5 测量误差及其处理的基本知识
- 格式:ppt
- 大小:979.50 KB
- 文档页数:76
第五章 测量误差及其处理的基本知识1、测量误差的来源有哪些?什么是等精度测量?答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。
该三个方面条件相同的观测称为等精度观测。
2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除?答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。
偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。
系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。
3、举出水准测量、角度测量及距离测量中哪些属于系统误差?答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。
4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度?答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。
当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。
例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。
所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =||/1||m D D m = 。
5、观测值中误差如何计算?答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即11L x v -=22L x v -=......n n L x v -=则中误差 []1-±=n vv m6、算术平均值及其中误差如何计算?答:设对某量进行n 次等精度观测,观测值为i L (i =1、2……n ),其算术平均值为x : []nL n L L L x n =+++=......21 ; 算术平均值中误差nm m x ±= ,其中m 为观测值的中误差。
第七章测量误差基本知识内容:了解测量误差来源及产生的原因;掌握系统误差和偶然误差的特点及其处理方法;理解精度评定的指标(中误差、相对误差、容许误差)的概念;了解误差传播定律的应用。
重点:系统误差和偶然误差的特点及其处理方法。
难点:中误差、相对误差、容许误差的概念;误差传播定律的应用。
§ 5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。
一、系统误差 (system error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二、偶然误差 (accident error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。
但具有一定的统计规律。
2、特点:(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。
即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差 (gross error) (即:错误)的出现。
偶然误差分布频率直方图§ 5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。
一、中误差方差:——某量的真误差, [] ——求和符号。
规律:标准差估值(中误差 m )绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差 m 的方法,有:1、用真误差( true error )来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n 为观测值个数。
[ 例题 ] :对 10 个三角形的内角进行了观测,根据观测值中的偶然误差(三角形的角度闭合差,即真误差),计算其中误差。
第5章测量误差的基本知识内容提示:本章主要介绍了测量误差的概念、来源、分类与处理方法,精度的概念及评定标准,误差传播定律,等精度与非等精度直接观测值的最可靠值及其中误差。
其重点内容包括误差传播定律、观测值中误差计算、直接观测值的最可靠值及其中误差。
其难点为误差传播定律及其应用。
5.1 测量误差与精度5.1.1 测量误差的概念要准确认识事物,必须对事物进行定量分析;要进行定量分析必须要先对认识对象进行观测并取得数据。
在取得观测数据的过程中,由于受到多种因素的影响,在对同一对象进行多次观测时,每次的观测结果总是不完全一致或与预期目标(真值)不一致。
之所以产生这种现象,是因为在观测结果中始终存在测量误差的缘故。
这种观测量之间的差值或观测值与真值之间的差值,称为测量误差(亦称观测误差)。
