实验 土壤铜的测定方法
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
土壤全铜的测定
准确称取0.5***g土壤加入到聚四氟乙烯消解罐中,加入5ml 硝酸、1.5ml盐酸和3.5ml氢氟酸,按要求装配各个消解罐,同时进行空白样制备。
将样品和空白样放入微波消解仪器中,设置消解温度、恒温时间等消解参数(按下表),然后开始进行微波消解。
待消解过程结束,仪器自动降温后,取出消解罐,赶酸(剩大约1ml)。
将罐中溶液转移到25ml的刻度试管中,用水定容混匀。
取7个25ml容量瓶分别加入0.0、0.25、0.50、0.75、1.00、1.25、5ml铜标准溶液(10mg/l),用5%的盐酸定容,浓度分别为0、0.1、0.2、0.3、0.4、0.5、2mg/l,调试好原子分光光度计测定。
全铜含量(mg/kg)=C*V/m
C:表示样品测定浓度;mg/l
V:表示样品的定容体积;ml
m:表示样品的称重量;g
注意:所用的器皿必需经30%的硝酸浸泡过夜,所用的试济都是优级纯的,所用的实验用水是去离子水。
泥样中铜的测定及两种测定方法的比较
一、实验原理
碘量法测铜:在弱酸性溶液中,Cu2+ 可被KI还原为CuI,2Cu2 ++4I- == 2CuI+ I2,析出的I2用Na2S2O3标准溶液滴定以淀粉为指示剂,间接测得铜的含量。
反应
式为:I2 +2S2O32- == 2I- +S4O62-
原吸测铜:用王水(盐酸:硝酸=3:1)消解泥样,消解好的泥样定容,用原子吸收分光光度测定样品中铜镍的含量。
二、实验操作步骤
略
三、实验结果
①两种方法测定含水率结果:
注:含水率是通过第一次烘干后,前后质量损失算得。
干泥含水率是第一次烘干后的干泥,继续烘干,由第二次烘干前后质量损失算得。
累积含水率是经过两次烘干,由
两次烘干质量损失算得的。
②两种测定方法测得结果:
注:泥样均经过两次烘干。
③烘干对原吸测定铜镍的影响:
四、数据分析、
由表一可知,烘干次数对含水率的测定结果影响比较大,平均结果相差5.4%。
这可能是由于第一次烘干后,在泥样的中心,由于温度相对较低,水量损失相对来说比较少,没有达到彻底烘干,经碾磨后,中心的泥样分散在各个部分,由于温度升高,在烘箱中继续失水,导致含水率升高。
由表二可知,两种测定方法测得的铜结果平均相差0.3%。
这可能是因为用碘量法测铜,泥样消解的比较彻底,另外,用原吸测定时,由于需要过滤,也会造成样品中铜的损失。
由表三可知,一次烘干测得的铜与两次烘干测得的铜平均相差1.5%,镍相差0.6%,这可
能是因为称取的泥样含水率不同所引起的。
原子吸收分光光度法测定土壤中铜的含量一、目的和要求1.1 了解原子吸收分光光度法的原理;1.2 掌握土壤样品的消化方法,掌握原子吸收分光光度计的使用方法。
二、原理火焰原子吸收分光光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。
将试样喷入火焰,被测元素的化合物在火焰中离解形成原子蒸气,由锐线光源(空心阴极灯)发射的某元素的特征谱线光辐射通过原子蒸气层时,该元素的基态原子对特征谱线产生选择性吸收。
在一定条件下特征谱线光强的变化与试样中被测元素的浓度比例。
通过对自由基态原子对选用吸收线吸收度测量,确定试样中该元素的浓度。
湿法消化是使用具有强氧化性酸,如HNO3、H2SO4、HClO4等与有机化合物溶液共沸,使有机化合物分解除去。
干法灰化是在高温下灰化、灼烧,使有机物质被空气中氧所氧化而破坏。
本实验采用湿法消化土壤中的有机物质。
三、仪器与试剂3.1 原子吸收分光光度计、铜空心阴极灯。
3.2 铜标准液。
准确称取0.1000g金属铜(99.8%)溶于15mL 1:1 硝酸中,移入1000mL 容量瓶中,用去离子水稀释至刻度,此液含铜量为100mg/L。
