的面积为,那么b=.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.14.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=2,则球O的表面积为.15.(5分)如图所示,函数y=f(x)的图象由两条射线和三条线段组成.若对∀x∈R,都有f(x)≥f(x﹣12asinφ),其中a>0,0<φ<,则φ的最小值为.三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,该图象与y轴交于点F(0,1),与x轴交于B,C两点,M为图象的最高点,且△MBC的面积为.(Ⅰ)求函数f(x)的解析式及单调增区间;(Ⅱ)若f(a﹣)=,求cos2(a﹣)的值.17.(12分)设数列{a n}的前n项和为S n,且2S n+1=4a n,数列{b n}满足()=a n2.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.18.(12分)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,边AC长为2.(Ⅰ)求角A;(Ⅱ)若=3,求边AB的长.19.(12分)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,AC、BD交于O点,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:PO⊥平面ABCD;(Ⅱ)GH∥EF;(Ⅲ)若EB=2,求四边形GEFH的面积.20.(13分)某工厂引入一条生产线,投人资金250万元,每生产x千件,需另投入成本w(x),当年产量不足80干件时,w(x)=x2+10x(万元),当年产量不小于80千件时,w(x)=51x+﹣1450(万元),当每件商品售价为500元时,该厂产品全部售完.(Ⅰ)写出年利润L(x)(万元)与年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时该厂的利润最大.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.2014-2015学年山东省德州市高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.(5分)已知全集U=R,集合A={x|y=},B={x|<2x<4},则(∁U A)∩B 等于()A.{x|﹣1<x<2}B.{x|﹣1<x<0}C.{x|x<1}D.{x|﹣2<x<0}【解答】解:由<2x<4得,2﹣1<2x<22,解得﹣1<x<2,则集合B={x|﹣1<x<2},又集合A={x|y=}={x|x≥0},则∁U A={x|x<0},所以(∁U A)∩B={x|﹣1<x<0},故选:B.2.(5分)下列说法正确的是()A.命题“若x=1则x2=1”的否命题为“若x2≠1,则x≠1”B.命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1>0”C.“x=y”是“sinx=siny”的充分不必要条件D.“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分不必要条件【解答】解:对于A:命题“若x=1则x2=1”的否命题为“若x≠1,则x2≠1”,故A 错误;对于B:命题“∀x∈R,x2+x﹣1<0”的否定是“∃x∈R,x2+x﹣1≥0”,故B错误;对于C:x=y⇒sinx=siny,充分性成立,反之不可,因此“x=y”“sinx=siny”的充分不必要条件,故C正确;对于D:“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分必要条件,故D错误.故选:C.3.(5分)在△ABC中,若sinA+cosA=,则tanA=()A.B.C.﹣ D.﹣【解答】解:在△ABC中,若sinA+cosA=,①所以:整理得:,即:sinAcosA=﹣②,sinA>0,cosA<0,由①②得:tanA=﹣,故选:D.4.(5分)已知=(1,2),=(0,1),=(一2,k),若(+2)⊥,则k=()A.B.2 C.﹣ D.﹣2【解答】解:∵=(1,2),=(0,1),=(一2,k),且(+2)⊥,∴(+2)•=•+2•=(﹣2+2k)+2(0+k)=﹣2+4k=0;解得k=.故选:A.5.(5分)一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣【解答】解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选:C.6.(5分)已知不等式ax2﹣5x+b>0的解集为{x|x<﹣或x>},则不等式bx2﹣5x+a>0的解集为()A.{x|﹣<x<} B.{x|x<﹣或x>} C.{x|﹣3<x<2}D.{x|x<﹣3或x>2}【解答】解:因为ax2﹣5x+b>0的解集为{x|x<﹣或x>},∴ax2﹣5x+b=0的解是x=﹣,x=∴=,=解得a=30,b=﹣5.则不等式bx2﹣5x+a>0变为﹣5x2﹣5x+30>0,∴x2+x﹣6<0,解得|﹣3<x<2故选:C.7.(5分)一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.【解答】解:该几何体为一个长方体截去一个三棱锥,其长方体的体积为2×2×3=12,三棱锥的体积××1×2×3=1,故该几何体的体积V=12﹣1=11,故选:B.8.(5分)已知函数f(x)是R上的偶函数,若对于x≥0都有f(x+2)=﹣f(x),且当x∈[0,2)时,f(x)=log8(x+1),则f(﹣2013)+f(2014)=()A.0 B.C.1 D.2【解答】解:∵数f(x)是R上的偶函数,∴f(﹣x)=f(x),∵对于x≥0都有f(x+2)=﹣f(x),∴f(x+4)=f(x),∴周期为4,∵当x∈[0,2)时,f(x)=log8(x+1),∴f(﹣2013)+f(2014)=f(1)﹣f(0)=,故选:B.9.