用l代表观测值,X代表真值,则有Δ=l-X (5-1)式中Δ就是测量误差,通常称为真误差,简称误差。
一般说来,观测值中都含有误差。
例如,同一人用同一台经纬仪对某一固定角度重复观测多次,各测回的观测值往往互不相等;同一组人,用同样的测距工具,对同一段距离重复测量多次,各次的测距值也往往互不相等。
又如,平面三角形内角和为180 ,即为观测对象的真值,但三个内角的观测值之和往往不等于180 ;闭合水准测量线路各测段高差之和的真值应为0,但经过大量水准测量的实践证明,各测段高差的观测值之和一般也不等于0。
这些现象在测量实践中普遍存在,究其原因,是由于观测值中不可避免地含有观测误差的缘故。
5.1.2 测量误差的来源为什么测量误差不可避免?是因为测量活动离不开人、测量仪器和测量时所处的外界环境。
不同的人,操作习惯不同,会对测量结果产生影响。
另外,每个人的感觉器官不可能十分完善和准确,都会产生一些分辨误差,如人眼对长度的最小分辨率是0.1mm,对角度的最小分辨率是60"。
测量仪器的构造也不可能十分完善,观测时测量仪器各轴系之间还存在不严格平行或垂直的问题,从而导致测量仪器误差。
5 测量误差的基本知识§5-1 测量误差及其分类研究测量误差的来源、性质及其产生和传播的规律,解决测量工作中遇到的实际问题而建立起来的概念和原理的体系,称为测量误差理论。
在实际的测量工作中发现:当对某个确定的量进行多次观测时,所得到的各个结果之间往往存在着一些差异,例如重复观测两点的高差,或者是多次观测一个角或丈量若干次一段距离,其结果都互有差异。
另一种情况是,当对若干个量进行观测时,如果已经知道在这几个量之间应该满足某一理论值,实际观测结果往往不等于其理论上的应有值。
例如,一个平面三角形的内角和等于180︒,但三个实测内角的结果之和并不等于180︒,而是有一差异。
这些差异称为不符值。
这种差异是测量工作中经常而又普遍发生的现象,这是由于观测值中包含有各种误差的缘故。
任何的测量都是利用特制的仪器、工具进行的,由于每一种仪器只具有一定限度的精密度,因此测量结果的精确度受到了一定的限制。
且各个仪器本身也有一定的误差,使测量结果产生误差。
测量是在一定的外界环境条件下进行的,客观环境包括温度、湿度、风力、大气折光……等因素。
客观环境的差异和变化也使测量的结果产生误差。
测量是由观测者完成的,人的感觉器官的鉴别能力有一定的限度,人们在仪器的安置、照准、读数……等等方面都会产生误差。
此外,观测者的工作态度、操作技能也会对测量结果的质量(精度)产生影响。
一.观测值与误差1.观测值:测量的结果(l)2.误差:测量(仪器、过程、方法),人,自然条件。
l与观测值的差值3.真值:也叫理论值(找不到的测量对象理论值)【X】4.观测:测量的过程5.观测条件:观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素(观测条件相同的各次观测,称为等精度观测。
观测条件不同的各次观测,称为非等精度观测)二.误差来源:观测值中存在观测误差有下列三方面原因:1、观测者由于观测者的感觉器官的鉴别能力的局限性,在仪器安置、照准、读数等工作中都会产生误差。
物理实验中的测量误差和处理方法一、测量误差的概念1.测量误差:在物理实验中,由于测量工具、测量方法、测量者等因素的限制,导致测量值与真实值之间存在差异,这种差异称为测量误差。
2.误差与错误:误差是指测量值与真实值之间的差异,而错误是指在实验过程中由于操作不规范、判断失误等原因导致的偏离真实值的结果。
误差是不可避免的,而错误是可以避免的。
二、测量误差的分类1.系统误差:由于实验仪器、测量方法等原因导致的误差,具有规律性和稳定性。
2.随机误差:由于测量过程中各种偶然因素的影响导致的误差,具有不确定性。
3.粗大误差:由于操作不规范、读数不准确等原因导致的明显偏离真实值的误差。
三、测量误差的减小方法1.选择合适的测量工具:选用精确度较高的测量工具,以减小测量误差。
2.改进测量方法:采用合适的测量方案,减小实验操作对测量结果的影响。
3.多次测量求平均值:进行多次测量,求得平均值,可以减小随机误差的影响。
4.误差分析:对实验数据进行误差分析,找出误差来源,有针对性地采取减小误差的措施。
5.数据处理:合理处理实验数据,如插值、外推等方法,以减小误差对实验结果的影响。
四、测量误差的评价1.绝对误差:测量值与真实值之间的差的绝对值。
2.相对误差:绝对误差与真实值的比值,用于评价测量精度。
3.误差限:在一定概率水平下,测量值与真实值之间的最大可能的差值。
4.置信区间:在一定概率水平下,真实值落在测量值附近的范围。
五、实验数据处理方法1.列表法:将实验数据进行整理,制作成表格,便于分析和处理。
2.描点法:在坐标系中,将实验数据对应的坐标点连接起来,形成曲线,分析数据规律。
3.图像法:利用数学软件或绘图工具,绘制实验数据的图像,分析数据特征。
4.数学模型法:根据实验数据,建立合适的数学模型,对实验结果进行预测和分析。
六、实验报告的撰写1.实验目的:明确实验的目的和意义。
2.实验原理:介绍实验原理和相关的物理概念。
3.实验器材:列出实验中使用的器材和仪器。