2013-2014年度沪科版数学七年级上册期末测试卷
- 格式:doc
- 大小:388.50 KB
- 文档页数:4
可编辑修改精选全文完整版2014沪教版七年级数学上学期期末测卷一、填空题(本大题共12小题,每小题2分,满分26分)1、化简:a(a-1)- a2 =______2、计算【(a5)4÷ a12】2 ﹒a4=______3、若单项式-3ambn-2与2a2b是同类项,则m+n的值是______x2-44、若分式2的值为零,则x的值是 . x-x-2xm=2-会产生增根. x-3x-36、用科学记数法表示数:0.000000345=____________.7、某公司今年5月份纯利润为a万元,如果每个月份纯利润的增长率都是x,那么预计7月份的纯利润为______万元(用代数式表示)5、当m=______时,方程8、因式分解:a2m+2ambn+b2n9、因式分解:18x2-50(x+y)210、若分式不论x取何值总有意义,则m的取值范围是_______三、计算题(本大题共4小题,每小题6分,满分24分)11-23-π80+)--(+3-(-) (1、计算-14+(200 2)32、因式分解:(1)(a2+5a)2+8(a2+5a)+16 (2) x2+y2-z2-2xy-2z-13、解方程:x3-1=x-1x+2x-1四、应用题(本大题7分)供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托3车先行,小时后,乙开抢修车载着所需材料出发.抢修车的速度是摩托车速度8的1.5倍,且甲、乙两人同时到达,求摩托车的速度五、综合题(本大题4题,每题7分,共28分)x21、已知y=,x取哪些值时,2-3x(1)y的值是正数?(2)y的值是负数?(3)y的值等于零?(4)分式无意义。
沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。
沪科版七年级2013年上学期期末检测题(后附答案)(满分100分,答题时间90分钟)一、精心选一选(每题3分,共30分) 1、计算(2)(3)++-的结果为【 】A 、+1B 、-1C 、+5D 、-52、如果把高于警戒水位0.1米,记作+0.1米,则低于警戒水位0.2米,记作【 】 A 、+0.2米 B 、-0.2米 C 、0.3米 D 、-0.3米3、数轴上,到表示数3的点距离5个单位长度的点所表示的数是【 】 A 、8 B 、2 C 、-2 D 、8或-24、下列四组数:①1和-1;②-1和-1;③23-和112;④23-和112-.互为倒数的是【 】 A 、①② B 、①③ C 、②③ D 、②④5、n 个球队进行单循环比赛(参加比赛的任何一只球队都与其他所有的球队各赛一场),总的比赛场数应为【 】 A 、2n B 、2n C 、(1)n n - D 、1(1)2n n - 6、多项式33x y xy +-是【 】A 、三次三项式B 、四次三项式C 、三次二项式D 、四次二项式 7、方程34x x =-的解是【 】A 、1x =B 、2x =C 、3x =D 、4x =8、一天,小明和小梅两位同学一起到饭店吃早餐,小明买了4个包子、1个麻元,共付2.7元;小梅买了1个包子、3个麻元,共付2.6元.设包子每个x 元、麻元每个y 元,则适合x 、y 的方程组是【 】 A 、4 2.73 2.6xy xy =⎧⎨=⎩ B 、4 2.73 2.6x y x y -=⎧⎨-=⎩ C 、4 2.73 2.6x y x y +=⎧⎨+=⎩ D 、4 2.7()3 2.6()x y x y x y x y +=+⎧⎨+=+⎩9、下图中,不可能围成正方体的是【 】A B C D10、下列统计活动中,比较适合用抽样调查的是【 】A 、班级同学的体育达标情况B 、近五年学校七年级招生的人数C 、学生对数学教师的满意程度D 、班级同学早自习到校情况二、耐心填一填(每题3分,共30分)11、25-= ;2(5)-= .12、将2+,4-,132-,0.5-,1-,0按从小到大的顺序排列为 . 13、2009年4月,5.12地震重灾区映秀镇灾后恢复重建基本完成,总投入约20亿元人民币,此数据可以用科学计数法表示为 元. 14、将多项式212y x xy -+按x 的降幂排列为 . 15、单项式223x yπ-的系数是 ,次数是 .16、有理数的减法法则:“减去一个数,等于加上这个数的相反数”.可字母表示这一法则,可写成 .17、在方程36x y +=中,当1x =时,y = .18、若21x y =⎧⎨=⎩是方程2234ax by ax by -=⎧⎨-=⎩的解,则a= ;b= .19、25°20′24″= °. 20、如图是根据某市2004~2008年工业生产总值绘制的折线图.观察统计图可得:增长幅度最大的年份是 .三、专心做一做 21、(4分)计算713(16)(17)-++---22、(4分)计算4251(5)()0.813-÷-⨯-+-23、(4分)化简求值:22523(43)a a a a ⎡⎤---⎣⎦,其中12a =-.24、(4分)解方程1234237x x --=+年份/年2008200720062005200480 100 120 140 160 工业生产总值/亿元第20题25、(4分)解方程组322 21 x yx y+=⎧⎨-=⎩26、(4分)某中学组织七年级同学到汶川地震灾区遗址参观。
