如果一个角的两边与另一个角的两边 分别对应平行,并且方向相同, 分别对应平行,并且方向相同,那么这 两个角相等。 两个角相等。
等角定理: 等角定理:如果一个角的两边与另一个 角的两边分别对应平行,并且方向相同, 角的两边分别对应平行,并且方向相同,那 么这两个角相等。 么这两个角相等。
C1 B1 A1
已知E、 、 、 分别是空间四边形四条 例3.已知 、F、G、H分别是空间四边形四条 已知 的中点, 边AB、BC、CD、DA的中点, 、 、 、 的中点 求证: 是平行四边形. 求证:EFGH是平行四边形 是平行四边形
练习1:在空间四边形 练习 :在空间四边形ABCD中,E、 中 、 F、G、H分别是棱 分别是棱AB ,BC,CD,DA的 、 、 分别是棱 , 的 中点,若对角线AC与 相等 求证: 相等, 中点,若对角线 与BD相等,求证: 四边形EFGH是菱形。 是菱形。 四边形 是菱形
A
E
H
B F C G
D
练习2 是空间四边形, 练习2:已知四边形ABCD是空间四边形,E、H分别 的中点, 是边AB、AD的中点, F,G 分别是边CB,CD上的点,且 上的点,
CF CG 2 = = , CB CD 3 求证: 求证:四边形EFGH是梯形
c
β
b a
?
b a c
一条直线的两直线平行, 一条直线的两直线平行,在空间中此 结论仍成立吗? 结论仍成立吗?
问题1:在同一平面内, 问题 ? :在同一平面内,平行于同
问题:把一张长方形的纸对折几次, 问题:把一张长方形的纸对折几次, 打开,观察折痕, 打开,观察折痕,这些折痕之间有什么 关系? 关系?
已 : BAC 和∠B AC1的 AB // A B, 知 ∠ 边 1 1 1 1 AC // AC1, 且方 并 向相 。 同 1 求 : ABC = ∠A B C1 证 ∠ 1 1