(5分)若函数y=a x(a>0,且a≠l)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【解答】解:由指数函数图象经过点(1,3),∴3=a,对于A,y=(﹣x)3图象不经过点(1,1),故A错误,对于B,y=log3(﹣x),当x=﹣3时,y=1.故B错误,对于C,y=log3,当x=3时,y=﹣1,故C错误,对于D,y=x3,当经过点(1,1),且为增函数,故D正确,故选:D.10.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.二、填空题:本大题共5小题.每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)如果实数x,y满足条件,那么z=2x﹣y的最大值为5.【解答】解:由约束条件作出可行域如图,化z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过C(2,﹣1)时直线在y轴上的截距最小,z最大,为z=2×2﹣(﹣1)=5.故答案为:5.12.(5分)在△ABC中,边a,b,c与角A,B,C分别成等差数列,且△ABC的面积为,那么b=.【解答】解:∵在△ABC中,边a,b,c与角A,B,C分别成等差数列,∴2b=a+c,2B=A+C,又∵A+B+C=π,∴B=,∴△ABC的面积S=acsinB=ac=,解得ac=2,由余弦定理可得b2=a2+c2﹣2accosB,∴b2=(a+c)2﹣2ac﹣ac,∴b2=(2b)2﹣6解得b=,故答案为:.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=50.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.14.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=2,则球O的表面积为49π.【解答】解:由题意,三棱柱ABC﹣A1B1C1为直三棱柱ABC﹣A1B1C1,底面ABC 为直角三角形,把直三棱柱ABC﹣A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,所以外接球半径为=,则三棱柱ABC﹣A1B1C1外接球的表面积是4πR2=4×π=49π.故答案为:49π.15.(5分)如图所示,函数y=f(x)的图象由两条射线和三条线段组成.若对∀x∈R,都有f(x)≥f(x﹣12asinφ),其中a>0,0<φ<,则φ的最小值为.【解答】解:∵0<φ<,∴s inφ∈(0,1),又a>0,则﹣12asinφ∈(﹣12a,0),∴x>x﹣12asinφ,∵对∀x∈R,都有f(x)≥f(x﹣12asinφ),∴x﹣(x﹣12asinφ)≥4a﹣(﹣2a)=6a,即sinφ,∴φ.故答案为:.三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,该图象与y轴交于点F(0,1),与x轴交于B,C两点,M为图象的最高点,且△MBC的面积为.(Ⅰ)求函数f(x)的解析式及单调增区间;(Ⅱ)若f(a﹣)=,求cos2(a﹣)的值.=×;【解答】解:(Ⅰ)∵S△ABC∴周期T=π,又∵,∴ω=2由f(0)=2sinφ=1,得sinφ=,∵0<φ<,∴φ=.∴f(x)=2sin(2x+).由2kπ﹣≤2x+≤2kπ+可得k(k∈Z),所以函数f(x)的调增区间为[kπ﹣,kπ+](k∈Z);(Ⅱ)由f(α﹣)=2sin2α=,得sin2α=,cos2(α﹣)===.17.(12分)设数列{a n}的前n项和为S n,且2S n+1=4a n,数列{b n}满足()=a n2.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由题意得,2S n+1=4a n,当n=1时,2S1+1=4a1,解得a1=,当n≥2时,2S n+1=4a n,2S n﹣1+1=4a n﹣1,两式相减得,2a n=4a n﹣4a n﹣1,得a n=2a n﹣1,即,所以数列{a n}是以为首项、2为公比的等比数列,则a n==2n﹣2,因为()=a n2,所以,则b n=﹣2n+4;(Ⅱ)由(Ⅰ)得,c n==,所以T n=+①,T n=+②,①﹣②得,T n=4﹣2[]﹣=4﹣2×﹣===,所以T n=.18.(12分)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,边AC长为2.(Ⅰ)求角A;(Ⅱ)若=3,求边AB的长.【解答】解:(Ⅰ)已知A,B,C是△ABC的三个内角,向量=(1,),=(sinA,2+cosA),且∥,所以:进一步求得:所以:∵0<A<π求得:A=(Ⅱ)已知:所以:4sinB=2cosB解得:tanB=进一步解得:sinB=,cosB=sinC=sin()=利用正弦定理:解得:19.(12分)如图,四棱锥P﹣ABCD的底面是边长为8的正方形,四条侧棱长均为2,AC、BD交于O点,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(Ⅰ)证明:PO⊥平面ABCD;(Ⅱ)GH∥EF;(Ⅲ)若EB=2,求四边形GEFH的面积.【解答】解:(Ⅰ)∵四边形ABCD为正方形,且AC、BD交于点O,∴O为AC、BD的中点,由已知得PA=PC,PB=PD,△PAC和△PBD均为等腰三角形,∴PO⊥AC,PO⊥BD,又AC、BD⊂平面ABCD,且AC∩BD=O,∴PO⊥平面ABCD,(Ⅱ)∵BC∥平面GEFH,BC⊂平面ABCD,平面GEFH∩平面ABCD=EF,∴BC∥EF,同理可得,BC∥GH,∴GH∥EF,(Ⅲ)设BD与EF交于点K,连接GK,∵PO⊥平面ABCD,且PO⊈平面GEFH,∴PO∥平面GEFH,又平面GEFH∩平面PBD=GK,PO⊂平面PBD,∴PO∥GK,∴GK为四边形GEFH底边上的高,又因为BE=2,AB=8,得点E是靠近B点的AB的四等分点,∵KE∥AD,∴K为靠近点BD的四等分点,∴K为OB的中点,又PO∥GK,∴G为PB的中点,又GH∥BC,∴H为PC的中点,又BC=8,∴GH=4,又由已知得PB=2,OB=4,∴PO=,∴GK=PO=3,又由BC∥EF,BE∥GK,可得EF=8,∴S=(GH+EF)•GK=•(4+8)•3=18,20.