尺度不变特征变换(Scale-invariant feature transform,SIFT
- 格式:docx
- 大小:61.76 KB
- 文档页数:2
计算机视觉中尺度不变特征变换方法的使用教程摘要:计算机视觉中的尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)是一种经典的图像特征提取方法。
本文将介绍SIFT算法的原理、流程以及如何在计算机视觉应用中使用SIFT进行目标识别和图像匹配。
1. 引言随着计算机视觉领域的快速发展,图像特征提取和描述对于图像处理和分析至关重要。
然而,由于图像在不同尺度和旋转角度下的变化,如何寻找具有尺度不变性的特征一直是一个挑战。
SIFT算法的提出正是为了解决这一问题。
2. SIFT算法原理SIFT算法的核心思想是构建具有尺度不变性的图像特征。
它通过在图像中检测局部特征点,并对这些特征点进行尺度空间极值检测和方向分配,最终形成独特的特征描述子。
2.1 尺度空间极值检测SIFT算法首先通过高斯差分金字塔来寻找图像中的尺度空间极值点,即在不同尺度和位置上的局部极值点。
高斯差分金字塔是由一系列高斯模糊图像和它们之间的差分图像构成的。
通过对高斯模糊图像进行高斯差分操作,可以提取图像中的边缘结构和斑点结构等。
2.2 方向分配对于尺度空间极值点,SIFT算法会计算其周围像素的梯度方向直方图,并找到主要的梯度方向。
这样就为后续的特征描述子计算提供了方向信息,使得特征具有一定的旋转不变性。
2.3 特征描述子在确定尺度空间极值点的位置和方向后,SIFT算法会计算每个特征点周围像素的梯度幅值和方向,进而生成一个128维的特征向量。
该特征向量代表了图像中的局部纹理特征,并具有尺度和旋转不变性。
3. SIFT算法步骤根据SIFT算法原理,我们可以总结出SIFT算法的主要步骤如下:3.1 预处理首先,将原始图像转换为灰度图像,并进行图像尺寸的调整。
3.2 构建高斯金字塔在灰度图像上构建高斯金字塔,通过不断降采样和高斯模糊操作得到一系列尺度空间的图像。
3.3 构建高斯差分金字塔使用高斯金字塔中的相邻图像相减得到一系列高斯差分图像,用于寻找尺度空间极值点。
前面们介绍了Harris和Shi-Tomasi角检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角,但图像被放后,在使用同样的窗口,就检测不到角了。
所以,们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT(Scale-invariantfeaturetransform)。
它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值,并提取出其位置、尺度、旋转不变量,此算法由DavidLowe在1999年所发表,2004年完善总结。
应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。
SIFT算法的实质在不同的尺度空间上查找关键(特征),并计算出关键的方向。
SIFT 所查找到的关键一些十分突出,不会因光照,仿变换和噪音等因素而变化的,如角、边缘、暗区的亮及亮区的暗等。
1.1基本流程Lowe将SIFT算法分解为如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。
通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键。
关键定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。
关键的选择依据于它们的稳定程度。
关键方向确定:基于图像局部的梯度方向,分配给每个关键位置一个或多个方向。
所有后面的对图像数据的操作都相对于关键的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。
关键描述:在每个关键周围的邻域内,在选定的尺度上测量图像局部的梯度。
这些梯度作为关键的描述符,它允许比较的局部形状的变形或光照变化。
们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:1.2尺度空间极值检测在不同的尺度空间不能使用相同的窗口检测极值,对小的关键使用小的窗口,对的关键使用的窗口,为了达到上述目的,们使用尺度空间滤波器。
高斯核可以产生多尺度空间的核函数。
-《Scale-spacetheory:Abasictoolforanalysingstructuresatdifferentscales》。
尺度不变特征变换算法一、前言尺度不变特征变换算法(Scale-Invariant Feature Transform,SIFT)是一种用于图像处理和计算机视觉的算法,由David Lowe于1999年提出。
SIFT算法可以在不同尺度和旋转下找到图像中的关键点,并提取出这些关键点的局部特征描述符,从而实现对图像的匹配、识别等任务。
二、SIFT算法原理1. 尺度空间构建SIFT算法首先通过高斯滤波器构建尺度空间,以便在不同尺度下检测图像中的关键点。
高斯滤波器可以模拟人眼对图像的模糊效果,使得在不同尺度下能够检测到具有相似形状但大小不同的物体。