四、实验步骤4.1 标准曲线的绘制取6个25mL容量瓶,依次加入0.0、1.00、2.00、3.00、4.00、5.00mL 的浓度为100mg/L 的铜标准溶液,用1%的稀硝酸溶液稀释至刻度,摇匀,配成含0.00、0.40、0.80、1.20、1.60、2.00mg/L 铜标准系列,然后在324.7nm处测定吸光度,绘制标准曲线。
4.2 样品的测定4.2.1 样品的消化准确称取1.000g土样于100mL 烧杯中(2份),用少量去离子水润湿,缓慢加入5mL 王水(硝酸:盐酸=1:3),盖上表明皿。
同时做1份试剂空白,把烧杯放在通风厨内的电炉上加热,开始低温,慢慢提高温度,并保持微沸状态,使其充分分解,注意消化温度不易过高,防止样品外溅,当激烈反应完毕,使有机物分解后,取下烧杯冷却,沿烧杯壁加入2~4mL 高氯酸,继续加热分解直至冒白烟,样品变为灰白色,揭去表明皿,赶出过量的高氯酸,把样品蒸至近干,取下冷却,加热5mL 1%的稀硝酸溶液加热,冷却后用中速定量滤纸过滤到25mL 容量瓶中,滤渣用1%稀硝酸洗涤,最后定容,摇匀待测。
土壤中有效态Cu的测定一、【工作任务与要求】任务:土壤中有效态Cu的测定。
要求:掌握原子吸收分光光度法测土壤中重金属。
二、【工作程序与操作方法】(一)原理1、原子吸收法(AAS)原理根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。
试液喷射成细雾与燃气混合后进入燃烧的火焰中,被测元素在火焰中转化为原子蒸气.气态的基态原子吸收从光源发射出的与被测元素吸收波长相同的特征谱线.使该谱线的强度减弱,再经分光系统分光后,由检测器接受.产生的电信号,经放大器放大,由显示系统显示吸光度。
2、浸提原理石灰性土壤中金属离子铜与DTPA达成络合平衡,又在pH=7.3的0.01mol/LCaCl2溶液中,使浸出物与CaCL2达到平衡,并可以将含碳酸盐土壤中CaCO3的溶解度减至最小程度。
提取剂中的TEA缓冲液的作用是防止过量铁及锰的溶解。
(二)仪器1.容量瓶、烧杯、振荡器、2.移液管、锥形瓶3. 原子吸收分光光度计4.Cu空心阴极灯5. 氢气钢瓶6.10μL手动进样器(三)试剂1、提取剂:中性和石灰性土壤用DTPA提取,酸性土壤用HCL提取。
DTPA浸提剂:1.96g DTPA (二乙烯三胺五醋酸)置于1L容量瓶中。
加14.92gTEA(三乙醇胺)用纯水溶解并稀释到950ml。
再加1.47克CaCl2.2H2O用6molHCL调节至pH=7.3,最后用纯水稀释到刻度。
2.、铜的标液:溶解1.0000g纯铜于少量的浓HNO3,并加5ml浓HCL,蒸发至干,用浸提剂稀释至1L,此为1000ppm含铜标准母液。
临用前稀释成100ppm 使用液。
稀释至0.1-10ppm为宜。
(四)步骤1、标准曲线绘制准确吸取铜标准溶液0、4、10、15、20 、40 ml.于50mL容量瓶中,并用浸提剂定容至50ml.,则此标准系列相当于0、8、20、30、40、80ppm的含铜量。
2、样品分析称取过2mm 尼龙筛网的风干土10.00g于150ml锥形瓶中,加20ml浸提剂,振荡2h.,振荡器的转速每分钟180次。
土壤铜的测定原理和方法土壤铜的测定原理和方法主要涉及以下几个方面:取样方法、样品前处理方法以及铜的测定方法。
下面将详细介绍这些内容。
1. 取样方法:取样是土壤铜测定的首要步骤,必须保证取样方法的科学性和代表性。
土壤样品通常是以土样的形式进行取样,一般需根据不同土层和区域特点进行采集,然后进行混合均匀,再按照一定比例取出分析样品。
取样层次一般分表层和剖面层两种,样品数量应根据实际需要确定。
2. 样品前处理方法:样品前处理是为了提取土壤中的铜元素。
通常采用的方法包括酸溶、盐溶和提取剂萃取等。
其中,酸溶法是最常用的方法,通过使用不同的酸对土壤样品进行溶解,将土壤中的铜元素转化为溶液中的铜离子。
