上海众力动力总成悬置系统最优化设计与匹配
- 格式:ppt
- 大小:8.19 MB
- 文档页数:36
动力总成悬置系统优化及稳健性分析动力总成悬置系统是指汽车中发动机、变速器和驱动轴等汽车动力总成部件的组成系统,它对车辆的性能和安全性具有重要的影响。
因此,优化动力总成悬置系统的设计和提高其稳健性是汽车设计和生产中的一个重要课题。
在动力总成悬置系统设计中,需要考虑多个方面,包括系统整体重量、系统刚度、支撑件材料选用、降低噪音、减少振动等。
为了实现这些要求,通常需要结合数值分析和实验方法进行优化设计。
在系统整体重量的优化方面,设计师可以采用新型材料或优化零部件设计等措施来减轻体重。
例如,使用降低密度但强度较高的铝合金,或采用轻量化的减震器等。
在系统刚度方面,可以通过各种方式提高系统刚度,例如增加材料厚度、设计增加支撑件数量和位置等方案,同时还可以结合实验技术和数值分析方法,优化系统的刚度。
在支撑件材料选用方面,需要考虑动力总成悬置系统所处环境的特殊性质,如温度、湿度、腐蚀等,并且应该考虑到材料成本、加工工艺性、可靠性等因素。
这些要素均需在材料选用过程中进行综合考虑。
在噪音和振动方面的优化,需要采用减震、减振等措施,例如在发动机与车身之间设计隔振器,利用减振器改善驾驶稳定性并降低噪音。
同时,还可以采用模拟试验和理论模拟等方法,以确定系统的不同工况下的振动和噪声水平,并加以适当的改善。
此外,动力总成悬置系统的稳健性分析也是一个非常关键的方面。
系统的稳健性指的是系统能够在各种不确定情况下保持良好的性能和稳定性。
在系统的稳健性分析中,需要考虑到各种可能的负载情况、失效情况和故障情况,并结合设计要求和汽车行驶情况,确定系统的最佳稳健性设计方案。
这一过程需要采用可靠性分析方法,综合评估系统的稳健性。
总之,动力总成悬置系统的优化和稳健性设计是汽车工程设计中的一个重要环节。
通过采用先进的设计方法和技术手段,可以不断提高汽车的性能和安全性,满足消费者不断增长的需求和期望。
此外,为了实现动力总成悬置系统的优化和稳健性设计,需要充分了解系统的工作原理和特性。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车性能的要求日益提高,其中,汽车的舒适性和稳定性成为了重要的考量因素。
汽车动力总成悬置系统作为连接发动机与车身的重要部分,其性能的优劣直接影响到整车的振动特性和乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。
本文将针对汽车动力总成悬置系统的振动问题进行分析,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、离合器、变速器、驱动桥等组成,通过悬置装置与车身相连。
其作用是支撑和固定动力总成,减少振动和噪声的传递,保证汽车的平稳运行。
动力总成悬置系统的性能直接影响到整车的乘坐舒适性和行驶稳定性。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机的运转产生的激励力以及道路的不平度等因素引起的。
这些激励力通过悬置装置传递到车身,导致整车的振动。
此外,动力总成各部件之间的相互作用也会产生振动。
2. 振动影响分析汽车动力总成悬置系统的振动会影响整车的乘坐舒适性和行驶稳定性。
过大的振动会导致乘客感到不适,严重时甚至会影响到驾驶安全。
此外,振动还会导致动力总成各部件的磨损加剧,降低整车的使用寿命。
四、汽车动力总成悬置系统优化设计1. 设计原则在进行汽车动力总成悬置系统的优化设计时,应遵循以下原则:首先,要保证动力总成的稳定性和可靠性;其次,要尽量减少振动和噪声的传递;最后,要考虑到整车的重量和成本等因素。