2. 关键点检测在构建好尺度空间后,SIFT算法通过DoG(差分高斯)金字塔来寻找关键点。
DoG金字塔是由相邻两层高斯金字塔之差得到的,它可以有效地检测出具有不同尺度和方向的局部极值点。
3. 方向分配为了使得特征描述子具有旋转不变性,在确定关键点位置后,SIFT算法还需要计算每个关键点的主方向。
它通过计算关键点周围像素的梯度方向直方图来确定主方向,从而使得特征描述子能够在不同角度下进行匹配。
4. 特征描述在确定了关键点位置和主方向之后,SIFT算法通过计算关键点周围像素的梯度幅值和方向来生成特征描述子。
这个过程中,SIFT算法使用了一个16×16的窗口,并将其分成4×4个小窗口,在每个小窗口中计算8个梯度方向的直方图,最终生成一个128维的特征向量。
5. 特征匹配在提取出两幅图像中所有关键点的特征描述子后,SIFT算法采用欧氏距离来计算两个特征向量之间的相似度,并使用比率测试来判断是否为匹配点。
如果两个特征向量之间的距离小于一定阈值,并且与次近邻之间距离比例大于一定比例,则认为是匹配点。
三、SIFT算法优缺点1. 优点:(1)尺度不变性:SIFT算法可以在不同尺度下检测到具有相似形状但大小不同的物体;(2)旋转不变性:SIFT算法可以计算每个关键点的主方向,从而使得特征描述子能够在不同角度下进行匹配;(3)鲁棒性:SIFT算法对于光照、视角、噪声等因素有较好的鲁棒性。
多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法一、本文概述随着计算机视觉技术的飞速发展,特征点检测与描述算法在图像匹配、目标识别、三维重建等领域扮演着举足轻重的角色。
在众多特征点算法中,SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)、SURF(Speeded Up Robust Features,加速鲁棒特征)、BRISK(Binary Robust Invariant Scalable Keypoints,二进制鲁棒不变可伸缩关键点)、ORB(Oriented FAST and Rotated BRIEF,带方向性的FAST和旋转的BRIEF)以及FREAK(Fast Retina Keypoint,快速视网膜关键点)等算法因其优秀的性能而备受关注。
本文旨在对这五种算法进行多角度的比较分析,以便读者更全面地了解它们的性能特点,为实际应用提供参考。
我们将从算法原理、计算效率、特征点稳定性、抗噪声干扰能力、旋转不变性、尺度不变性等多个维度对五种算法进行深入探讨。
通过理论分析和实验验证,本文将揭示各算法在不同应用场景下的优势和不足,为算法的选择和优化提供有力依据。
本文还将结合实际应用案例,展示各算法在图像匹配、目标跟踪、全景拼接等领域的实际应用效果,以便读者更好地理解各算法在实际应用中的表现。
通过本文的阅读,读者将能够全面掌握五种主流特征点检测与描述算法的核心原理、性能特点和应用场景,为计算机视觉领域的深入研究和实践应用提供有力支持。
二、算法原理比较在深入了解SIFT、SURF、BRISK、ORB和FREAK这五种算法的原理之后,我们可以从多个角度对它们进行比较。
首先是特征点检测与描述子生成。
SIFT(尺度不变特征变换)通过DOG(差分高斯)金字塔来检测关键点,并使用128维向量进行描述。
SURF(加速鲁棒特征)则使用Hessian矩阵和积分图像进行关键点检测,并生成64维描述子。
图像识别中的特征提取算法的使用方法在图像识别中,特征提取是一个关键步骤,它通过从图像中提取有用的信息来帮助分类、定位或识别图像中的对象。
特征提取算法的选择和使用对于图像识别的准确性和效率具有重要影响。
本文将介绍几种常用的特征提取算法,并探讨其使用方法。
1. 尺度不变特征变换(SIFT)尺度不变特征变换(Scale-Invariant Feature Transform,简称SIFT)是一种基于局部特征的特征提取算法。
它通过检测图像中的关键点,并计算这些关键点周围的描述子来提取特征。
SIFT算法具有尺度不变性和旋转不变性的特点,对于图像缩放、旋转和平移变换具有较好的适应性。
使用SIFT算法进行特征提取的方法如下:a. 使用SIFT算法检测图像中的关键点。
b. 对于每个关键点,计算其周围区域的描述子。
c. 基于描述子进行特征匹配和对象识别。
2. 快速RCNN算法快速区域卷积神经网络(Fast Region-based Convolutional Neural Network,简称Fast R-CNN)是一种基于深度学习的特征提取算法。
它通过将整个图像输入神经网络,并利用区域建议网络(Region Proposal Network)生成候选区域,然后对这些候选区域进行分类和定位。
使用快速RCNN算法进行特征提取的方法如下:a. 使用区域建议网络生成候选区域。
b. 将候选区域输入卷积神经网络进行特征提取。
c. 基于提取的特征进行分类和定位。
3. 卷积神经网络(CNN)卷积神经网络(Convolutional Neural Network,简称CNN)是一种广泛应用于图像识别的特征提取算法。
它通过一系列的卷积和池化层来提取图像的特征,并将这些特征输入全连接层进行分类。
使用卷积神经网络进行特征提取的方法如下:a. 设计并训练深度卷积神经网络。