(13分)某工厂引入一条生产线,投人资金250万元,每生产x千件,需另投入成本w(x),当年产量不足80干件时,w(x)=x2+10x(万元),当年产量不小于80千件时,w(x)=51x+﹣1450(万元),当每件商品售价为500元时,该厂产品全部售完.(Ⅰ)写出年利润L(x)(万元)与年产量x(千件)的函数关系式;(Ⅱ)年产量为多少千件时该厂的利润最大.【解答】解:(Ⅰ)当每件商品售价为0.05万元时,x千件销售额0.05×1000x=50x (万元)当0<x<80时,L(x)=50x﹣(x2+10x)﹣250=﹣x2+40x﹣250;当x≥80时,L(x)=50x﹣(51x+﹣1450)﹣250=1200﹣(x+);故L(x)=;(Ⅱ)当0<x<80时,L(x)=﹣x2+40x﹣250;当x=60时,L(x)有最大值为950;当x≥80时,L(x)=1200﹣(x+);当且仅当x=,即x=100时,L(x)有最大值为1000;∴年产量为100千件时该厂的利润最大.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.【解答】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.。
文科数学德州市2016年高三第一次联合考试文科数学考试时间:____分钟题型单选题填空题简答题总分得分单选题(本大题共10小题,每小题____分,共____分。
)1.已知集合,若,则()A.B.C.D.2.已知复数,(为虚数单位),若为纯虚数,则实数的值为()A.B.C.D.3.执行如图所示的程序框图,若输入的的值为,则输出的的值为()A.B.C.D.4.设R,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.已知具有线性相关关系的两个变量之间的一组数据如下:且回归直线方程为,根据模型预报当时,的预测值为()A.B.C.D.6.函数的图象大致是()A.B.C.D.7.已知函数,则的值为()A.B.C.D.8.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.B.C.D.9.已知函数是定义在R上的可导函数,为其导函数,若对于任意实数,都有,其中为自然对数的底数,则()A.B.C.D. 与大小关系不确定10.对于两个平面向量,定义它们的一种运算:(其中为向量的夹角),则关于这种运算的以下结论中,不恒成立的是()A.B. 若,则C.D. 若,则填空题(本大题共5小题,每小题____分,共____分。
)11.函数的定义域为________.12.若直线过圆的圆心,则的最大值为________.13.设△的内角的对边分别为,若,则________.14.某企业生产甲、乙两种产品均需用两种原料.已知生产吨每种产品所需原料及每天原料的可用限额如表所示.如果生产吨甲、乙产品可获利润分别为万元、万元,则该企业每天可获得最大利润为________万元.15.抛物线的焦点与双曲线的右焦点的连线交于第一象限的点.若在点处的切线平行于的一条渐近线,则________.简答题(综合题)(本大题共6小题,每小题____分,共____分。
)某市为庆祝北京夺得年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示16.若电视台记者要从抽取的群众中选人进行采访,估计被采访人恰好在第组或第组的概率;17.已知第组群众中男性有名,组织方要从第组中随机抽取名群众组成志愿者服务队,求至少有名女性群众的概率.已知函数的两条相邻对称轴之间的距离为.18.求的值;19.将函数的图象向左平移个单位,再将所得函数的图象上所有点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,若函数在区间上存在零点,求实数的取值范围.如图,在三棱柱中,,点分别是的中点,,.20.求证:平面;21.求证:平面⊥平面.已知等比数列的前项和为,,且成等差数列.22.求数列的通项公式;23.设数列满足,求满足方程的正整数的值.已知函数.24.当时,求的极值;25.当时,讨论的单调性;26.若对于任意的都有,求实数的取值范围.已知椭圆的离心率为,它的四个顶点构成的四边形的面积为.27.求椭圆的方程;28.设椭圆的右焦点为,过作两条互相垂直的直线,直线与椭圆交于两点,直线与直线交于点.(i)求证:线段的中点在直线上;(ii)求的取值范围.答案单选题1. D2. C3. D4. B5. C6. B7. A8. D9. A 10. C 填空题11.12..13..14..15..简答题16.(Ⅰ).17.(Ⅱ).18.(Ⅰ).19.(Ⅱ).20.(Ⅰ)略.21.(Ⅱ)略.22.(Ⅰ),N.23.(Ⅱ).24.(Ⅰ)当时,取得极小值为,无极大值.25.(Ⅱ)当时,在上是减函数,在上是增函数;当时,在上是减函数;当时,在上是减函数,在上是增函数.26.(Ⅲ).27.(Ⅰ).28.(Ⅱ)(i)略;(ii).解析单选题1.由得,所以,所以,所以.故选D.2.由题意可得,,因为为纯虚数,所以,所以.故选C.3.执行程序框图,第一次,第二次,第三次,第四次,第五次,所以输出的.故选D.4.由题意可得,“”等价于“或”,即“”,所以“”是“”的必要不充分条件.故选B.5.由题意可得,,,因为回归直线一定过样本点的中心,所以,解得.当时,的预测值为.故选D.6.由题意可得,,所以为偶函数,的图象关于轴对称,可排除答案A、C;当时,,可排除D.故选B.7.由题意可得,,所以,所以.故选A.8.由三视图可知,该几何体是底面半径为,高为的圆锥.设其外接球的半径为,则,解得,所以该几何体外接球的表面积为.