盐溶法是用盐溶液将土壤中的铜反应溶解成相应的铜盐形成溶液。
提取剂萃取则是使用一种合适的提取剂和土壤进行反应,使得土壤中的铜转移到提取剂中。
3. 铜的测定方法:常用的土壤铜测定方法有原子吸收分光光度法、电感耦合等离子体质谱法、草皮样品-电感耦合等离子体质谱法等。
下面将重点介绍原子吸收分光光度法。
原子吸收分光光度法(AAS)是一种常用的土壤铜测定方法。
其原理是通过吸收样品溶液中的铜原子或离子在特定波长下的特定光线来计量铜的浓度。
具体步骤如下:(1) 样品溶液的制备:将经过前处理的土壤样品溶解于一定体积的溶液中,通常使用酸性介质(如硝酸、盐酸等)进行溶解,并加入一定的还原剂(如硝酸亚锡)或络合剂(如草酸等)。
(2) 仪器校准:选定特定波长和样品吸收光强,并利用标准样品进行仪器校准,建立标准曲线。
(3) 测定样品:样品溶液依次进入光源与反射镜之间的光路,光束经过吸收池,荧光池,至探测器接收,测定吸收光强并根据标准曲线计算铜的浓度。
4. 结果处理:根据仪器测定得到的吸光度与标准曲线的关系,计算得到样品中铜的浓度。
如果样品中铜的浓度超过仪器测定范围,则需要对样品进行稀释,再进行测定。
总结:土壤中铜的测定主要涉及取样方法、样品前处理方法以及铜的测定方法。
迪信泰检测平台
土壤全铜检测
土壤全铜包括水溶态铜、交换态铜、非交换态铜或专性吸附态铜、有机结合态铜和矿物态铜。
其中水溶态铜、交换态铜和络合态铜对植物都是有效的铜。
迪信泰检测平台采用生化法,可高效的检测土壤全铜的含量。
此外,我们还提供其他土壤常规八项类检测服务,以满足您的不同需求。
生化法测定土壤全铜样本要求:
1. 请确保样本量大于0.2g或者0.2mL。
周期:2~3周。
项目结束后迪信泰检测平台将会提供详细中英文双语技术报告,报告包括:
1. 实验步骤(中英文)。
2. 相关参数(中英文)。
3. 图片。
4. 原始数据。
5. 土壤全铜含量信息。
迪信泰检测平台可根据需求定制其他物质测定方案,具体可免费咨询技术支持。
火焰原子吸收光谱法测定土壤中的铜## 原理火焰原子吸收光谱,也称为火焰原子光谱法,属于原子吸收光谱法(AAS)的一种,它是利用火焰中完全分解的原子发出的特殊波长的吸收谱线来分析试样中的特定元素的方法。
它的优点是检测的灵敏度高,响应时间短,操作简单,可以在短时间内精确测定试样中的大部分微量元素。
在火焰原子吸收光谱测定土壤中铜的原理下,首先将容器中的样品放入到火焰原子吸收仪的容器内,然后发热,将样品分解成原子,使原子发射出吸收特征谱线,最后同特征谱线相比较,从而测定样品中各元素的含量。
该方法被广泛应用于化学分析实验室及工业过程中的元素测定。
## 样品处理土壤样品收集完毕之后,应该进行筛选、分级处理,按照粒度大小和种类划分为几种粒径等级,土壤中的杂质、杂物等,应该用棉絮等工具清理掉,确保样品质量,以防后续影响测定结果。
在火焰原子吸收光谱测定土壤中铜的样品处理过程中,需要将土壤样品先进行筛选、洗涤,然后采用乙醇溶液来提取出铜,将提取液进行蒸馏和过滤,以去除溶液中的其他杂质,过滤后的溶液就是用来测定铜浓度的样品溶液。
## 操作步骤(1)将满足实验要求的土壤样品放入容器内,并用真空抽送机抽去杂质,然后将容器插入灼烧器的焰口。
(2)控制电源板上的火焰控制面板调节火焰温度,保持火焰从容器中喷出,以有效解离土壤中的原子。
(3)调节原子吸收仪上的电阻,以便调节实验仪器的发射光强度,确保试样中原子的有效发射信号。
(4)调节信号放大器,让在原子吸收仪上发出的发射谱线进入检测系统,然后从原子吸收谱线中获取信号,并输入到计算机上进行处理,最后由计算机计算出土壤中铜含量的数据。
## 结果解释火焰原子吸收光谱测定土壤中的铜的结果表示,测定的值是土壤中某体积量的含铜量,例如每千克的含量,也可以表示每公顷的含量,它可以有效提供土壤中铜的分布状况。
如果土壤中测定出的铜含量过高,很有可能是由于土壤中有其他重金属污染物造成,那么这块区域的土壤可能对人和其他生物都有很大的危害,应该采取有效的措施控制和改善土壤中铜的含量。