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×10 5B.0.105×10 ﹣4C.1.05×10 ﹣5D.105×10 ﹣72、已知x=3-k,y=k+2,则y与x的关系是()A.x+y=5B.x+y=1C.x-y=1D.y=x-13、某企业去年7月份产值为a万元,8月份比 7月份减少10%,9月份比8月份增加了15%,则9月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(a-10%+15%)万元4、下列计算中,正确的是()A. B. C. D.5、计算3.14-(-π)的结果为( ) .A.6.28B.2πC.3.14-πD.3.14+π6、一元一次方程3x-1=5的解为()A.1B.2C.3D.47、为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况。
随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名8、下面图形中,不能折成无盖的正方体盒子的是()A. B. C. D.9、如图是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球类活动的学生人数有()A.145人B.147人C.149人D.151人10、某城市分为南、北两区,如图为105年到107年该城市两区的人口数量长条图.根据图判断该城市的总人口数量从105年到107年的变化情形为下列何者?()A.逐年增加B.逐年灭少C.先增加,再减少D.先减少,再增加11、已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2×(﹣),下列判断正确的是()A.a>b>cB.b>c>aC.c>b>aD.a>c>b12、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 713、已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.-3B.3C.-7D.714、28cm接近于( )A.数学课本的厚度B.姚明的身高C.学校国旗旗杆的高度D.十层楼的高度15、若a﹣b=1,则2﹣2a+2b的值是()A.0B.﹣1C.﹣2D.4二、填空题(共10题,共计30分)16、绝对值不小于10而小于13的所有整数是________.17、的倒数是________,的绝对值是________.18、的相反数是________.19、已知|3x-6|+(2y-4)2=0,则2x-y的值是________。
沪科版七年级上册数学期末考试试题一、单选题1.已知02x y =⎧⎨=⎩和41x y =⎧⎨=⎩是方程8mx ny +=的解,则m 、n 的值分别为()A .1,-4B .-1,4C .-1,-4D .1,42.两个有理数的和为正数,那么这两个数一定()A .都是正数B .至少有一个正数C .有一个是0D .绝对值不相等3.下列各组整式中,是同类项的有()A .323m n 与32n m -B .2xy 与3yz C .33与3a D .2yx 与-xy 4.在所给的:①15°;②65°;③75°;④115°;⑤135°的角中,可以用一副三角板画出来的是()A .②④⑤B .①②④C .①③⑤D .①③④5.如图,数轴的单位长度为1,如果点A 表示的数是2-,那么点B 表示的数是()A .1-B .0C .1D .26.下列说法正确的是()①正整数和负整数统称整数.②平方等于9的数是3.③51.6110⨯是精确到千位.④a+1一定比a 大.⑤(﹣2)4与﹣24相等.A .2个B .3个C .4个D .5个7.某种商品每件进价为a 元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售每件还能盈利()A .0.12a 元B .0.2a 元C .1.2a 元D .1.5a 元8.一列数1a ,2a ,3a …满足条件:12a =,111n n a a -=-(2n ≥,且n 为整数),则2022a 等于()A .-1B .12C .1D .29.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为67.则x 的值可能是()A .3B .7C .12D .2310.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为acm 、宽为bcm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是()A .4acmB .4bcmC .2(a +b )cmD .4(a -b )cm二、填空题11.将14.75亿用科学记数法表示为______.12.已知2310x x +-=,则2262021x x ++=______.13.某同学把()56⨯- 错抄为56⨯- ,若正确答案为m ,抄错后的结果为n ,则m n -=______.14.如果向东行走10m ,记作+10m ,那么向西行走15m ,应记作____________.15.当x 1=时,代数式2ax 2bx 1++的值为3,则2a 4b 3+-=______.16.如果α∠和β∠互补,且αβ∠>∠,则下列式子中:①90β︒-∠;②90α∠-︒;③1()2αβ∠+∠;④1()2αβ∠-∠,可以表示β∠的余角的有____________(填序号即可).17.如图,点O 在直线AB 上,从点O 引出射线OC ,其中射线OD 平分∠AOC ,射线OE 平分∠BOC ,下列结论:①∠DOE =90°;②∠COE 与∠AOE 互补;③若OC 平分∠BOD ,则∠AOE =150°;④∠BOE 的余角可表示为()12AOE BOE ∠-∠.其中正确的是______.(只填序号)三、解答题18.计算:()201281130.531223-+-+-⎛⎫-- ⎪⎝-⎭+.19.