从自然数到分数
- 格式:ppt
- 大小:4.18 MB
- 文档页数:29
人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。
自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。
1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。
“0”还可以表示起点、分界点等。
“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。
“+”号一般可以省略不写。
〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。
“一”叫负号。
负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。
数字越大的负数反而越小。
“0”既不是正数,也不是负数。
〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。
个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。
计数单位是按一定顺序排列的。
数位各个计数单位所占的位置叫数位。
如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 《九章算术》中的正负数1.3 数轴1.4 绝对值1.5 有理数的大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 用计算器进行数的开方3.4 实数的运算第4章代数式4.1用字母表示数4.2代数式4.3代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 一元一次方程的解法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据与图表6.1 数据的收集与整理6.2 统计表6.3 条形统计图和统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段、射线和直线7.3 线段的长短比较7.4 角与角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步知识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高1.4 全等三角形1.5 三角形全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式法6.3 用乘法公式分解因式6.4因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角、内错角、同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理2.7 直角三角形全等的判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据分析初步4.1 抽样4.2 平均数4.3 中位数和众数4.4 方差和标准差4.5 统计量的选择与应用第5章一元一次不等式5.1 认识不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量与变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的求解2.3 一元一次方程的应用第3章频数分布及其图形3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图像和性质1.3 反比例函数的应用第2章二次函数2.1 二次函数2.2 二次函数的图像2.3 二次函数的性质2.4 二次函数的应用第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似九年级下册第1章解直角三角形1.1 锐角三角形1.2 有关三角函数的计算1.3 解直角三角形第2章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式 1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一年级上册一、数一数二、比一比三、1~5的认识和加减法四、认识物体和图形五、分类六、6~10的认识和加减法七、11~20各数的认识八、认识钟表九、20以内的进位加法十、总复习一年级下册一、位置二、20以内的退位减法三、图形的拼组四、100以内数的认识五、认识人民币(出现简单的名数改写;关于人民币的简单运算)六、100以内的加法和减法(一)七、认识时间八、找规律九、统计十、总复习二年级上册一、长度单位二、100以内的加法和减法(二)三、角的初步知识四、表内乘法(一)五、观察物体六、表内乘法(二)七、统计八、数学广角九、总复习二年级下册一、解决问题二、表内除法(一)三、图