土壤质量铜、锌的测定火焰原子吸收分光光度法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言土壤中微量元素的含量是评价土壤质量的重要指标之一。
电热板消解法测定土壤中铜实验报告检测项目:土壤中铜的测定
检测方法:电热板消解法
检测结果:
本次实验采用电热板消解法测定土壤中铜的含量,结果显示,土壤中铜的含量为0.25mg/kg。
实验原理:
电热板消解法是一种常用的测定土壤中重金属含量的方法,它是利用电热板将土壤中的重金属溶解出来,然后用原子吸收光谱法测定溶解出来的重金属含量。
实验步骤:
1.将土壤样品称取0.5g,放入电热板消解瓶中,加入2ml的硝酸,放入电热板中加热消解,消解时间为30min。
2.将消解液过滤,用硝酸补足至10ml,放入原子吸收光谱仪中测定。
3.根据测定结果计算土壤中铜的含量。
实验结论:
本次实验采用电热板消解法测定土壤中铜的含量,结果显示,土壤中铜的含量为0.25mg/kg。
实验中应注意的事项:
1.在消解过程中,应注意控制温度,以免温度过高而影响消解效果。
2.在消解过程中,应注意控制消解时间,以免消解时间过长而影响消解效果。
3.在消解过程中,应注意控制消解液的浓度,以免浓度过高而影响消解效果。
4.在测定过程中,应注意控制测定仪器的稳定性,以免测定结果不准确。
实验五土壤中铜的测定一、实验目的和要求(1)掌握原子吸收分光光度法原理及测定铜的技术。
(2)预习第二章金属测定的有关内容及第五章土壤质量监测的有关内容。
二、实验原理土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。
在火焰中形成的Cu基态原子蒸汽对光源发射的特征电磁辐射产生吸收。
测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cu含量。
计算土壤中Cu含量。
该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cu的测定。
方法检出限范围为0.05—5mg/kg。
三、实验仪器(1)原子吸收分光光度计,空气-乙炔火焰原子化器,铜空心阴极灯。
(2)仪器工作条件:测定波长324.7nm ,通带宽度0.2nm ,空气-乙炔的氧化型火焰类型,蓝色火焰。
四、实验试剂(1)盐酸:特级纯。
(2)硝酸:特级纯。
(3)氢氟酸:优级纯。
(4)高氯酸:优级纯。
(5)铜标准贮备液:1000mg/L(6)铜标准使用液:吸取5.0mL铜标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。
即得每毫升含50μg铜的标准使用液。
(7)5%HNO3溶液:(8)0.2% HNO3溶液(9)采集土壤样品,并干燥,磨细过80目,备用。
五、测定步骤(1)土样试液的制备:称取0.500g土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。
取下冷却,加入5%HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。
同时进行全程序试剂空白实验。
(2)标准曲线的绘制:吸取相应体积的铜标准使用液,分别于6个50mL容量瓶中,用0.2%HNO3溶液定容、摇匀。
分别测其吸光度,绘制标准曲线。
火焰原子吸收光谱法测定土壤中的铜铜是地壳中的重要组分,它在土壤中的生物有机过程中发挥着重要的作用。
由于土壤铜的含量变化范围很大,从几毫克每公斤到几百克每公斤不等,因此,对土壤中铜的测定一直是肥料学和土壤学研究的热点问题。
火焰原子吸收光谱法是定量分析铜的方法之一。