先化简,再求值:()222212632122ab a b ab a b ab ab ⎛⎫⎡⎤++---- ⎪⎣⎦⎝⎭,其中a 为最大的负整数,b 为最小的正整数.20.解方程:2221234x x x +-+=+21.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.22.定义新运算“@”与“⊕”:@2a b a b +=,2a b a b -⊕=.(1)计算()()()3@212---⊕-的值;(2)化简()()3@23b a a b -+⊕-.23.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B .它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(2)若AM=BN,43MN BM,求m和n值.24.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?25.如图,直线AB,CD相交于O点,OM平分∠AOB,(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.26.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?27.某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?参考答案1.D2.B3.D4.C5.D6.A7.B8.B9.B10.B11.91.47510⨯12.202313.24-14.15-m15.116.①②④17.①②③④18.113-19.222ab +,020.14x =-21.51x y ==⎧⎨⎩22.(1)1(2)31b -【分析】(1)根据新定义列出式子,再进行整式的加减运算即可;(2)根据新定义列出式子,再进行化简运算即可;(1)()()()3@212---⊕-322122--+=-1122=+1=;(2)()()3@23b a a b -+⊕-()23322a b b a ---=+3322b a a b -++-=622b -=31b =-23.(1)见解析(2)48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩【分析】(1)分三种情况:①当M 是A ,N 的中点时;②当A 是M 、N 的中点时;③当N 是M 、A 的中点时分别进行求解;(2)根据AM =BN ,可得31m n +=-,再根据43MN BM =,可得413n m m -=-,二者组成方程组即可求解.(1)解:①当M 是A ,N 的中点时,32n m -=∴n =2m +3②当A 是M 、N 的中点时,32m n +-=∴n =-6-m③当N 是M 、A 的中点时,32m n -+=.(2)解:∵AM =BN ,∴31m n +=-,∵43MN BM =,∴413n m m -=-∴313344m n n m m +=-⎧⎨-=-⎩或313344m n n m m +=-+⎧⎨-=-⎩或313344m n n m m --=-⎧⎨-=-+⎩或313344m n n m m --=-+⎧⎨-=-+⎩,解得48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或0.21.8m n =-⎧⎨=-⎩或53m n =-⎧⎨=⎩∵n m >,∴48m n =⎧⎨=⎩或22m n =-⎧⎨=⎩或53m n =-⎧⎨=⎩.24.(1)20;(2)36天【分析】(1)总的工作量是“1”,甲的工作效率是160,乙的工作效率是140,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x 天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【详解】(1)设剩余由乙工程队来完成,还需要用时x 天,依题意得:3060+40x =1解得:x=20.即剩余由乙工程队来完成,还需要用时20天.故答案为20;(2)设共需x 天完成该工程任务,根据题意得:60x +2040x -=1解得:x=36.答:共需36天完成该工程任务.25.(1)90°;(2)∠AOC =60°;∠MOD =150°.【分析】(1)根据角平分线的性质可得∠1+∠AOC =90°,再利用等量代换可得∠2+∠AOC =90°,利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1,进而可得求出∠1=30°,从而可得∠AOC 的度数,再利用邻补角互补可得∠MOD 的度数.【详解】(1)∵OM 平分∠AOB ,∴∠1+∠AOC =90°.∵∠1=∠2,∴∠2+∠AOC =90°,∴∠NOD =180°﹣90°=90°;(2)∵∠BOC =4∠1,∴90°+∠1=4∠1,∴∠1=30°,∴∠AOC =90°﹣30°=60°,∠MOD =180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角,关键是掌握邻补角互补.26.(1)年降水量为200万m 3,每人年平均用水量为50m 3;(2)该镇居民人均每年需节约16m 3水才能实现目标.【分析】(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,根据题意等量关系可得出方程组,解出即可.(2)设该镇居民人均每年用水量为z m 3水才能实现目标,由等量关系得出方程,解出即可.【详解】解:(1)设年降水量为x 万m 3,每人年平均用水量为ym 3,由题意得,1200020x 1620y {1200015x 2015y+=⋅+=⋅,解得:x 200{y 50==.