b. 将图像输入神经网络,通过卷积和池化层提取特征。
c. 基于提取的特征进行分类和识别。
常用的特征描绘子特征描述子是计算机视觉领域中的一种技术,用于对图像或视频中的对象进行描述和识别。
它们可以根据对比度、纹理、形状等特征对对象进行唯一、稳定和可重复的描述。
在下面,我将介绍一些常用的特征描述子。
1. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT):SIFT是一种常用的特征描述子,能够提取出在尺度、旋转和光照变化等条件下具有独特性的图像特征。
它使用高斯差分金字塔的图像梯度来检测兴趣点,并通过局部邻域的直方图统计来描述这些点的特征。
2. 加速稳健特征(Speeded Up Robust Features,SURF):SURF是另一种基于尺度不变特征的描述子。
它通过使用快速哈尔小波变换来加速特征提取,并使用各方向图像积分将梯度信息捕捉到特征描述子中。
3. 方向梯度直方图(Histogram of Oriented Gradients,HOG):HOG是一种用于检测和识别图像中物体的特征描述子。
它基于图像的局部梯度方向和强度来描述对象的形状。
HOG特征在行人检测和行为识别等任务中得到了广泛应用。
4. 颜色直方图(Color Histogram):颜色直方图是用来描述图像中颜色分布的一种特征描述子。
它将图像中的像素按照颜色分布统计到不同的直方图区间内,以实现对颜色特征的描述。
颜色直方图在图像检索和物体识别等任务中常用。
5. 尺度不变特征点变换(Scale-Invariant Feature Point Transform,SIFTPT):SIFTPT是一种基于尺度不变特征点的描述子。
它通过检测图像中的兴趣点和特征点,并描述其周围的局部区域,以实现对图像的描述和识别。
6. 零均值归一化亮度梯度(Zero-mean Normalized Gradient,ZMNG):ZMNG是一种用于图像识别和目标跟踪的特征描述子,它通过归一化图像的亮度梯度来捕捉图像中的纹理和形状特征。
图像局部特征提取方法综述引言:图像是一种包含丰富信息的视觉表征形式,但如何从图像中提取有助于识别和描述图像内容的局部特征一直是计算机视觉领域的一个重要研究方向。
图像局部特征提取方法的目标是在不受图像整体变化的影响下,提取出能够表征图像局部结构和纹理信息的特征点。
本文将综述目前常用的图像局部特征提取方法,并对其优缺点进行评述。
一、经典的图像局部特征提取方法1. 尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)SIFT是一种经典的图像局部特征提取算法,它通过检测极值点和描述关键区域的局部图像块的梯度分布来提取特征点。
SIFT算法具有旋转、平移和尺度不变性,且对光照变化和噪声有一定的鲁棒性。
然而,SIFT算法在计算时间和计算资源消耗方面存在一定的局限性。
2. 尺度空间极值法(Scale-Space Extrema, DoG)DoG是尺度空间极值法的一种实现方式,通过在不同尺度下对图像进行高斯平滑和差分运算,从而检测出具有较大尺度极值的特征点。
DoG算法具有尺度不变性,并且对图像的旋转、平移和仿射变换具有一定的鲁棒性。
然而,DoG算法在计算速度和尺度空间选择方面存在一些问题。
3. 快速特征检测(Fast Feature Detector, FAST)FAST算法是一种基于像素值比较的简单快速特征检测算法,它通过比较像素点和周围邻域像素点的灰度值大小来检测图像中的角点特征。
FAST算法具有快速检测速度和低计算复杂度的优点,适用于实时应用。
然而,FAST算法对旋转、尺度和光照变化较为敏感。
4. 加速稳健特征(Accelerated Robust Features, SURF)SURF算法是基于Hessian矩阵的加速稳健特征提取算法,它通过检测图像中的兴趣点、计算兴趣点的主方向和提取描述子来提取特征点。
SURF算法具有较快的计算速度和较好的尺度不变性。
然而,SURF算法在处理图像模糊和噪声方面相对较弱。
SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。
它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。
本文将详细介绍SIFT算法的原理和过程。
1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。
高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。
2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。
差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。
对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。
3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。
SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。