2. 优化方案针对汽车动力总成悬置系统的振动问题,可以采取以下优化方案:(1)改进悬置装置的设计:通过优化悬置装置的结构和材料,提高其支撑和减振性能。
可以采用橡胶减震垫、液压减震器等减震元件,以减少振动和噪声的传递。
(2)优化动力总成的布局:合理布置发动机、离合器、变速器等部件的位置和角度,以降低各部件之间的相互作用力,减少振动的产生。
汽车动力总成悬置系统的设计及优化作者:马宗献徐萌来源:《科学导报·学术》2019年第17期摘 ;要:随着时间的推移和时代的不断改创新,自从改革开放以来,我国不论是社会经济的发展还是综合实际国力的提升,都已经实现了非常巨大的提升,在这种发展的趋势之下,国内广大人民群众的基本生活水平有了非常大的提升,汽车的使用以及数量也变得越来愈多,而在这种趋势之下,实现汽车从“量”到“质”的改变是十分重要的。
所以,在本文当中,就将对汽车动力总成悬置系统进行一定的分析和介绍,主要的目的就是使得这一系统能够尽快的得到优化,并未广大的人民群众带来真正的福祉。
关键词:汽车动力;总成装置;系统优化;系统设计;研究分析前言随着国内广大人民群众基本生活水平的提升,人民群众对于日常生活当中使用的各类机械设备都有了崭新的要求,汽车就是其中的一种较为常见的机械设备,而为了迎合大众基本需求的提升,在汽车的设计工作以及制造工作上就要进行相关的优化,这样不仅能够满足大众的基本需求,还可以使得汽车制造行业自身也得到一定的发展,并且这种能够随着时代而进行发展的模式,也正说明,汽车行业是始终充满着活力的。
所以,在接下来的文章当中,就将对汽车动力总成悬置系统的设计和优化措施进行一定的分析和介绍,并且,在文中还会给出一定的具有建设性的意见或者对策。
一、V、型悬置系统的优化设计(一)动力总成激振力分析1.点火激励根据一定的调查以及相关的文献记载就能得知,汽车的内燃机在正常的运行过程中,其对外的输出转矩并不是一种均匀的状态。
在实际的内燃机的运行过程中,首先要对缸内的可燃性气体进行压缩,然后经特定方式将其点燃,从而产生爆发力比较强的力矩,这种运行方式从文字的叙述上就能够得知,对外的输出转矩并不是一种均匀的状态,而是一种周期转变的状态。
再有,在实际的汽车运行过程中是存在着反作用力的,因此也就具有了倾覆力矩,下图就是点火频率和发动机转速之间的关系表达式[1]:其中,n是发动机的转速;i则是发动机的气缸数量;最后一个系数则是冲程因子,一般情况下,这个系数是发动机的冲程数量的一半;2.惯性力激励众所周知,在汽车发动机实际的运行过程当中,是会具有一定的惯性的,这一点在汽车的内部结构中也是一样的,发动机的气缸中的活塞和连杆之间的循环式运动就会产生一定的惯性力,当其中的曲柄曲拐发生质量上的不平衡时,也会产生一定的惯性力矩,其中具体的激励频率可以利用公式来进行表达[2]:在这一公式当中,Q为比例系数,不平衡力的级别不同,Q的数值也是不同的,当不平衡力为一级是,Q=1,当不平衡力为二级时,Q=2;公式当中的n是发动机的转速。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能逐渐成为影响汽车舒适性和稳定性的关键因素。
本文将重点对汽车动力总成悬置系统的振动特性进行分析,并提出相应的优化设计方案,以期为提高汽车性能提供有益的参考。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统是连接发动机、变速器等动力总成部件与车身的重要装置,其主要作用是减少振动、降低噪音、提高汽车的乘坐舒适性。
该系统通常由橡胶支座、金属支架、减震器等组成,其性能直接影响着汽车的行驶稳定性和乘坐舒适性。
三、汽车动力总成悬置系统振动分析1. 振动来源:汽车动力总成悬置系统的振动主要来源于发动机的运转、变速器的换挡以及路面不平度等因素。