故选D.9.构造函数R,的导函数.因为,,所以,在R上是减函数,所以,所以.故选A.10.因为,所以,选项A恒成立.当,时,,所以或,所以;当或时,恒成立,选项B恒成立.,选项D恒成立.当时,,选项C不恒成立.故选C填空题11.由题意可得,整理得,所以函数的定义域为.12.圆可化为,其圆心为,代入直线方程得.因为,所以,当且仅当,即等号成立.所以的最大值为.13.由得,,由正弦定理得,,因为,所以.由余弦定理得,因为,所以.14.设每天生产甲、乙产品分别为吨、吨,每天所获利润为万元,则满足约束条件,目标函数.作出可行域如图中阴影部分所示,由图可知,当直线经过点时,取得最大值为.所以该企业每天可获得最大利润为万元.15.由题意可知,双曲线的右焦点为,渐近线方程为.抛物线的焦点为.设点的坐标为,则,所以,所以.由得,所以在点处的切线的斜率为,所以,代入可得.简答题16.(Ⅰ)设第组的频率为,则由题意可知,.被采访人恰好在第组或第组的频率为.∴估计被采访人恰好在第组或第组的概率为17.(Ⅱ)第组的人数为.∴第组中共有名群众,其中女性群众共名.记第组中的名男性群众分别为,名女性群众分别为,从第组中随机抽取名群众组成志愿者服务队包含共个基本事件.至少有一名女性群众包含共个基本事件.∴从第组中随机抽取名群众组成志愿者服务队,至少有名女性群众的概率为.18.(Ⅰ)原函数可化为.∵函数的相邻两条对称轴之间的距离为,∴的最小正周期为.∴,∴.∴的值为.19.(Ⅱ)由(Ⅰ)知,,,将函数的图象向左平移个单位,得到函数的图象,再将函数的图象上所有点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图象.…………9分∴.∵,∴.∵函数在区间上存在零点,∴.∴实数的取值范围为.20.(Ⅰ)连接,交于点,连接.在三棱柱中,四边形是平行四边形,为的中点.又∵是的中点,∴.又∵平面,平面,∴平面.21.(Ⅱ)∵,,∴△为正三角形,∴.∵,,∴△为正三角形.∵为的中点,∴,.∵为的中点,为的中点,,∴.∵,∴,∴∵平面,平面,,∴平面.∵平面,∴平面⊥平面.22.(Ⅰ)设等比数列的公比为.∵成等差数列,∴.∴,解得或(舍去)∴=.∴数列的通项公式为,N.23.(Ⅱ)由(Ⅰ)知,,∴.∵数列满足,∴.…………7分∴.∴.由得,.∴满足方程的正整数的值为.24.(Ⅰ)当时,,定义域为,的导函数.当时,,在上是减函数;当时,,在上是增函数.∴当时,取得极小值为,无极大值.25.(Ⅱ)当时,的定义域为,的导函数为.由得,,.(1)当时,在上是减函数,在上是增函数,在上是减函数;(2)当时,在上是减函数;(3)当时,在上是减函数,在上是增函数,在上是减函数.综上所述,当时,在上是减函数,在上是增函数;当时,在上是减函数;当时,在上是减函数,在上是增函数.26.(Ⅲ)由(Ⅱ)知,当时,在上是减函数.∴.∵对于任意的都有,∴对任意恒成立,∴对任意恒成立.当时,,∴.∴实数的取值范围为.27.(Ⅰ)设椭圆的半焦距为,则由题意可知.∵椭圆四个顶点构成的四边形的面积为,∴.由得.∴椭圆的方程为.28.(Ⅱ)(i)由(Ⅰ)知,椭圆的方程为,它的右焦点为.(1)当直线的斜率不存在时,直线的方程为,直线的方程为,此时线段的中点为,点的坐标为,直线的方程为,线段的中点在直线上.(2)当直线的斜率存在时,若直线的斜率为,则直线的方程为,与不相交,所以直线的斜率不为.设直线的方程为,则直线的方程为.设两点的坐标分别为,线段的中点为.由得.判别式,.则,.由得点的坐标为,∴直线的斜率为,∴直线的方程为.∴,∴线段的中点在直线上.(ii)(1)当直线的斜率不存在时,由得,.∴,此时.(2)由(i)知直线的斜率不为,所以当直线的斜率存在且不为时,,..令,则∵,∴,,∴.此时.∴的取值范围为.。
山东省德州市数学高三上学期文数期中考试试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 12 分)1.(1 分)已知命题 p:在△ABC 中,“C>B”是“sinC>sinB”的充分不必要条件;命题 q:“a>b”是“ac2>bc2” 的充分不必要条件,则下列选项中正确的是( )A . p真q假B . p假q真C . “ ”为假D . “ ”为真2. (1 分) (2019 高一上·山西月考) 关系:① 中正确的个数是( )A. B. C. D.;②;③;④其3. (1 分) 已知 =(3,0),那么 等于( ). A.2 B.3 C.4 D.54. (1 分) 设函数,第 1 页 共 10 页, 则函数的值域为() A. B.C.D.5. (1 分) 已知函数 f(x)对定义域 R 内的任意 x 都有 f(x)=f(4-x),且当 ,若 2<a<4 则( )时其导函数满足A. B. C. D. 6. (1 分) 下列函数中,在区间 A. B. C. D.上为减函数的是( )7. (1 分) 已知函数 取值范围为( ), 若存在, 使得第 2 页 共 10 页,则的A.B. C. D.8. (1 分) 已知数列 A.满足, 则数列 的前 10 项和为 ( )B.C.D.9. (1 分) (2017 高二上·大连期末) 在△ABC 中,若 b=3,A=120°,三角形的面积 接圆的半径为( ),则三角形外A. B.3C. D.6 10. (1 分) 已知函数 的是 ( )的导函数的图象如图所示,则关于函数, 下列说法正确第 3 页 共 10 页A . 在 x=1 处取得最大值B . 在区间上是增函数C . 在区间上函数值均小于 0D . 在 x=4 处取得极大值11. (1 分) 已知函数 象上所有的点( ), 则要得到其导函数的图象,只需将函数A . 向左平移 个单位长度B . 向右平移 个单位长度C . 向左平移 个单位长度D . 向右平移 个单位长度 12. (1 分) (2016 高一下·信阳期末) y=tanx 的最小正周期为( )A. B.π C . 2π D . ﹣π二、 填空题 (共 4 题;共 4 分)第 4 页 共 10 页的图13. (1 分) (2018 高二上·福建期中) 若变量 ________.