具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。
然后通过在梯度直方图中寻找局部极值来确定关键点的方向。
4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。
SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。
然后将这些直方图组合起来,构成一个维度较高的特征向量。
5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。
具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。
通过计算特征向量之间的距离,可以找到最相似的匹配对。
6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。
这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。
SIFT
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。
这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。
该方法于1999年由David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International journal of computer vision(IJCV) 。
截止2014年8月,该论文单篇被引次数达25000余次。
算法介绍
SIFT由David Lowe在1999年提出,在2004年加以完善。
SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。
SIFT 已经申请了专利。
SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。
对于光线、噪声、微视角改变的容忍度也相当高。
基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。
使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。
在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。
SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
算法的特点
SIFT算法具有如下一些特点:
1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
2. 区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
4.高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;
5.可扩展性,可以很方便的与其他形式的特征向量进行联合。
特征检测
SIFT特征检测主要包括以下4个基本步骤:
1尺度空间极值检测:搜索所有尺度上的图像位置。
通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
2. 关键点定位
在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。
关键点的选择依据于它们的稳定程度。
3. 方向确定
基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。
所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。
4. 关键点描述
在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。
这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。
特征匹配
SIFT特征匹配主要包括2个阶段:
第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。
第二阶段:SIFT特征向量的匹配。
SIFT特征的生成一般包括以下几个步骤:
1. 构建尺度空间,检测极值点,获得尺度不变性。
图1 粗检特征点
2. 特征点过滤并进行精确定位。
3. 为特征点分配方向值。
4. 生成特征描述子。
以特征点为中心取16×16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含8个bin的方向直方图,最后获得4×4×8的128维特征描述子。
示意图如下:
当两幅图像的SIFT特征向量生成以后,下一步就可以采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。
取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。
在这两个关键点中,如果最近距离除以次近距离小于某个阈值,则判定为一对匹配点。
SIFT特征匹配的例子:。