水声通信组网技术第五讲 水声网络路由
- 格式:ppt
- 大小:1.40 MB
- 文档页数:49
水声通信网络路由协议研究综述
高涌;张宏滔
【期刊名称】《声学与电子工程》
【年(卷),期】2016(000)004
【摘要】分析了水声通信网络路由协议设计的技术难点,总结了二维静态网络、三维静态网络、移动节点动态网络等典型网络架构中的路由协议研究进展,提出了路由技术研究趋势.文章内容对水声通信网络技术研究及其协议设计具有借鉴和指导意义.
【总页数】5页(P47-51)
【作者】高涌;张宏滔
【作者单位】中国船舶重工集团公司,北京,100097;声纳技术重点实验室第七一五研究所,杭州,310023
【正文语种】中文
【相关文献】
1.一种基于水声通信网络的实时路由协议
2.基于竞争的水声通信网络MAC层协议研究综述
3.两种不同模式水声通信网络路由协议性能研究
4.水声通信网络快速重构路由协议技术的研究
5.水声传感器网络基于深度信息的安全路由协议
因版权原因,仅展示原文概要,查看原文内容请购买。
水声通信和组网技术研究的开题报告一、选题背景随着人类社会的不断发展和海洋资源的日益开发,对海洋环境的认识和探测也越来越重要。
在这个过程中,水声通信和组网技术作为海洋通信的一种重要手段,正在受到越来越多的关注。
水声通信是一种利用水作为介质进行信息传输的通信方式,其通信系统的特点是传输距离较短,传输速率较低,在水的不同介质中传播损耗也不同。
水声组网技术则是指将多个水声通信系统组成一个网络,通过协同工作实现海洋环境监测、海底探测等功能。
二、选题意义1. 提高海洋资源开发效率水声通信和组网技术有效地解决了海洋资源开发中信息传递的问题,可以提高资源开发的效率,减少资源的损耗,为人类社会的可持续发展做出贡献。
2. 增强海洋环境监测能力水声通信和组网技术具有传输距离短、传输速率低、传输稳定等特点,对监测海洋环境、海洋生态等具有重要意义,通过对海洋环境的实时监测,早期发现海洋污染等问题,提高海洋生态的保护能力。
3. 促进国家海洋强国建设水声通信和组网技术是国家海洋强国建设的重要组成部分,通过海洋资源和海洋环境的监测,可以提高我国在国际上的话语权和地位,为我国的海洋经济发展提供有力的技术支撑。
三、研究内容和方法1. 研究内容本次研究主要针对水声通信和组网技术进行研究,具体包括:(1) 水声通信技术的基本原理和技术特点;(2) 水声通信网络模型的建立和优化;(3) 水下节点的位置解算和时钟同步问题;(4) 水声通信网络中的数据传输和路由算法研究。
2. 研究方法(1) 理论研究:对水声通信和组网技术的相关理论进行深入研究,分析其本质和特点;(2) 实验研究:通过搭建水声通信网络实验平台,进行数据采集和性能测试,验证理论分析;(3) 数学建模:针对水声通信网络中的数据传输和路由问题,进行建模和分析,提出优化算法。
四、预期成果本次研究的预期成果包括:(1) 深入研究水声通信和组网技术的理论,提高对其本质和特点的理解;(2) 搭建水声通信网络实验平台,验证理论研究;(3) 针对水声通信网络中的数据传输和路由问题,提出优化算法,优化水声通信网络性能。
水声通信组网及应用一、水声通信组网水声通信网络协议在物理层之上,解决多个节点之间数据传输的问题,主要研究内容包括媒体访问控制协议(MAC)、路由协议、同步和定位技术等。
用于水声通信网络中的竞争性媒体访问控制协议一般可分为以下三类:随机接入的Aloha协议、握手方式的MACAW协议、载波侦听冲突检测的CSMA/CS协议。
CSMA/CS协议需要专门的侦听硬件和算法支持,一般用于吞吐量较大的组网中,在海洋环境监测组网中不常用。