满足约束条件则的最小值为14. (1 分) (2018 高二上·汕头期中) 已知向量 =(4,2),向量 =( ,3),且 // ,则 = ________15. (1 分) (2018 高二上·大港期中) 已知数列,则________.满足16. (1 分) (2018 高一下·福州期末) 设函数为非零实数),若,则的值是________.三、 解答题 (共 5 题;共 12 分)17. (2 分) (2017 高二上·太原月考) 已知 : 的充分不必要条件,求正实数 的取值范围.,:,,(其中 、 、 、,若 是18. (2 分) (2017 高二上·景县月考) 在△ABC 中,BC=a,AC=b,a,b 是方程 且 2cos(A+B)=1.求:(1) 角 C 的度数; (2) AB 的长度.的两个根,19. (3 分) (2019 高三上·天津月考) 已知数列 的前 项和是 ,且是公差 不等于 的等差数列,且满足:, , , 成等比数列.(1) 求数列 、 的通项公式;.数列(2) 设,求数列 的前 项和 .20. (2 分) (2018·衡水模拟) 已知函数,且函数第 5 页 共 10 页的图象在点处的切线斜率为.(1) 求 的值,并求函数的最值;(2) 当时,求证:.21. (3 分) 设二次函数 f(x)=ax2+bx+c 的图象过点(0,1)和(1,4),且对于任意的实数 x,不等式 f (x)≥4x 恒成立.(1)求函数 f(x)的表达式; (2)设 g(x)=kx+1,若 F(x)=g(x)﹣f(x),求 F(x)在[1,2]上的最小值;(3)设 g(x)=kx+1,若 G(x)=在区间[1,2]上是增函数,求实数 k 的取值范围.第 6 页 共 10 页一、 单选题 (共 12 题;共 12 分)1、答案:略 2-1、 3-1、 4-1、 5-1、 6、答案:略 7-1、 8-1、 9-1、 10-1、 11-1、 12、答案:略二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 7 页 共 10 页16-1、三、 解答题 (共 5 题;共 12 分)17-1、18-1、18-2、第 8 页 共 10 页19-1、 19-2、第 9 页 共 10 页20-1、20-2、 21、答案:略第 10 页 共 10 页。
2015-2016学年山东省德州市高三(上)期中数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.已知集合A={x|x2﹣4x﹣5<0},B={x|2<x<4},则A∩B=( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)2.已知向量=(1,2),=(0,1),=(﹣2,k),若(+2)∥,则k=( ) A.﹣8 B.﹣C.D.83.若sinα=﹣,且α为第四象限角,则tanα的值等于( )A.B.﹣C.3 D.﹣34.下列说法正确的是( )A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件5.曲线y=在点(1,﹣1)处的切线方程为( )A.y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D.y=﹣2x+16.已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.B.5 C.7 D.97.函数y=的图象可能是( )A.B.C.D.8.下列四个命题,其中正确命题的个数( )①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个B.2个C.1个D.0个9.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(2﹣3),b=f(3m),c=f(log0.53),则( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a10.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=sin x,若函数g(x)=f(x)﹣log a|x|至少6个零点,则a的取值范围是( )A.(0,]∪(5,+∞)B.(0,)∪[5,+∞)C.(,]∪(5,7)D.(,)∪[5,7)二、填空题(共5小题,每小题5分,满分25分)11.已知f(x)=,则f(f())的值为__________.12.已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=__________.13.在△ABC中,角A,B,C所对边的长分别是a,b,c,已知b=c,sinA+sinC=sinB,则角A=__________.14.若x,y满足,则z=2x+y的最大值为__________.15.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集是__________.三、解答题(共6小题,满分75分)16.已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.17.已知向量,的夹角为60°,且||=1,||=2,又=2+,=﹣3+(Ⅰ)求与的夹角的余弦;(Ⅱ)设=t﹣,=﹣,若⊥,求实数t的值.18.在△ABC中,角A、B、C对边分别是a、b、c,且满足.(Ⅰ)求角A的大小;(Ⅱ)若,△ABC的面积为,求b,c.19.若数列{a n}中,a1=,a n+1=a n(Ⅰ)证明:{}是等比数列,并求{a n}的通项公式;(Ⅱ)若{a n}的前n项和为S n,求证S n.20.(13分)某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量P 万件满足(其中0≤x≤a,a为正常数).现假定生产量与销售量相等,已知生产该产品P万件还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.21.