这些因素产生的振动会通过悬置系统传递到车身,影响汽车的行驶性能。
2. 振动特性:汽车动力总成悬置系统的振动具有高频、低频及复杂性的特点。
其中,高频振动主要与发动机运转有关,低频振动则与路面不平度等因素有关。
此外,由于汽车行驶环境的复杂性,悬置系统还可能受到多种因素的耦合作用,导致振动更加复杂。
四、汽车动力总成悬置系统优化设计针对汽车动力总成悬置系统的振动问题,本文提出以下优化设计方案:1. 材料选择:选用高弹性、高阻尼性能的材料制作橡胶支座,以提高悬置系统的减震性能。
同时,采用轻质材料制作金属支架,以降低系统重量,提高整体性能。
2. 结构优化:对悬置系统的结构进行优化设计,如增加减震器数量、改变支座布置方式等,以更好地吸收和分散振动能量。
此外,还可以采用柔性连接方式,使悬置系统在受到外界冲击时能够产生一定的变形,从而减少振动传递。
3. 控制系统设计:引入现代控制技术,如主动悬挂控制系统等,对汽车动力总成悬置系统的振动进行实时监测和控制。
通过调整减震器的刚度和阻尼等参数,实现对振动的主动控制,提高汽车的行驶稳定性和乘坐舒适性。
五、结论通过对汽车动力总成悬置系统的振动分析及优化设计,可以有效提高汽车的行驶稳定性和乘坐舒适性。
1、参考系为动力总成坐标系2、参数前两个悬置的安装角度为45°,后两个悬置的安装角度为90°。
怠速工况(600r/min)、额定转速工况(2200r /min)和最大扭矩工况(1400r /min)2、悬置频率范围(6缸4冲程)发动机激振频率f =τ60ni,n:发动机转数,i:发动机汽缸数,τ:冲程系数,两冲程为1,四冲程为2。
怠速600r/min,则最小频率为30Hz 。
怠速激振频率60/2n f ==21Hz.2222)2()1()2(1ξλλξλβ+-+=;其中β为振动传递率,λ为频率比(激振频率与系统固有频率比值ω/0ω),ξ为阻尼比。
当λ>2时,系统传递率小于1,系统起到隔振作用,此时ωω>2,即固有频率小于2/1倍的激振频率,则悬置系统的最大固有频率应小于14.14Hz 。
为了保证悬置系统的使用寿命,悬置系统的最小固有频率应大于5Hz 。
3、时域分析3.1、动力总成激振力矩在ADAMS view中使用周期性正弦载荷作用,其正弦函数表达式分别为:怠速工况:760000.0*sin*(30*2*pi*time)额定转速工况:1050000.0*sin*110*2*pi*time)最大扭矩工况:1250000.0*sin*(70*2*pi*time)在动力总成悬置系统质心处作用激振力矩,绕曲轴方向,如下图示。
3.2、置支撑处响应力测量在怠速工况下,对动力总成悬置系统进行仿真,选择测量对象busing 元件,选择measure选项,特征选项选择force,方向选择Z向,测量悬置支撑处Z向响应力。
(end time:15,step:8000 )分别对4个悬置支撑响应力进行测试得图3.2-1左前悬置软垫支撑处的响应力图3.2-2右前悬置软垫支撑处的响应力图3.2-3左后悬置软垫支撑处的响应力图3.2-4右后悬置软垫支撑处的响应力从四个悬置支撑点响应力曲线可以看出,后两个悬置支撑点响应力明显比前悬置支撑点响应力要大。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对整车舒适性和耐久性的影响日益显著。
汽车动力总成悬置系统作为连接发动机和车身的重要部分,其振动特性直接关系到车辆的行驶平稳性和乘坐舒适性。
因此,对汽车动力总成悬置系统进行振动分析并优化设计显得尤为重要。
本文将围绕汽车动力总成悬置系统的振动分析及优化设计展开讨论。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置件、支架等组成,其主要作用是减小发动机振动对整车的影响,提高车辆的行驶平稳性和乘坐舒适性。