本文旨在介绍火焰原子吸收光谱(FAAS)法测定土壤中铜的原理和实验过程。
一、火焰原子吸收光谱(FAAS)法概述火焰原子吸收光谱法是一种实用的定量分析方法,它是利用激发态原子在其光谱线中的一次吸收来定量分析化合物浓度的方法。
根据激发原子的不同状态,原子吸收光谱法可以分为原子火焰吸收光谱法、汞灯原子吸收光谱法、等离子体吸收光谱法等。
在火焰原子吸收光谱法中,样品和一定浓度的激发剂溶液(碱金属或碱土金属)一起放入风扇吹打的狭窄的收尾火焰中,通过原子火焰使样品中的原子处于激发状态,并且吸收入射光。
由于激发态的原子吸收的波长与原子的种类有关,根据实验室测量到的原子火焰吸收光谱,可以推测出样品中存在的元素或化合物,以及其定性和定量分析。
二、铜测定1.实验组成FAAS用于测定土壤中铜的重要组成部分是以下几个:(1)样品:采用实验室提取的无离子水溶解的土壤样品,按照理化特性进行预处理。
(2)激发溶液:采用硼酸溶液(0.2 molL-1)为激发剂。
(3)收尾火焰:使用氧和甲烷气体为收尾火焰,以保证处理样品时间和原子火焰温度。
(4)检测仪:使用原子吸收光谱仪,可以测量收尾火焰温度、激发原子吸收光谱、原子火焰稳定性等参数。
2.试验步骤(1)取出一定量的土壤样品,使用氢氧化钠溶液将样品放入容器中,混合溶解。
(2)将试样和激发剂硼酸混合,得到测试溶液。
(3)将容器加热,使溶液挥发,这时,激发剂会将原子火焰处于激发状态。
(4)通过检测系统测量土壤中铜元素的原子吸收光谱,测量其吸收特征,以估算样品中铜的含量。
三、应用火焰原子吸收光谱法是一种常用的分析方法,其应用范围极其广泛。
实验八土壤对铜的吸附一、实验目的学会土壤对铜的吸附平衡时间的测定学会土壤对铜的吸附量的测定二、仪器和试剂1. 仪器(1) 原子吸收分光光度计。
(2) 恒温振荡器。
(3) 离心机。
(4) 酸度计。
(5) 复合电极。
(6) 容量瓶:50 mL,250 mL,500 mL。
(7) 聚乙烯塑料瓶:50 mL。
2. 试剂(1) 二氯化钙溶液(0.01 mol/L):称取1.5 g CaC12 · 2H2O溶于1L水中。
(2) 铜标准溶液(1000 mg/L):将0.5000 g金属铜(99.9%)溶解于30 mL l:1HNO3中,用水定容至500 mL。
(3) 50 mg/L铜标准溶液:吸取25 mL 1000 mg/L铜标准溶液于500 mL容量瓶中,加水定至刻度。
(4) 硫酸溶液:0.5 mol/L。
(5) 氢氧化钠溶液:1 mol/L。
(6) 铜标准系列溶液(pH=2.5):分别吸取10.00、15.00、20.00、25.00、30.00 mL的铜标准溶液于250 mL烧杯中,加0.01 mol/L CaCl2溶液,稀释至240 mL,先用0.5 mol/L H2SO4调节pH=2,再以1 mol/L NaOH溶液调节pH=2.5,将此溶液移入250 mL容量瓶中,用0.01 mol/L CaCl2溶液定容。
该标准系列溶液浓度为40.00、60.00、80.00、100.00、120.00 mg/L。
按同样方法,配制pH= 5.5的铜标准系列溶液。
(7) 土壤样品:将新采集的土壤样品经过风干、磨碎,过0.15 mm (100目)筛后装瓶备用。
三、实验步骤1. 标准曲线的绘制吸取50 mg/L的铜标准溶液0.00、0.50、1.00、2.00、4.00、6.00、8.00、10.00 mL分别置于50 mL容量瓶中,加2滴0.5 mol/L的H2SO4,用水定容,其浓度分别为0、0.50、1.00、2.00、4.00、6.00、8.00、10.00 mg/L。
原子吸收分光光度法测定土壤样品中铜的含量原子吸收分光光度法是一种常用的元素分析方法,具有高灵敏度、高精度和低干扰等优点。
本文将介绍如何使用原子吸收分光光度法测定土壤样品中铜的含量。