形与变换四、表内除法(二)五、万以内数的认识六、克与千克七、万以内的加法和减法(一)八、统计九、找规律十、总复习三年级上册一、测量二、万以内的加法和减法(二)三、四边形四、有余数的除法五、时、分、秒六、多位数乘一位数七、分数的初步认识八、可能性九、数学广角十、总复习三年级下册一、位置与方向二、除数是一位数的除法三、统计四、年、月、日五、两位数乘两位数六、面积七、小数的初步认识八、解决问题九、数学广角十、总复习四年级上册一、大数的认识二、角的度量三、三位数乘两位数四、平行四边形和梯形五、除数是两位数的除法六、统计七、数学广角八、总复习四年级下册一、四则运算二、位置与方向三、运算定律与简便计算四、小数的意义和性质五、三角形六、小数的加法和减法七、统计八、数学广角九、总复习五年级上册一、小数乘法二、小数除法三、观察物体四、简易方程五、多边形的面积六、统计与可能性七、数学广角八、总复习五年级下册一、图形的变换二、因数与倍数三、长方体和正方体四、分数的意义和性质五、分数的加法和减法六、统计七、数学广角八、总复习六年级上册一、位置二、分数乘法三、分数除法四、圆五、百分数六、统计七、数学广角八、总复习六年级下册一、负数二、圆柱与圆锥三、比例四、统计五、数学广角六、整理与复习1、数与代数2、空间与图形3、统计与概率4、综合应用。
1.1提高班习题精选---吴国平【提高训练】1.已知—列数2,5,9,14,20,x ,35,...,则x 的值应为( )A .27B .26C .28D .292.如果将五个数1710,1912 ,2315,3320,4930按从大到小的顺序排列,那么排在中间的—个数应是 ( )A .4930B .2315 C .3320 D .1912 3.a ,b 是自然数,若α×b=100,则a+b 的最小值是 ( )A .20B .25C .80D .1004.同学们玩“算24点”的游戏时,小明抽到以下4张牌:4,3,7,7。
请你帮他再写出结果为24的—个算式为___________________________。
5.若—个数加上6,减去2,然后除以5得7,则这个数是___________6.某班有40人,老师将若干本书随意分给大家,如果要保证不论怎么分,至少有—个同学得到两本或两本以上的书,那么书的总数至少是_________本.7.先阅读下列材料,然后解答问题:从A ,B ,C 三张卡片中选两张,有三种不同的选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作C 23=1223⨯⨯=3—般地,从m 个元素中选取n 个元素组合,记作:Cn m =123)1()1()1(⨯⨯⨯⨯-+-- n m n m m m . 例:从7个元素中选5个元素,记作C 57=1234534567⨯⨯⨯⨯⨯⨯⨯⨯=21种不同的选法. 问题:从某学习小组10人中选取3人参加活动,不同的选法有多少种?8.(1)比较下列各组数的大小(n 为自然数):21与32 , 32 与43 , 43与54,54与 65,1+n n 与21++n n ;(2)你能模仿(1)得出23++n n 与12++n n 两者的大小关系吗? (n 为自然数)?【中考链接】1. 下列—串梅花图案是按—定规律排列的,请你仔细观察,在前2009个梅花图案中,共_________个“”图案.2.下列是有规律排列的—列数:1,43,32,85,53……其中从左至右第l00个数_________参考答案【提高训练】1.A2.A3.A4. 3×7+(7-4)5. 31 6.41 7.C 1238910310⨯⨯⨯⨯==120(种)8.解:(1)21<32,32<43,43<54,54<65,1+n n <21++n n (2)23++n n ﹤12++n n 【中考链接】 1.503 2.200101(原—列数可化为22,43,64,85,…)。
1.1从自然数到分数一、教学目标1、知识目标:使学生了解自然数的意义和用处;了解分数(小数)的意义和形式;了解分数产生的必然性和合理性;2、能力目标:通过自然数和分数的运算,解决一些简单实际问题。
使学生了解自然数和分数的意义和应用。
一、教学重点二、使学生了解自然数及自然数的分类和分数的意义和应用三、教学过程㈠创设情境请阅读下面这段报道:2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。
我国金牌数约占总金牌数的110。
跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。
提问:你在这篇报道中看到了哪些数?请你把它们写下来,并指出它们分别属于哪一类数?如果将12秒91写成12.91秒,12.91又属于什么数?提出课题:今天我们复习自然数、分数和小数及它们的应用㈡提问复习问题1:先请同学们回忆小学里学过的自然数,哪一些数属于自然数?你了解自然数最初是怎样出现的吗?(为了表示物体的个数)注意:自然数从0开始。
问题2:你知道自然数有哪些作用?自然数的作用:①计数如:32枚金牌,是自然数最初的作用;②测量如:小明身高是168厘米;③标号和排序如:2004年,金牌榜第二。
