第5测量误差的基本知识
- 格式:pptx
- 大小:609.30 KB
- 文档页数:37
第七章测量误差基本知识内容:了解测量误差来源及产生的原因;掌握系统误差和偶然误差的特点及其处理方法;理解精度评定的指标(中误差、相对误差、容许误差)的概念;了解误差传播定律的应用。
重点:系统误差和偶然误差的特点及其处理方法。
难点:中误差、相对误差、容许误差的概念;误差传播定律的应用。
§ 5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。
一、系统误差 (system error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二、偶然误差 (accident error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。
但具有一定的统计规律。
2、特点:(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。
即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差 (gross error) (即:错误)的出现。
偶然误差分布频率直方图§ 5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。
一、中误差方差:——某量的真误差, [] ——求和符号。
规律:标准差估值(中误差 m )绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差 m 的方法,有:1、用真误差( true error )来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n 为观测值个数。
[ 例题 ] :对 10 个三角形的内角进行了观测,根据观测值中的偶然误差(三角形的角度闭合差,即真误差),计算其中误差。
第五章测量误差的基本知识§5.1 测量误差概述在测量工作中,当对某量进行多次重复观测后就会发现,各次观测值之间往往存在差异。
例如,对某段距离进行多次丈量,往往发现每次丈量的结果不一致;又如,平面三角形三内角之和理论上应等于180°,但经测量后的三个内角的观测值之和常常不等于180°而有差异。
这类在同一量的各观测值之间,或在观测值与其理论值之间存在差异的现象,在测量工作中是普遍存在的。
之所以会产生这类现象,是因为观测值中包含有观测误差的缘故。
一、产生误差的原因观测值中为什么会存在观测误差呢?概括起来,有下列三方面原因:1.观测者由于观测者感觉器官的鉴别能力的局限性,在仪器安置、目标照准、测微读数等工作中都会产生误差。
同时,观测者的技术水平及工作态度也会对观测结果产生影响。
2.测量仪器测量工作所使用的测量仪器都具有一定的精密度,从而使观测结果的精度受到限制。
另外,仪器本身构造上的缺陷,也会使观测结果产生误差。
3.外界条件观测时的外界条件,如温度、湿度、气压、大气折光、风力等因素都会对观测结果直接产生影响。
随着这些因素的变化,它们对观测结果产生的影响也随之变化,这就必然使观测结果带有误差。
观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素,通常称为观测条件。
观测条件相同的各次观测称为等精度观测。
观测条件不同的各次观测称为非等精度观测。
任何观测都不可避免地要产生误差。
为了获得观测值的正确结果,就必须对误差进行分析研究,以便采取适当的措施来消除或削弱其影响。
二、误差的分类观测误差按其性质,可分为系统误差和偶然误差。
1.系统误差在相同的观测条件下,对某量进行多次观测,如果观测误差的大小和符号呈现某种规律性的变化,或保持常数,这类误差称为系统误差。
例如,用名义长为30m,而实长为29.99m 的钢尺量距时,每量一尺段就有+0.01m的系统误差。
又如,经纬仪的竖盘指标差对竖直角测量的影响也属系统误差。
第5章测量误差的基本知识本章提要通过前几章的学习,我们掌握了角度、距离和高差的测量方法,对测量过程和结果含有误差也有了一定的感性认识。
本章集中讲述有关测量误差的基本知识,包括衡量精度的标准、误差传播定律和直接观测平差。
§ 5.1 观测误差概述5.1.1 观测及观测误差对未知量进行测量的过程,称之为观测。
测量所获得的数值称为观测值。
进行多次测量时,观测值之间往往存在差异。
这种差异实质上表现为观测值与其真实值(简称为真值)之间的差异,这种差异称为测量误差或观测误差。
用代表观测值,设X代表真值,则有(5-1)式中就是观测误差,通常称为真误差,简称误差。
一般情况下,只要是观测值必然含有误差。
例如,同一人用同一台经纬仪对某一固定角度重复观测若干测回,各测回的观测值往往互不相等;同一组人员,用同样的测距工具,对A、B两点间的距离重复测量若干次,各次观测值也往往互不相等。
又如,平面三角形内角和的真值应等于180°,但三个内角的观测值之和往往不等于180°;闭合水准线路中各测段高差之和的真值应为0,但事实上各测段高差的观测值之和一般不等于0。