一、实验目的本实验的目的是通过原子吸收分光光度法测定土壤样品中铜的含量,了解原子吸收分光光度法在土壤重金属分析中的应用。
二、实验原理原子吸收分光光度法是一种基于原子能级跃迁的定量分析方法。
样品中的铜离子在高温烈焰中被激发为原子态,当铜原子通过特定波长的光源时,会吸收特定波长的光,从而导致光强减弱。
通过测量光源通过样品前后的光强,可以确定样品中铜原子的吸光度。
通常,吸光度与铜原子的浓度成正比,从而可以计算出样品中铜的含量。
三、实验步骤1.样品采集与处理选择具有代表性的土壤样品,用四分法缩分,烘干,研磨,过筛,混匀。
将处理后的土壤样品放入聚乙烯瓶中备用。
2.样品消化称取0.5g土壤样品于50ml锥形瓶中,加入硝酸-氢氟酸-高氯酸(5:2:2)混合酸,摇匀,放置过夜。
次日于电热板上加热消化至溶液清亮,加入2ml硝酸,继续加热消化至溶液呈淡黄色,加入2ml高氯酸,继续加热消化至溶液呈无色透明。
冷却后加入2ml硝酸,加热溶解盐类,蒸至近干。
用去离子水将消化液转入10ml容量瓶中,定容至刻度线。
同时做试剂空白。
3.仪器参数设置打开原子吸收分光光度计,设置波长为324.7nm,光源电流为3.0mA,燃烧器高度为8mm,空气流量为6.0L/min,乙炔流量为1.5L/min。
4.标准曲线制作分别称取铜标准溶液(1mg/ml)0.0、0.5、1.0、2.0、3.0、4.0ml于100ml容量瓶中,加入硝酸至10ml刻度线,混匀。
得到铜浓度分别为0.0、0.5、1.0、2.0、3.0、4.0mg/L的标准系列溶液。
将标准系列溶液分别吸入空气-乙炔火焰中燃烧,测定吸光度。
以吸光度为纵坐标,铜浓度为横坐标绘制标准曲线。
5.样品测定将待测样品吸入空气-乙炔火焰中燃烧,测定吸光度。
氢氟酸分解火焰原子吸收光谱法测定土壤中微量铜氢氟酸分解火焰原子吸收光谱法是一种常用的测定土壤中微量金属元素的方法。
本文将介绍该方法在土壤中微量铜测定中的应用。
一、实验原理氢氟酸分解火焰原子吸收光谱法是将土壤样品与氢氟酸混合加热至沸腾,使土壤中的金属铜转化为易溶的氟化铜离子,然后用酸介质调节土壤中金属物质之间的相互作用,并完成物质转化,最终以吸收光谱法来测定土壤中微量铜含量的方法。
二、实验步骤1、取适量土壤样品,经过干燥和研磨处理,得到均匀的样品。
2、取约0.5g土壤样品放入石英坩埚中,加入约2ml浓盐酸,然后用小火慢热至干燥。
待冷却后,加入2ml浓硫酸和3ml氢氟酸,然后再次加热至干燥。
3、将土壤样品溶液定容至50ml,用0.45μm滤膜过滤,得到土壤样品溶液。
4、将土壤样品溶液中的铜含量用火焰原子吸收光谱法测定。
三、实验数据处理1、根据铜的标准曲线,计算样品中铜的含量。
2、对测定数据进行统计分析,得到最终结果。
通过以上实验步骤和数据处理,我们可以得到土壤样品中微量铜的含量。
四、实验结果分析土壤中微量铜的含量对农作物的生长和土壤的肥力起着重要的作用。
通过氢氟酸分解火焰原子吸收光谱法对土壤中微量铜进行测定,可以为农田土壤的合理施肥提供可靠的数据支持,保证作物的正常生长和土壤的健康发展。
对于土壤污染的监测和环境保护方面也有着重要的作用。
五、总结六、参考文献1. 王立新,侯迪军.火焰原子吸收光谱法[M]. 科学出版社,20082. 赵慧. 光谱分析实验教程[M]. 化学工业出版社,20153. 李明明,陈霞. 现代光谱分析技术[M]. 化学工业出版社,2012。
原子吸收分光光度法测定土壤中的铜一、实验目的:(一)学习测定铜的技术;(二)掌握原子吸收分光光度法的原理。
二、实验意义:土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。
但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。
当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。
