光纤基础知识培训
- 格式:ppt
- 大小:5.23 MB
- 文档页数:44
光学基础知识培训内容一、目标:1.1了解相关光学基础知识,认识所接触/采购产品的名称内容及型号。
确保公司所采购产品的性能完好,稳定产品的质量且能满足客的要求。
二、光学基础知识2.1 1962年美籍华人高锟向全世界第一次提出光通讯概念,并拉出了第一条可进行信息数据传播的光纤。
2.1.1光是一种波长从零点几毫米到大约零点一微米甚至更短波长范围内的电磁波。
2.1.2波长小于390nm的光称为紫光,波长大于760nm的光称为红外光,我们日常生活中可见光的波长范围是390nm-760nm。
红橙黄绿青蓝紫红光波长最长,频率最低紫光波长最短,频率最高2.1.3在光通信系统中以850nm、1310nm、1550nm三种波长通过光纤时所产生的损耗最小。
2.2 光纤规格:2.2.1光纤由折射较高的纤芯和折率较低的包层组成,纤芯和包层的主体材料是:石英玻璃。
2.2.2 按在光纤中的传播模式光纤又可分为单模光纤(SM)多模光纤(MM)。
2.2.2.1单模光纤的模间色散小,适用于远程通讯。
但存在材料色散和波导色散,正常情况下在波长1310nm时其材料色散和波导色散一为正,一为负,且加总色散为零。
2.2.2.2多模光纤的模间色散较大,限制了传输数字信号的频率,并会随距离的增加而更加严重,例:600MB/KM光纤在2KM时只有300MB带宽了。
2.2.3常用光纤的纤芯和包层规格有:单模:8/125u,9/125u,10/125u, 多模:50/125u,62.5/125u。
2.2.4光纤的传播窗口:2.2.4.1早期的光纤通信系统传输所用的是多模光纤,其工作波长是850nm,这是光纤传播的第一工作窗口。
2.2.4.2 1983年出现非色散位移单模光纤(传码:G.652)其工作波长在1310nm附近,这是光纤传播的第二个工作窗口。
2.2.4.2.1 G..652光纤在1310nm处色散为零,光损耗系数典型值为<0.35db/km。
光纤基础知识光纤是光导玻璃纤维的简称,就是用来导光的透明介质纤维,它是一种新型的光波导。
光纤外径一般为125 μm~140 μm,芯径一般为3 μm~100 μm。
1.光纤的结构一根实用化的光纤是由多层透明介质构成的,一般为同心圆柱形细丝,为轴对称结构,可以分为三部分:折射率较高的纤芯、折射率较低的包层和外面的涂覆层。
其外形如图2.1所示,其结构如图2.2所示。
图2.1 光纤外形示意图图2.2 光纤的结构示意图光纤的结构一般是双层或多层的同心圆柱体,如图2.2所示。
中心部分是纤芯,纤芯以外的部分称为包层。
纤芯的作用是传导光波,包层的作用是将光波封闭在光纤中传播。
为了达到传波的目的,需要使光纤材料的折射率n,大于包层1。
为了实现纤芯和包层的折射率差,必须使纤芯和包层材料有所材料的折射率n2不同。
目前实用的光纤主要是石英。
如果在石英中掺入折射率高于石英的掺杂剂,则就可作为纤芯材料。
同样如果在石英中掺入折射率比石英低的掺杂剂,则就可以作为包层材料,经过这样掺杂后,上述的目的就可达到了。
也就是说,光纤是由两种不同折射率的玻璃材料拉制而成的。
(1)纤芯位于光纤的中心部位,是光波的主要传输通道。
直径d1=4 μm~50 μm,单模光纤的纤芯为4 μm~10 μm,多模光纤的纤芯为50 μm。
纤芯的成分是高纯度SiO2,掺有极少量的掺杂剂(如GeO2,P2O5),作用是提高纤芯对光的折射率(n1),以传输光信号。
(2)包层位于纤芯的周围。
直径d2=125 μm,其成分也是含有极少量掺杂剂的高纯度SiO2。
而掺杂剂(如B2O3)的作用则是适当降低包层对光的折射率(n2),使之略低于纤芯的折射率,即n1>n2,它使得光信号封闭在纤芯中传输。
(3)涂覆层光纤的最外层为涂覆层,包括一次涂覆层,缓冲层和二次涂覆层。
一次涂覆层一般使用丙烯酸酯、有机硅或硅橡胶材料;缓冲层一般为性能良好的填充油膏;二次涂覆层一般多用聚丙烯或尼龙等高聚物。
光纤光缆知识培训一、光纤光缆的基本概念光纤光缆是一种用于传输光信号的通信线路,它由一根或多根纤维组成,每根纤维都是以光波导的形式将光信号进行传输。
光纤光缆能够实现宽带、高速、远距离传输,并且具有抗干扰能力强、信息安全性高的优点。
光纤光缆的基本构造包括光纤芯、包层和护套。
光纤芯是传输光信号的主体,其材料通常为二氧化硅。
包层用于包裹光纤芯以提高光纤的抗折和抗拉性能,通常采用二氧化硅或者氟化聚合物。
护套则是用于保护整根光缆的材料,一般为聚乙烯或者聚氯乙烯等塑料材料。
二、光纤光缆的传输特性1. 带宽大:相比于传统的铜质电缆,光纤光缆的带宽更大,能够支持更高速的数据传输。
2. 传输距离远:光纤光缆能够实现较长距离的信号传输,通常能够实现几十公里到上百公里的传输距离。
3. 信号衰减小:光纤光缆的信号衰减非常小,可以在长距离内保持信号的稳定传输。