然而,由于发动机在工作过程中产生的振动和冲击,会对悬置系统产生较大的影响,导致系统振动和噪声的产生。
因此,对悬置系统的振动进行分析和优化设计具有重要意义。
三、汽车动力总成悬置系统振动分析1. 振动来源分析汽车动力总成悬置系统的振动主要来源于发动机的振动和冲击。
发动机在工作过程中,由于燃料的燃烧和活塞的往复运动,会产生较大的振动和冲击力。
这些振动和冲击力通过发动机悬置件传递到车身,对整车的舒适性和耐久性产生影响。
2. 振动传递路径分析汽车动力总成悬置系统的振动传递路径主要包括发动机、悬置件、支架和车身等部分。
其中,悬置件是连接发动机和车身的重要部分,其性能直接影响着振动的传递和隔离效果。
因此,对悬置件的刚度、阻尼等性能进行优化设计,可以有效减小振动的传递和影响。
四、汽车动力总成悬置系统优化设计1. 优化设计目标汽车动力总成悬置系统的优化设计目标主要包括提高整车的行驶平稳性和乘坐舒适性,减小发动机振动对整车的影响。
同时,还要考虑系统的耐久性和可靠性等因素。
2. 优化设计方法(1)材料选择:选择具有高刚度和良好阻尼性能的材料,如高强度钢、合金等,以提高悬置系统的性能。
(2)结构优化:通过优化悬置件的结构设计,如增加加强筋、改变连接方式等,提高其刚度和阻尼性能。
同时,还可以采用多级刚度设计,根据发动机的转速和负荷变化调整悬置件的刚度,以更好地隔离振动。
上海内燃机研究所硕士研究生学位论文动力总成悬置系统振动灵敏度分析与优化设计作者姓名:夏永文指导老师:袁卫平叶怀汉专业:动力机械及工程选题时间:2011年4月上海内燃机研究所研究生学位论文原创性声明本人郑重声明:本论文是在导师的指导下独立进行的研究工作所取得的成果。
除文中已注明的引用的内容外,不包括任何未加注明的个人或集体已经公开发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律责任由本人承担。
学位论文作者签名:日期:上海内燃机研究所学位论文版权使用授权书本人完全了解上海内燃机研究所关于收集、保存、使用学位论文的规定,同意按照要求提交学位论文的印刷本和电子版,研究所有权保存学位论文印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存论文;研究所有权提供目录检索以及提供本学位论文全文或者部分的借阅服务;研究所有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版。
保密□,在年解密后适时用于授权书。
本学位论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:日期:摘要随着汽车技术的发展,发动机引起的振动问题日益突出,人们对悬置的设计与优化越来越重视。
悬置设计的优劣将直接影响到动力总成系统的振动特性,影响相关零部件的使用寿命。
通过悬置设计优化提高隔振性能及稳健性已越来越受重视。
本文通过阅读大量的文献,介绍了国内外悬置系统的研究概况,分析了悬置元件与悬置系统设计的一些基本设计要求和设计准则。
建立动力总成悬置系统的六自由度动力学模型,运用MATLAB对某客车悬置系统进行模态计算分析。
并运用直接求导法与正交试验法计算悬置系统解耦率对刚度及位置的灵敏度,分析各悬置的刚度误差对系统的实际解耦率的影响,指出现有系统解耦率较低的原因并为优化指明方向。
在解耦率对刚度的灵敏度分析的基础上,选择合适的变量,以悬置系统的解耦率为目标函数,运用罚函数对目标函数关于刚度的灵敏度进行约束,综合考虑频率的合理分布,通过遗传算法对动力总成系统悬置刚度进行优化计算。