因而,对于海洋环境监测水声通信组网,如果数据较短,采用Aloha 协议,发射端直接使用信道发送数据,收到正确应答即完成一次传输过程,避免握手带来的开销;如果数据较长,采用MACAW协议,在数据发射之前发送端利用握手信号占据信道使用权,保证传输不被其他节点干扰。
路由协议需根据网络的拓扑结构、数据产生的时间周期、数据流的方向、节点布放的灵活性来综合考虑。
对于海洋环境监测,网络拓扑一般中心式拓扑结合多跳转发的结构,图1 所示是2014年5月南中国海试验的结构。
数据传输一般在中心网关和观测节点之间发生,不要求任意两个观测节点之间的相互数据访问。
中心网关向观测节点下发命令,观测数据按固定时间周期经观测潜标回传至中心网关。
大部分观测节点为固定布放,允许移动节点接入。
另外,水声信道的时变特点可能导致链路的短时中断,各节点的电量需要均衡使用,因而要求水声通信网络具有对路由表进行优化的能力。
图1 水声通信网试验的网络拓扑图二、应用情景分析水声网络观测技术的应用情景主要有:(一)海洋立体观测在深海潜标的不同深度设置多个观测节点,在海底布设多个观测站,通过水声通信网络把各观测设备数据传输到主控器,再通过移动节点将数据取走或通过卫星将数据发送到岸站,解决了水下设备难以用电缆连接的问题。
(二)突发事态的海洋观测在出现类似石油平台爆炸沉没、海上油田溢油、水下输油管泄漏等突发污染事故,以及赤潮爆发等突发生态事件时,采用水声网络观测技术可以快速响应,投放位置和传感器类型选择灵活,观测数据实时性和连续性好。
水下声波通信网络的路由算法与传输控制技术第一章:引言水下声波通信是一种在海底进行的传输技术。
由于水下通信环境的复杂性,声波通信网络的路由算法和传输控制技术的研究成为了水下通信领域的一个热门研究方向。
本篇文章将着重解析水下声波通信网络的路由算法和传输控制技术的研究现状。
第二章:水下声波通信网络的组成和传输特性水下声波通信网络主要由声发射器、水声信号处理器、水声遥控器和水声接收器等设备组成,通过声波信号传输数据。
水下通信环境充满了噪声、信号衰减和多径传输等特性,使其传输效率受到很大的制约。
第三章:水下通信网络的路由算法在水下声波通信网络中,路由算法与传输控制技术是实现高效数据传输的两大关键技术。
传统的网络路由算法常常考虑节点间通信的带宽和距离,但在水下通信中,声波传输的特殊性质需要更加细致、复杂的网络管理策略。
目前,常用的水下网络路由算法主要有PEL宽度路由算法和SARA算法。
PEL宽度路由算法通过把网络分成一定宽度的层,来寻找尽可能短的路线,从而提高网络的吞吐能力。
SARA算法则是一种分层和基于状态的路由算法,它利用网络的历史信息进行资源分配和动态调整,以实现在动态的水下环境中达到最优路由。
第四章:水下通信网络的传输控制技术在水下声波通信网络中,传输控制技术是保证数据传输的关键。
基于TCP和UDP等协议的传统传输控制技术在水下环境下效果不佳,因此需要新的控制技术。
目前,水下网络传输控制技术的研究主要集中在两个方面:基于分组传输的传输控制技术和基于信令控制的传输控制技术。
前者主要是将数据分成多个数据包进行传输,并通过ACK确认,并采用数据包重传机制来处理数据传输过程中遇到的错误。
后者则是通过信令控制来保证数据传输的可靠性。
当前应用较多的传输控制技术有TIBORA、M-DFS、TCP-Sack等。
第五章:总结与展望水下声波通信网络的路由算法和传输控制技术是水下通信领域的核心技术之一。
当前,这两个方面的研究成果日益增多。
水声通信技术水声通信是海洋中无线信息传输的主要技术手段。
水声通信技术在海洋环境监测、水下航行器/载人潜水器作业等方面有着广泛应用。
水声通信及网络可灵活地用于不同的速率载荷、覆盖距离、水体深度、网络结构的情景,可广泛地应用于海洋环境观测,实现水下不同空间位置多个观测设备之间的信息交互。