(14分)已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数)(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;(3)在(2)的条件下,证明:1+++…+>ln(n+1)(n∈N*)2015-2016学年山东省德州市高三(上)期中数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.已知集合A={x|x2﹣4x﹣5<0},B={x|2<x<4},则A∩B=( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)【考点】交集及其运算.【专题】计算题;集合思想;综合法;集合;不等式.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣5)(x+1)<0,解得:﹣1<x<5,即A=(﹣1,5),∵B=(2,4),∴A∩B=(2,4),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知向量=(1,2),=(0,1),=(﹣2,k),若(+2)∥,则k=( )A.﹣8 B.﹣C.D.8【考点】平面向量共线(平行)的坐标表示.【专题】计算题;函数思想;综合法;平面向量及应用.【分析】求出向量+2,利用斜率的坐标运算求解即可.【解答】解:向量=(1,2),=(0,1),=(﹣2,k),+2=(1,4),∵(+2)∥,∴﹣8=k.故选:A.【点评】本题考查向量的坐标运算,共线向量的充要条件的应用,考查计算能力.3.若sinα=﹣,且α为第四象限角,则tanα的值等于( )A.B.﹣C.3 D.﹣3【考点】同角三角函数基本关系的运用.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】由sinα的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.【解答】解:∵sinα=﹣,且α为第四象限角,∴cosα==,则tanα=﹣,故选:B.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.4.下列说法正确的是( )A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件【考点】四种命题.【专题】简易逻辑.【分析】A,写出它的否命题,即可判定真假;B,写出命题p的否定¬p;C,判定原命题的真假性,即可得出它的逆否命题的真假性;D,由“x=﹣1”得出“x2﹣5x﹣6=0”成立,判定命题是否正确.【解答】解:对于A,否命题是“若x2≠1,则x≠1”,∴A错误;对于B,命题p的否定¬p:∀x∈R,x2﹣2x﹣1≤0,∴B错误;对于C,命题“若x=y,则sinx=siny”是真命题,∴它的逆否命题是真命题,∴C正确;对于D,“x=﹣1”时,“x2﹣5x﹣6=0”,∴是充分条件,∴D错误;故选:C.【点评】本题通过命题真假的判定,考查了四种命题之间的关系,也考查了一定的逻辑思维能力,是基础题.5.曲线y=在点(1,﹣1)处的切线方程为( )A.y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D.y=﹣2x+1【考点】导数的几何意义.【专题】计算题.【分析】根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.【解答】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D【点评】本题考查了导数的几何意义,以及导数的运算法则,本题属于基础题.6.已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.B.5 C.7 D.9【考点】等差数列的前n项和.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:B.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.7.函数y=的图象可能是( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】当x>0时,,当x<0时,,作出函数图象为B.【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.故选B【点评】本题考查了函数奇偶性的概念、判断及性质,考查了分段函数的图象及图象变换的能力.8.下列四个命题,其中正确命题的个数( )①若a>|b|,则a2>b2②若a>b,c>d,则a﹣c>b﹣d③若a>b,c>d,则ac>bd④若a>b>o,则>.A.3个B.2个C.1个D.0个【考点】命题的真假判断与应用.【专题】综合题;转化思想;分析法;不等式的解法及应用.【分析】直接由不等式的可乘积性判断①;举例说明②③④错误.【解答】解:①若a>|b|,则a2>b2,①正确;②若a>b,c>d,则a﹣c>b﹣d错误,如3>2,﹣1>﹣3,而3﹣(﹣1)=4<5=2﹣(﹣3);③若a>b,c>d,则ac>bd错误,如3>1,﹣2>﹣3,而3×(﹣2)<1×(﹣3);④若a>b>o,则,当c>0时,<,④错误.∴正确命题的个数只有1个.故选:C.【点评】本题考查命题的真假判断与应用,考查了不等式的基本性质,是基础题.9.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(2﹣3),b=f(3m),c=f(log0.53),则( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【考点】对数函数图象与性质的综合应用.【专题】数形结合;函数的性质及应用.【分析】由题意可得m=0,可得f(x)=2|x|﹣1在(0,+∞)单调递增,在(﹣∞,0)单调递减,比较三个变量的绝对值大小可得.