注意:基数和序数的区别。
下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?⑴ 2002年全国共有高等学校2003所;⑵小明哥哥乘1425次列车从北京到天津;⑶香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼;⑷信封上的邮政编码325608⑸刘翔在雅典奥运会中的号码1363;⑹.今天的最高气温是35℃自然数分类奇数(个位是: 1,3,5,7,9)自然数(包括0)偶数 (个位是:0,2,4,6,8)最小的自然数是0没有最大的自然数。
1.1从自然数到分数一、教学内容义务教育课程标准实验教科书《数学》(浙江版)七年级上册二、教学目标1、知识目标:使学生了解自然数的意义和用处;了解分数(小数)的意义和形式;了解分数产生的必然性和合理性;2、能力目标:通过自然数和分数的运算,解决一些简单实际问题。
3、情感目标:初步体验数的发展过程,体验数学来源于实践,又服务于实践,增强学生用数学的意识。
三、教学重点使学生了解自然数和分数的意义和应用。
四、教学难点合作学习中的第2题的第⑵小题。
五、教学准备多媒体课件六、教学过程㈠创设情境出示材料:(多媒体显示)请阅读下面这段报道:2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。
我国金牌数约占总金牌数的110。
跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。
提问:你在这篇报道中看到了哪些数?请你把它们写下来,并指出它们分别属于哪一类数?如果将12秒91写成12.91秒,12.91又属于什么数?(由雅典奥运会有关报道引入,既合时事形势,又具有爱国主义教育,并使学生体验到生活中处处有数学)提出课题:今天我们复习自然数、分数和小数及它们的应用 [板书课题]第1节从自然数到分数㈡提问复习问题1:先请同学们回忆小学里学过的自然数,哪一些数属于自然数?你了解自然数最初是怎样出现的吗?注意:自然数从0开始。
问题2:你知道自然数有哪些作用?(让学生思考、讨论后来回答,教师提示补充)自然数的作用:①计数如:32枚金牌,是自然数最初的作用;②测量如:小明身高是168厘米;③标号和排序如:2004年,金牌榜第二。
注意:基数和序数的区别。
(因为自然数在小学里已经非常熟悉,因此教师以提问的形式,帮助学生回忆有关知识)㈢做一做(多媒体显示,学生独立思考完成后,请学生回答)下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?⑴ 2002年全国共有高等学校2003所;⑵小明哥哥乘1425次列车从北京到天津;⑶香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼;⑷信封上的邮政编码325608⑸刘翔在雅典奥运会中的号码1363;⑹.今天的最高气温是35℃(补充3小题,加强巩固自然数的作用)㈣小组讨论问题1:我们知道小学里先学自然数再学分数,但你了解分数是怎样产生的吗?你能用自然数表示四人均分一个西瓜,每人可得多少西瓜吗?(用分配等实际问题说明自然数还不能满足实际需要,使学生了解分数产生的必要性和必然性)问题2:在解答下列问题时,你会选用分数和小数中的哪一类数?为什么?⑴小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?⑵小明的身高是168厘米,如果改用米作单位,应怎样表示?(让学生说说为什么,使学生理解什么时候用分数,什么时候用小数,关键是怎样方便简单)问题3:分数可以转化为小数吗?怎样转化?如18= ;415= ;23= 。
数的意义1. 自然数、整数:我们数物体的时候,用来表示物体个数的1,2,3,…叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
自然数都是整数。
最小的自然数是0没有最大的自然数,自然数的个数是无限的。
2. 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数是这个分数的分数单位。
两数相除,它们的商可以用分数表示。
分数分真分数和假分数。
真分数小于1,假分数大于或等于13. 小数:把整数“1”平均分成10份,100份,1000份……这样的一份或几份是十分之几,百分之几,千分之几……可以用小数表示。
小数可分为有限小数和无限小数。
无限小数又可以分为无限不循环小数(2.243876539……)和循环小数。
(纯循环小数---2.876876……记作2.876混循环小数0.76434343……记作0.7643)4. 整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一,百分之一,千分之一……都是计数单位。
各个计数单位所占的位置叫做数位。
整数最低位是个位,小数最高位是十分位5. 百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数只表示两个数的倍比关系,而分数除了可以表示倍比关系外还可以是一个具体数量。
