电力系统元件数学模型-精
- 格式:ppt
- 大小:926.00 KB
- 文档页数:50
1 电力系统各元件数学模型1.1 发电机组参数及数学模型发电机组在稳态运行时的数学模型(图1所示)极为简单,通常由两个变量表示,即发出的有功功率P 和端电压U 的大小或发出的有功功率P 和无功功率Q 的大小。
以第一种方式表示时,往往还需伴随给出相应的无功功率限额,即允许发出的最大、最小无功功率max Q 、min Q 。
图 1 发电机数学模型1.2 变压器参数及数学模型1.2.1双绕组变压器Γ型等值电路模型TjX 图2 双绕组变压器Γ型等值电路模型双绕组变压器Γ型等值电路模型如图2所示,电路参数通过以下公式计算。
注意,公式中N U 取不同绕组的额定电压,表示将参数归算到相应绕组所在的电压等级(所得所得阻抗/导纳参数都是等值为Y/Y 接线的单相参数);公式中各参数由变压器厂家提供,采用实用单位。
22020210001001000%100k N T Nk NT N T NN T N P U R S U U X S P G U I S B U ⎧∙=⎪⎪⎪%∙=⎪⎪⎨⎪=⎪⎪⎪=∙⎪⎩(1-1) 其中,k P 为短路损耗,k U %为短路电压百分数,0P 为空载损耗,0%I 为空载电流百分数,N U 为归算侧的额定电压,N S 为额定容量 该电路模型一般用于手算潮流中。
1.2.2 双绕组变压器T 型等值电路模型1jX '图 3 双绕组变压器T 型等值电路模型其中,1R 和1X 为绕组1的电阻和漏抗,'2R ,'2X 为归算到1次侧的绕组2 的电阻和漏抗,m R 和m X 为励磁支路的电阻和电抗。
该电路模型一般用于电机学中加深对一二次侧和励磁支路电阻电抗的理解以及手算潮流计算中。
1.2.2 三绕组变压器Z 图4三绕组变压器的等值电路三绕组变压器的等值电路如图3所示,图中,变压器的励磁支路也以导纳表示。
该电路模型一般用于手算潮流计算中。
三绕组变压器的参数计算如下: 电阻:由短路损耗计算()()()1(12)(31)(23)2(23)(12)(31)3(31)(23)(12)121212k k k k k k k k k P P P P P P P P P P P P ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-2) 211222233100010001000k N T Nk N T Nk NT N P U R S P U R S P U R S ⎧∙=⎪⎪⎪∙⎪=⎨⎪⎪∙⎪=⎪⎩(1-3) 其中,k P 为短路损耗,N U 为归算侧的额定电压,N S 为额定容量对于容量比为100/100/50和100/50/100的变压器,厂家提供的短路损耗是小容量绕组达到自身额定电流()/2N I 时的试验数据,计算时应首先将短路损耗折算为对应于变压器额定电流()N I 的值例如,对于100/100/50型变压器,厂家提供的是未经折算的短路损耗'(23)k P -,'(31)k P -,'(12)k P -首先应进行容量归算'(23)(23)'(31)(31)44k k k k P P P P ----⎧=⎪⎨=⎪⎩(1-4) 按新标准,厂家仅提供最大短路损耗max k P ,按以下公式计算电阻:2max (100%)2(50%)(100%)20002k N T N T T P U R S RR ⎧=⎪⎨⎪=⎩(1-5) 其中max k P 为最大短路损耗,N U 为归算侧的额定电压,N S 为额定容量 电抗:由短路电压百分数计算()()()1(12)(31)(23)2(12)(23)(31)3(23)(31)(12)1%%%%21%%%%21%%%%2k k k k k k k k k k k k U U U U U U U U U U U U ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-6) 211222233100100100k N T Nk N T N k NT N U U X S U U X S U U X S ⎧%=⎪⎪⎪%⎪=⎨⎪⎪%⎪=⎪⎩(1-7) 其中,k U %为短路电压百分数,N U 为归算侧的额定电压,N S 为额定容量 注意,厂家提供的短路电压是经过额定电流折算后的数据。
电力系统数学模型与稳定性分析电力系统是现代社会中不可或缺的基础设施,它承担着电能的生产、传输和分配的重要任务。
为了确保电力系统的安全运行,人们需要对电力系统进行数学建模和稳定性分析。
本文将介绍电力系统数学模型和稳定性分析的基本概念、方法和应用。
一、电力系统数学模型1.1 电力系统的基本组成部分电力系统主要由发电机、变压器、输电线路、配电网和负荷等组成。
发电机用于将机械能转化为电能,变压器用于变换电压,输电线路用于电能的长距离传输,配电网用于将电能分配到各个用户,负荷则表示对电能的需求。
1.2 电力系统的数学模型电力系统的数学模型主要包括节点模型和支路模型。
节点模型是用来描述电力系统中各个节点(发电机、变压器、负荷等)的状态和特性,通常使用节点电压和相角来表示。
支路模型是用来描述电力系统中各个支路(输电线路、变压器等)的传输特性,通常使用支路功率和阻抗来表示。
1.3 节点模型节点模型是电力系统数学模型的核心部分,它描述了电力系统中各个节点的电压和相角的变化规律。
节点模型基于基尔霍夫电流法和基尔霍夫电压法,利用电流平衡和功率平衡等原理建立。
节点模型可以通过节点电压和相角的变化来分析电力系统的稳态和暂态行为。
1.4 支路模型支路模型描述了电力系统中各个支路的传输特性,包括输电线路的电阻、电抗和电导等参数。
支路模型基于欧姆定律和基尔霍夫电压法,利用电压平衡和功率平衡等原理建立。
支路模型可以通过支路功率和阻抗的变化来分析电力系统的稳态和暂态行为。
二、电力系统稳定性分析2.1 稳定性的概念电力系统的稳定性是指系统在外部扰动或内部故障的作用下,能够保持稳定的运行状态。
稳定性分为稳态稳定性和动态稳定性两种。
稳态稳定性是指系统在平衡点附近的行为,动态稳定性是指系统在扰动后恢复稳定的能力。
2.2 稳定性的分析方法稳定性分析的主要方法包括潮流计算、短路计算、暂态稳定性分析和频率稳定性分析等。
潮流计算是用来计算电力系统中各个节点的电压和功率,以确定系统的稳态工作点。