【解答】解:∵定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,∴f(﹣1)=f(1),即2|﹣1﹣m|﹣1=2|1﹣m|﹣1,解得m=0,∴f(x)=2|x|﹣1在(0,+∞)单调递增,在(﹣∞,0)单调递减,∵2﹣3=∈(0,1),3m=1,|log0.53|=log23>1,∴f(2﹣3)<f(3m)<f(log0.53),即a<b<c故选:A【点评】本题考查函数的单调性和奇偶性,属基础题.10.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=sin x,若函数g(x)=f(x)﹣log a|x|至少6个零点,则a的取值范围是( )A.(0,]∪(5,+∞)B.(0,)∪[5,+∞)C.(,]∪(5,7)D.(,)∪[5,7)【考点】函数零点的判定定理.【专题】计算题;作图题;函数的性质及应用.【分析】分a>1与0<a<1讨论,结合题意作两个函数的图象,利用数形结合求解即可.【解答】解:当a>1时,作函数f(x)与函数y=log a|x|的图象如下,,结合图象可知,,故a>5;当0<a<1时,作函数f(x)与函数y=log a|x|的图象如下,,结合图象可知,,故0<a≤.故选A.【点评】本题考查了函数的图象的作法及应用,同时考查了分类讨论的思想应用.二、填空题(共5小题,每小题5分,满分25分)11.已知f(x)=,则f(f())的值为3e.【考点】对数的运算性质.【专题】分类讨论;数学模型法;函数的性质及应用.【分析】由>3,可得=log3(15﹣6)=2.进而得出.【解答】解:∵>3,∴=log3(15﹣6)=2.∴f(f())=f(2)=3e2﹣1=3e.故答案为:3e.【点评】本题考查了对数与指数的运算性质、分段函数的解析式,考查了计算能力,属于中档题.12.已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】设等比数列{a n}的公比是q,根据题意和等比数列的通项公式列出方程,化简后求出q的值,即可求出a2.【解答】解:设等比数列{a n}的公比是q,因为a1=,a3a5=4(a4﹣1),所以()()=4(﹣1),化简得,q6﹣16q3+64=0,解得q3=8,则q=2,所以a2=a1•q==,故答案为:.【点评】本题考查等比数列的通项公式,以及方程思想,属于基础题.13.在△ABC中,角A,B,C所对边的长分别是a,b,c,已知b=c,sinA+sinC=sinB,则角A=.【考点】余弦定理的应用.【专题】转化思想;综合法;解三角形.【分析】运用正弦定理,可得a+c=b,又b=c,即有a=c,再由余弦定理,计算cosA,即可得到所求A的值.【解答】解:由正弦定理,sinA+sinC=sinB,即为a+c=b,又b=c,即有a=2c﹣c=c,由余弦定理可得cosA===.即有A=.故答案为:.【点评】本题考查正弦定理和余弦定理的运用,考查运算能力,属于中档题.14.若x,y满足,则z=2x+y的最大值为.【考点】简单线性规划.【专题】作图题;转化思想;数形结合法;不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y轴上的截距最大,z有最大值为.故答案为:.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集是(﹣2018,﹣2015).【考点】函数的单调性与导数的关系.【专题】函数思想;导数的概念及应用.【分析】根据题意,构造函数g(x)=x3f(x),x∈(﹣∞,0),利用导数判断g(x)的单调性,再把不等式(x+2015)3f(x+2015)+27f(﹣3)>0化为g(x+2015)>g(﹣3),利用单调性求出不等式的解集.【解答】解:根据题意,令g(x)=x3f(x),其导函数为g′(x)=3x2f(x)+x3f′(x)=x2[3f(x)+xf′(x)],∵x∈(﹣∞,0)时,3f(x)+xf′(x)>0,∴g(x)>0,∴g(x)在(﹣∞,0)上单调递增;又不等式(x+2015)3f(x+2015)+27f(﹣3)>0可化为(x+2015)3f(x+2015)>(﹣3)3f(﹣3),即g(x+2015)>g(﹣3),∴0>x+2015>﹣3;解得﹣2015>x>﹣2018,∴该不等式的解集是为(﹣2018,﹣2015).故答案为:(﹣2018,﹣2015).【点评】本题考查了利用导数研究函数的单调性问题,也考查了利用函数的单调性求不等式的解集的问题,是综合性题目.三、解答题(共6小题,满分75分)16.已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.【考点】二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用两角和的正弦公式,二倍角公式化简函数f(x)的解析式为,由此求得它的最小正周期.令,求得x的范围,即可得到函数f(x)的单调递增区间.(Ⅱ)因为,根据正弦函数的定义域和值域求得函数f(x)的取值范围.【解答】解:(Ⅰ)==.…因为f(x)最小正周期为π,所以ω=2.…所以.由,k∈Z,得.所以函数f(x)的单调递增区间为[],k∈Z.…(Ⅱ)因为,所以,…所以.…所以函数f(x)在上的取值范围是[].…(13分)【点评】本题主要考查两角和的正弦公式,二倍角公式,正弦函数的单调性和周期性,正弦函数的定义域和值域,属于中档题.17.已知向量,的夹角为60°,且||=1,||=2,又=2+,=﹣3+(Ⅰ)求与的夹角的余弦;(Ⅱ)设=t﹣,=﹣,若⊥,求实数t的值.【考点】平面向量的综合题.【专题】计算题;向量法;平面向量及应用.【分析】(Ⅰ)进行数量积的运算便可得出,根据便可求出,同理可求出,这样根据向量夹角的余弦公式即可求出与夹角的余弦;(Ⅱ)先求出,而根据便有,进行数量积的运算即可求出t的值.【解答】解:(Ⅰ)==﹣6﹣1•2•cos60°+4=﹣3;=,;∴;即与夹角的余弦为;(Ⅱ),;∴=2t+3﹣t﹣4﹣4t+4=0;∴t=1.