6. 比0大的数是正数。
比0小的数是负数。
0既不是正数也不是负数。
数的读法和写法1.整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来。
其他数位连续有几个0都只读一个0。
写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
2.小数的读法和写法:整数部分按整数来读(写),小数点读作点,小数部分依次读写出每一位上的数数的大小比较1. 整数:先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大的那个数就大。
2. 小数:先比较整数部分,整数部分大的那个数大;整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。
一部数的历史——从自然数到复数[摘要] 人们在生产活动中,为了计量物品的个数,产生了自然数的概念,从对物品的分割中有了分数,为了表示相反意义的量引进了正负数,对连续的量进行度量时,引进了无理数,从负数不能开方出发引进了虚数,并把实数扩展到复数。
[关键词] 数的概念数觉计数十进位分数完全没有数的概念的思维是不可想象的,有确凿的证据表明,数字的产生比有文字记载的历史还要早几千年。
人类是动物进化的产物,最初也完全没有数量的概念。
但是人类在进化的蒙昧时期,就已经具有一种才能,当在一个小的集合里面增加或者减去一样的东西的时候,尽管他未曾直接知道增减,他也能够辨认到其中有所变化,这种才能可被称为数觉。
许多鸟类是具有这种数觉的,鸟巢若是有四个卵,那么可安然拿去一个,但是,如果拿掉两个,这鸟通常就要逃走了,一种比鸟类好不了多少的原始的数觉,就是我们产生数的概念的核心,毫无疑问,如果人类单凭这种直接的数的知觉,在计算的技术上就不会比鸟类有什么进步,但是经历了一系列的特殊环境,人类在有限的数的知觉之外学会了另一种技能来为之帮忙,这种技巧使他们未来的生活受到巨大的影响,这技巧就是计数。
在使用文字之前,人们用结绳计数,后来又用象形计数,正是计数才使具体的不同质的表达多少的概念结合为统一的抽象的数的概念,而数的概念正是数学发展的前提。
粗略地说,数学是数量的科学,而数是数出来的,有了度量才能对量有所认识。
并且,正是由于数的观念,我们才赢得了用数来表达我们世界的惊人成就。
数的科学在人类知识的总体里占有举足轻重的地位。
数学是数的科学,它是数量这个概念出发的,数的概念虽然很早就已发生,但和语言文学一样,它的发展也经过了一个漫长的过程。
自然数的问世自然数的产生起源于人类在生产活动中计数的需要,开始只有几个很少的自然数,后来随着生产力的发展和计数方法的改进,人类的文化也有了越来越多的自然数,我们从年幼时代开始就学习和运用自然数,并且通过自然数的不断接触,逐步深化了对自然数的认识。
数的种类一、整数→自然数:用来表示物体个数的1、2、3……叫做自然数。
1、按能否被2整除分奇数:不能被2整除的自然数。
如:1、3、5 ……偶数:能被2整除的自然数。
如:2、4、6 ……2、按约数的个数分质数:只有“1”和它本身两个约数。
合数:除了“1”和它本身两个约数,还有别的约数。
二、小数1、有限小数:小数部分的位数是有限的。
2、无限小数:小数部分的位数是无限的。
3、循环小数①纯循环小数:循环节从小数部分的第一位起。
如:3.555…②混循环小数:循环节从不小数部分的第一位起。
如:2.04666…③无限不循环小数如:7.268413596423……*整数部分是0的小数叫纯小数,整数部分不是0的叫带小数。
三、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
1、真分数:分子比分母小的分数。
如:3/4、1/8 ……2、假分数:分子比分母大,或分子与分母相等的分数。
如:5/4、6/6 …3、最简分数:分子和分母是互质数的分数。
4、百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
通常用“%”来表示。
如:25%四、成数:农业的收成,通常用成数”来表示。
“一成”是十分之一,改写成百分数就是10%。
五、约数:如果数“a”整除数“b”,那么数“a”就叫做数“b”的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本。
六、倍数:如果数“a”整除数“b”,那么数“b”就叫做数“a”的倍数。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
七、最小公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
八、最大公约数:几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。
九、互质数:公约数只有“1”两个整数叫做互质数,互质数是相互依存的。
十、质因数:每个合数都可以写成几个质数相乘的形式,这几个质数都叫做这个合数的质因数。