此外,通过地下渗漏、地表径流还将污染地下水和地表水。
我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。
地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。
土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。
土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。
一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。
各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。
我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。
土壤中铜的环境质量标准见表一,卫生标准见表二。
表一土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg级别一级二级三级土壤pH值自然背景<6.5 6.5~7.5 >7.5 >6.5农田等≤ 35 50 100 100 400果园≤ — 150 200 200 400表二土壤中铜的卫生标准(GB11728—89)土壤中铜的阳离子交换量(毫克当量/100g干土)<10 10—20 >20土壤中的最高容许浓度(mg/kg)50 150 300三、实验方法和原理:(一)方法土壤污染监测的常用方法有:重量法——适用于测定土壤水分;容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。
土壤中铜的测定一、实验仪器和试剂:(一)仪器原子吸收分光光度计,空气—乙炔火焰原子化器,铜空心阴极灯。
1.工作条件测定波长:324.8nm;通带宽度:1.3nm;灯电流:7.5mA;火焰类型:空气-乙炔,氧化型,蓝色火焰。
2.主要性能参数灵敏度:0.1mg/L;检出限:0.01mg/L;适测浓度范围:0.2—10mg/L。
注:不同仪器其灵敏度和检出限有差异。
(二)试剂1.硝酸:优级纯;2.氢氟酸:优级纯;3.高氯酸:优级纯;4.铜标准溶液:二、实验步骤和注意事项:(一)土壤样品的预处理1.把课前采集的土样均匀地摊开在一张比较厚的牛皮纸上;2.挑出其中的动植物残渣及难以研磨碎的石块;3.用四分法弃取土壤(留下四分之一);4.用筛子(尼龙筛网为100目)和研钵(白陶瓷制)对留下的土样进行反复的过筛—研磨,直至几乎全部过筛。
(二)土壤试液的制备1.称取约0.5g土样于25mL聚四氟乙烯坩埚(高温消化罐)中,用少许水润湿;2.加入15mLHNO3,在电热板上加热消化至溶解物剩余约5mL;3.再加入5mLHF,加热分解SiO2及胶态硅酸盐;4.最后加入5mLHClO4,加热至消解物呈淡黄色;5.打开盖,先蒸至近干,然后取下冷却;6.加入(1:5)HNO31mL微热溶解残渣,移入10mL容量瓶中定容。
注:制备土壤试液的同时进行全程序试剂空白实验。
(三)标准曲线的绘制直接吸取一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样,测其吸光度,绘制标准曲线。
(四)土壤样品的测定本实验采用标准曲线法,按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得并计算铜的含量:铜(mg/kg)=m/W式中:m——从标准曲线上查得的铜的含量(0.61g/L×10mL=6.1μg);W——称量土样干重量(0.4992g)。
结果:铜(mg/kg)=6.1μg/0.4992g=12.22mg/kg。
实验八土壤对铜的吸附
一、实验目的
学会土壤对铜的吸附平衡时间的测定
