而 是点M和N处的两条切线之间的夹角。当点N趋近于点 M时,比值 s 的极限称为曲线在点M处的曲率。
平面曲线
2 几种特殊的平面曲线
2.1 笛卡尔叶形线 2.2 心脏线 2.3 圆内摆线 2.4 阿基米德螺旋线
齿轮啮合原理
平面曲线
2.1 笛卡尔叶形线
方程式: x3 y3 3axy
齿轮啮合原理
一般认为,构成机械零件的基本元素是点、直线、圆、 椭圆和曲线。当前运用计算机视觉技术对机械零件的检测 和识别,绝大部分只是对零件的点、直线、圆和椭圆的研 究,而其他形式的曲线的检测和识别研究却比较少。
平面曲线
齿轮啮合原理
3.4 在道路设计中的应用
已知:平面曲线的方程式 F(x, y) 0
和P点的坐标 x0, y0
切线
则:平面曲线的法线为:
y y0
Fy x0, y0
x x0 Fx x0, y0
切点P
曲线C
法线
平面曲线
齿轮啮合原理
1.4 平面曲线的曲率
用矢量函数 r sC2 ,s E 表示的曲线,式中s是曲线的弧
长。曲线上分别与s和(s+ s)对应的两个相邻的点M和N。
b
全曲线长:L = 6a
曲线所围成的面积: S 3 a3
8
平面曲线
齿轮啮合原理
2.4 阿基米德螺旋线
曲线为一动点以常速沿一射线运动,而这一射线又以 定角速度绕极点转动时,该动点所描成的轨迹.曲线由两 支曲线组成,它们关于x轴对称。
方程式: a
a v
弧长:LOM
a 2
2 1 Arsh
3
a2 y2
极值点:C,
D
3 4
a,
3