同时,水声信道传输状态多变、海洋作业环境恶劣,对通信算法和设备可靠性有较高要求,水声通信及组网成为目前的研究热点。
水声通信网络在国外已有20a发展历史,开展较早且具有代表性的是美国的Seaweb网络。
美国的Seaweb网络经过多年的试验,实现了多固定节点的组网、自适应节点路由初始化、潜艇和AUV的数据接入、利用固定节点对AUV定位、分簇网络等多种功能,在基于卫星浮标的远海观测网、港口近岸的水下侦查网络及军用水下航行器指令传输及定位等应用中展示了很好的应用效果和技术先进性。
欧洲也开展了试验研究。
近年来,在国家“863”计划、军方、国家自然科学基金等支持下,我国水声通信领域在通信算法、通信机研制、网络协议仿真、组网应用试验、协议规范制定等方面取得长足进步。
本文主要介绍面向海洋环境监测的水声通信网技术,并对未来的技术趋势进行展望。
水声通信信道是复杂的信道,信道带宽窄、传播速度慢、时变性强、频率选择性衰落、噪声严重等不利因素在水声通信信道中都很明显。
如何针对水声信道特点,采取高性能、可实现的通信算法,是水声通信领域的关键问题。
物理层主要解决利用信道进行点对点的可靠通信的问题,物理层技术方案主要包括调制解调和纠错码两部分内容。
对于水声通信中的调制解调技术,一般根据接收端是否恢复原始载波相位可划分为相干通信和非相干通信。
一、相干水声通信相干通信需要在接收端恢复原始载波相位信息,一般应用于信道不太恶劣的情况。
相干通信信道利用率高,一般超过1bps/Hz,即传输比特速率超过信道频率宽度。
如果信道衰落严重,采用多阵元接收的方式获得空间分集。
水声通信网络路由及MAC关键技术研究的开题报告一、研究背景和意义水声通信是一种在水下进行通信的技术,具有广泛的应用前景,如海底油气勘探、海洋环境监测、海洋科学研究等领域。
在实际应用中,由于水声通信网络受水下环境条件的影响,传输数据的带宽和传输距离均受到限制,因此需要对水声通信网络进行优化设计,以提高网络的性能。
其中,路由和MAC是水声通信网络中的关键技术,对网络的性能有着直接的影响。
因此,对水声通信网络路由及MAC关键技术进行研究有着重要的理论和实践意义。
二、研究内容本论文主要研究水声通信网络路由及MAC关键技术,具体研究内容如下:1. 水声信道特性分析首先,对水声信道的特性进行分析,包括传输损耗、多径效应、噪声和时变性等。
通过对水声信道特性的分析,可以更好地了解水声通信网络的性能局限性。
2. 水声通信网络路由算法设计其次,设计适用于水声通信网络的路由算法。
针对水声通信网络的特性,设计基于拓扑结构、节点能力等因素的路由算法,并考虑功率控制、路由优化等因素。
3. 水声通信网络MAC协议设计对水声通信网络的MAC协议进行设计,考虑多址访问、帧同步、信道接入等问题。
在设计MAC协议时,需要综合考虑水声信道的特性和网络结构的影响,以优化网络的性能。
4. 实验验证和性能评估通过仿真和实验验证,对所设计的路由和MAC算法进行性能评估和实验验证。
评估指标包括网络吞吐量、网络延迟、包丢失率等,并与已有的水声通信网络技术进行比较,以验证所设计算法的优越性。
三、研究方法和技术路线在实现上述研究内容时,将采用以下方法和技术路线:1. 数据收集与分析对水声信道的特性、水声通信网络的结构和性能等数据进行收集和分析,以获得数据的基础资料。
2. 设计路由和MAC算法根据水声通信网络的特性和要求,设计路由和MAC算法,并进行仿真验证。
3. 系统实现根据设计算法和仿真结果,进行系统实现和优化,并进行实验验证和性能评估。
四、预期研究结果及意义通过研究水声通信网络路由和MAC关键技术,可以得到以下预期结果:1. 提出一种适用于水声通信网络的路由算法,并对其进行仿真验证和实验验证。