学会土壤对铜的吸附量的测定
二、仪器和试剂
1. 仪器
(1) 原子吸收分光光度计。
(2) 恒温振荡器。
(3) 离心机。
(4) 酸度计。
(5) 复合电极。
(6) 容量瓶:50 mL,250 mL,500 mL。
(7) 聚乙烯塑料瓶:50 mL。
2. 试剂
(1) 二氯化钙溶液(0.01 mol/L):称取1.5 g CaC12 · 2H2O溶于1L水中。
(2) 铜标准溶液(1000 mg/L):将0.5000 g金属铜(99.9%)溶解于30 mL l:1HNO3中,用水定容至500 mL。
(3) 50 mg/L铜标准溶液:吸取25 mL 1000 mg/L铜标准溶液于500 mL容量瓶中,加水定至刻度。
(4) 硫酸溶液:0.5 mol/L。
(5) 氢氧化钠溶液:1 mol/L。
(6) 铜标准系列溶液(pH=2.5):分别吸取10.00、15.00、20.00、25.00、30.00 mL的铜标准溶液于250 mL烧杯中,加0.01 mol/L CaCl2溶液,稀释至240 mL,先用0.5 mol/L H2SO4调节pH=2,再以1 mol/L NaOH溶液调节pH=2.5,将此溶液移入250 mL容量瓶中,用0.01 mol/L CaCl2溶液定容。
该标准系列溶液浓度为40.00、60.00、80.00、100.00、120.00 mg/L。
按同样方法,配制pH= 5.5的铜标准系列溶液。
(7) 土壤样品:将新采集的土壤样品经过风干、磨碎,过0.15 mm (100目)
筛后装瓶备用。
三、实验步骤
1. 标准曲线的绘制
吸取50 mg/L的铜标准溶液0.00、0.50、1.00、2.00、4.00、6.00、8.00、10.00 mL分别置于50 mL容量瓶中,加2滴0.5 mol/L的H2SO4,用水定容,其浓度分别为0、0.50、1.00、2.00、4.00、6.00、8.00、10.00 mg/L。
然后在原子吸收分光光度计上测定吸光度。
根据吸光度与浓度的关系绘制标准曲线。
原子吸收测定条件:波长:325. 0 nm;灯电流1 mA;光谱通带:20;增益粗调:0;燃气:乙炔;助燃气:空气;火焰类型:氧化型。
2. 土壤对铜的吸附平衡时间的测定
(1) 称取土壤样品8份,每份1g于50 mL聚乙烯塑料瓶中。
(2) 向每份样品中各加人50 mg/L铜标准溶液50 mL。
(3)将上述样品在室温下进行振荡,分别在振荡1.0、2.0、3.0、3.5、4.0、4.5、5.0和6.0 h后,离心分离,迅速吸取上层清液10 mL于50 mL容量瓶中,加2滴0.5 mol/L的H2SO4溶液,用水定容后,用原子吸收分光光度计测定吸光度。
以上内容分别用pH为2.5和5.5的100 mg/L的铜标准溶液平行操作。
根据实验数据绘制溶液中铜浓度对反应时间的关系曲线,以确定吸附平衡所需时间。
3. 土壤对铜的吸附量的测定
(1) 称取土壤样品各10份,每份1g,分别置于50mL聚乙烯塑料瓶中。
(2) 依次加入50 ml pH为2.5和5.5、浓度为40.00、60.00、80.00、100.00、120.00 mg /L 铜标准系列溶液,盖上瓶塞后置于恒温振荡器上。
(3) 振荡达平衡后,取15 mL土壤浑浊液于离心管中,离心10 min,吸取上层清液10 mL于50 mL容量瓶中,加2滴0.5 mol/L的H2SO4溶液,用水定容后,用原子吸收分光光度计测定吸光度。
(4) 剩余土壤浑浊液用酸度计测定pH。
四、数据处理
1. 土壤对铜的吸附量可通过下式计算:
Q = W V
1000)(0ρρ-
式中:Q ——土壤对铜的吸附量,mg/g ;
ρ0——溶液中铜的起始浓度,mg /L ;
ρ——溶液中铜的平衡浓度,mg/L ;
V ——溶液的体积,mL ;
W ——烘干土样重量,g 。
由此方程可计算出不同平衡浓度下土壤对铜的吸附量。