4. 抗干扰性强:由于光信号是以光波导的形式进行传输,光纤光缆具有良好的抗干扰性,能够在电磁干扰较严重的环境下实现稳定的传输。
5. 信息安全性高:光纤光缆传输的是光信号,而非电信号,因此很难被窃听,具有较高的信息安全性。
三、光纤光缆的应用领域1. 通信网络:光纤光缆是构建光纤通信网络的关键基础设施,其宽带、高速、远距离传输的特性使得其被广泛应用于长途、城域通信网的建设。
2. 数据中心:在数据中心网络中,光纤光缆能够提供高速、大容量的数据传输,以满足大数据处理和云计算等应用的需求。
3. 工业自动化:光纤光缆的抗干扰性强,使得其在工业自动化领域得到广泛应用,用于传输各类传感器信息、控制信号等。
4. 医疗领域:光纤光缆被广泛应用于医疗设备中,用于传输医学图像、激光手术器械等。
5. 军事领域:由于其信息安全性高的特性,光纤光缆在军事通信和指挥控制系统中得到广泛应用。
四、光纤光缆的安装和维护1. 安装前的准备:在进行光纤光缆的安装前,需要对线路进行详细的规划设计,包括线路路径选择、光缆类型选择等。
光纤基本知识培训光纤理论与光纤结构一.光及其特性:1. 光是一种电磁波。
可见光部分波长范围是:390~760nm(毫微米).大于760nm部分是红外光,小于390nm部分是紫外光。
光纤中应用的是:850,1300,1550三种。
2.光的折射,反射和全反射。
因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。
而且,折射光的角度会随入射光的角度变化而变化。
当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。
不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。
光纤通讯就是基于以上原理而形成的。
二.光纤结构及种类:1.光纤结构:光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。
2.数值孔径:入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同(AT&TCORNING)。
3.光纤的种类:A. 按光在光纤中的传输模式可分为:单摸光纤和多模光纤。
多模光纤:中心玻璃芯教粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:600MB/KM的光纤在2KM时则只有300MB 的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤:中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。
光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。
光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。
下面我们将介绍一些光纤的重要基础知识点。
1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。
光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。
2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。
当
光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。
光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。
3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。
光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。
4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。
在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。
5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。
每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。
总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。
光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。