这些现象在测量实践中是经常发生的。
究其原因,是由于观测值中不可避免地含有观测误差的缘故。
5.1.2 观测误差的来源测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测误差来源于以下三个方面:观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。
通常我们把这三个方面综合起来,称为观测条件。
观测条件将影响观测成果的精度。
观测误差主要由仪器误差、观测者的误差以及外界条件的影响组成。
仪器误差是指测量仪器构造上的缺陷和仪器本身精密度的限制,致使观测值含有一定的误差。
观测者带来的误差是由于观测者技术水平和感官能力的局限,致使观测值产生的误差。
外界条件的影响是指观测过程中不断变化着的大气温度、湿度、风力、透明度、大气折光等因素给观测值带来的误差。
第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。
5.测量,测角中误差均为10〃,所以A角的精度高于B角。
(X)8.在测量工作中无论如何认真仔细,误差总是难以避免的。
(X)10 .测量中,增加观测次数的目的是为了消除系统误差。
(X)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。
如估读、气泡居中判断等。
偶然误差的特性:(D有界性(2)渐降性(3)对称性(4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为nu = ±20",用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10” ?()A. 1B.2C.3D.43.偶然误差服从于一定的规律。
4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会。
14.测量误差的来源有、、外界条件。
3.设对某距离丈量了6 次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。
6.偶然误差的算术平均值随观测次数的无限增加而趋向于o14.设对某角度观测4个测回,每一测回的测角中误差为±5",则算术平均值的中误差为±〃。
24.衡量测量精度的指标有、、极限误差。
3.观测值与之差为闭合差。
()A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是()A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为o9.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?10测量误差按性质可分为和两大类。
1. 2.相对误差2.由估读所造成的误差是()oA.偶然误差B.系统误差C.既是偶然误差又是系统误差14.下列不属于衡量精度的标准的是()。
第五章测量误差的基本知识第五章测量误差的基本知识本章摘要:本章主要介绍测量误差的种类;偶然误差的统计特征和处理⽅法;精度的含义;评定测量精度的指标;不同精度指标表达的意义及其适⽤范围。
§5-1 测量误差及分类摘要内容:学习误差理论知识的⽬的,使我们能了解误差产⽣的规律,正确地处理观测成果,即根据⼀组观测数据,求出未知量的最可靠值,并衡量其精度;同时,根据误差理论制定精度要求,指导测量⼯作选⽤适当观测⽅法,以符合规定精度。
讲课重点:测量误差的概念、测量与观测值分类、测量误差及其来源、测量误差的种类、偶然误差的特性及其概率密度函数。
讲课难点:偶然误差的特性及其概率密度函数。
讲授重点内容提要:⼀、测量误差的概念⼈们对客观事物或现象的认识总会存在不同程度的误差,这种误差在对变量进⾏观测和量测的过程中反映出来,称为测量误差。
⼆、测量与观测值通过⼀定的仪器、⼯具和⽅法对某量进⾏量测,称为观测,获得的数据称为观测值。
三、观测与观测值的分类1.同精度观测和不同精度观测观测条件:构成测量⼯作的要素包括观测者、测量仪器和外界条件,通常将这些测量⼯作的要素统称为观测条件。
同精度观测:在相同的观测条件下,即⽤同⼀精度等级的仪器、设备,⽤相同的⽅法和在相同的外界条件下,由具有⼤致相同技术⽔平的⼈所进⾏的观测称为同精度观测,其观测值称为同精度观测值或等精度观测值。
反之,则称为不同精度观测,其观测值称为不同(不等)精度观测值。
2.直接观测和间接观测直接观测:为确定某未知量⽽直接进⾏的观测,即被观测量就是所求未知量本⾝,称为直接观测,观测值称为直接观测值。
间接观测:通过被观测量与未知量的函数关系来确定未知量的观测称为间接观测,观测值称为间接观测值。
(说明:例如,为确定两点间的距离,⽤钢尺直接丈量属于直接观测;⽽视距测量则属于间接观测。
)3.独⽴观测和⾮独⽴观测独⽴观测:各观测量之间⽆任何依存关系,是相互独⽴的观测,称为独⽴观测,观测值称为独⽴观测值。