【点评】考查向量数量积的运算及其计算公式,求向量长度的方法:根据,向量夹角的余弦公式,向量的减法和数乘运算,向量垂直的充要条件.18.在△ABC中,角A、B、C对边分别是a、b、c,且满足.(Ⅰ)求角A的大小;(Ⅱ)若,△ABC的面积为,求b,c.【考点】余弦定理的应用;平面向量数量积的运算.【专题】计算题;解三角形.【分析】(I)由题意可得2bccosA=a2﹣b2﹣c2﹣2bc,再由余弦定理求出cosA,从而确定A 的大小;(II)利用三角形的面积公式S=bcsinA得bc=16;再由余弦定理得b2+c2+bc=48,联立求出b、c.【解答】解:(Ⅰ)由题意可得2bccosA=a2﹣b2﹣c2﹣2bc,由余弦定理a2=b2+c2﹣2bccosA得4bccosA=﹣2bc,∴,∵0<A<π,∴.(Ⅱ)∵sinA=,cosA=﹣,∴,a2=b2+c2﹣2bccosA⇔b2+c2+bc=48,⇒b=c=4,故b=4,c=4.【点评】本题考查余弦定理的应用,考查三角形的面积公式的应用,结合题设条件,利用余弦定理求出角A的大小是解答本题的关键.19.若数列{a n}中,a1=,a n+1=a n(Ⅰ)证明:{}是等比数列,并求{a n}的通项公式;(Ⅱ)若{a n}的前n项和为S n,求证S n.【考点】数列的求和;等比关系的确定.【专题】证明题;转化思想;作差法;等差数列与等比数列;不等式的解法及应用.【分析】(Ⅰ)由题意可得=•,结合等比数列的定义,即可得证,再由等比数列的通项公式即可求得{a n}的通项公式;(Ⅱ)运用错位相减法,结合等比数列的求和公式,化简整理可得S n,再由不等式的性质即可得证.【解答】(Ⅰ)证明:a1=,a n+1=a n即有=•,则{}是首项为,公比为的等比数列,即有=()n,即a n=n•()n;(Ⅱ)证明:{a n}的前n项和为S n,即有S n=1•+2•()2+3•()3+…+n•()n,S n=1•()2+2•()3+3•()4+…+n•()n+1,两式相减可得,S n=+()2+()3+…+()n﹣n•()n+1,=﹣n•()n+1,化简可得S n=﹣﹣<.则S n.【点评】本题考查等比数列的定义的运用,考查数列的通项公式的求法,同时考查数列的求和方法:错位相减法,以及等比数列的求和公式的运用,属于中档题.20.(13分)某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量P 万件满足(其中0≤x≤a,a为正常数).现假定生产量与销售量相等,已知生产该产品P万件还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【专题】应用题;导数的综合应用.【分析】(1)根据题意售价为万元/万件,销售量为P,成本为(10+2P)+x万元,利用利润=销售额﹣成本,即可列出函数关系式;(2)对a进行分类讨论,当a≥1时,利用基本不等式即可求得最值,当a<1时,利用导数确定函数的单调性,从而求得最值,即可得到答案.【解答】解:(1)由题意知,该产品售价为万元,销售量为P,成本为(10+2P)+x万元,∴,∵(其中0≤x≤a,a为正常数),∴y=2×﹣10﹣2×(3﹣)﹣x=16﹣x﹣,∴(0≤x≤a),∴该产品的利润y万元表示为促销费用x万元的函数为(0≤x≤a);(2)由(1)可知,(0≤x≤a),∴,当且仅当时取等号,∵0≤x≤a,①当a≥1时,x=1时,y取得最大值为13,∴促销费用投入1万元时,厂家的利润最大;②当a<1时,,∴,解得﹣3<x<1,∴在(﹣3,1)上单调递增,∴在[0,a]上单调递增,∴在x=a时,函数有最大值,∴促销费用投入a万元时,厂家的利润最大.综合①②可得,当a≥1时,促销费用投入1万元时,厂家的利润最大,当a<1时,促销费用投入a万元时,厂家的利润最大.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.在运用数学方法求解最值时,选用了基本不等式和导数的方法求解.属于中档题.21.(14分)已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数)(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;(3)在(2)的条件下,证明:1+++…+>ln(n+1)(n∈N*)【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(1)通过对函数f(x)求导,讨论f(x)的单调性可得函数f(x)的最小值;(2)根据条件可得g(a)=a﹣alna﹣1≥0,讨论g(a)的单调性即得结论;(3)由(2)得e x≥x+1,即ln(x+1)≤x,通过令(k∈N*),可得(k=1,2,…,n),然后累加即可.【解答】解:(1)由题意a>0,f′(x)=e x﹣a,令f′(x)=e x﹣a=0,解得x=lna,先当x∈(﹣∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.即f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,所以f(x)在x=lna处取得极小值,且为最小值,其最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1;(2)∵f(x)≥0对任意的x∈R恒成立,∴在x∈R上,f min(x)≥0,由(1),设g(a)=a﹣alna﹣1,则g(a)≥0,令g′(a)=1﹣lna﹣1=﹣lna=0,解得a=1,易知g(a)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴g(a)在a=1处取得最大值,而g(1)=0.因此g(a)≥0的解为a=1,即a=1;(3)由(2)得e x≥x+1,即ln(x+1)≤x,当且仅当x=0时,等号成立,令(k∈N*),则,即,所以(k=1,2,…,n),累加,得1+++…+>ln(n+1)(n∈N*).【点评】本题考查函数的最值,单调性,通过对表达式的灵活变形是解决本题的关键,属于中档题.。