答:年降水量为200万m 3,每人年平均用水量为50m 3.(2)设该镇居民人均每年用水量为z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34.50﹣34=16m3.答:该镇居民人均每年需节约16m3水才能实现目标.27.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数;(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数;(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.(4)总人数乘以样本中A、B人数占总人数的比例即可.【详解】解:(1)本次调查的学生有30÷20%=150人(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×60150=144°故答案为144°(4)600×(4530150)=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.。
沪科版七年级上册数学期末考试试题一、单选题1.与8--相等的是()A .2B .8C .2-D .8-2.在数轴上将点A 向右移动10个单位,得到它的相反数,则点A 表示的数为()A .10B .10-C .5-D .53.若关于x 的方程35x m +=与25x m -=有相同的解,则x 的值是()A .3B .4C .4-D .3-4.如图,A 、C 、D 三点在一条直线上,观察图形,下列说法正确的个数是()(1)直线BA 和直线AB 是同一条直线;(2)射线AC 和射线AD 是同一条射线;(3)AB BD AD +>;(4)∠ACD 是一条直线.A .1个B .2个C .3个D .4个5.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是()A .﹣3B .0C .6D .96.一件商品先按成本提高50%标价,再以8折(标价的80%)出售,结果仍获利200元,则这件商品的成本是()A .800元B .1000元C .1600元D .2000元7.一个三位数,它的百位数字是a ,十位数字和个位数字组成的两位数是b ,用代数式表示这个三位数是()A .a b +B .10a b +C .100a b +D .ab8.如图所示的是一个正方体的展开图,把展开图折叠成小正方体,和“民”字一面相对面的字是()A .强B .明C .文D .主9.下列等式变形正确的是()A .若2x =12,则x =1B .若4x ﹣2=2﹣3x ,则4x+3x =2﹣2C .若5(x-1)﹣3=2(x+2),则5x-1﹣2x+2=3D .若311223x x +--=1,则3(3x+1)﹣2(1﹣2x )=610.如图是一个正四面体,现沿它的棱AB 、AC 、AD 剪开展成平面图形,则所得的展开图是()A .B .C .D .11.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是()A .95元B .90元C .85元D .80元12.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入形状、大小完全相同的四个小长方形后得图①、图②,已知大长方形长为a ,大长方形未被覆盖的部分均用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是(用含a 的代数式表示()A .a -B .aC .12a -D .12a二、填空题13.将267368.8万精确到千万位并用科学记数法表示为___________.14.整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌便整整齐齐摆在了一条线上,这其中蕴含的数学道理是_____.15.单项式312ax y 的次数是___________.16.已知方程532x y +=,将其写成用含x 的代数式表示y 的形式为___________.17.已知2=a ,24b =,那么-a b 的值是___________.18.若∠α=48°36′,∠α的补角是∠β的2倍,则∠β=________.三、解答题19.计算()2215243612⎛⎫⎡⎤--⨯--÷- ⎪⎣⎦⎝⎭20.先化简,再求值:()()2232431a ab ab a ---++,其中32a =,2b =-.21.2233236x x x -+-=-.22.解方程组:1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩.23.如图,已知A 、B 、C 、D 、E 五点共线,线段AB 长为20,C 是AB 的中点,E 是DB 的中点,D 是CB 上一点,且7CE =.(1)求CD 的长;(2)若以C 为原点,向右为正方向建立数轴,请根据以上数据,直接写出数轴上A 、B 、D 、E 各点表示的数.24.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?25.某商场新进一种服装,每套服装售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?26.体育课上,七(1)班男生进行一分钟跳绳测试,以能完成180次为基准,超过的次数用正数表示,不足的次数用负数表示,下表是该班25名男生该次测试成绩统计记录成绩20-13-6-035911人数12465322(1)此次测试中,跳绳次数最多的同学比次数最少的多跳多少次?(2)在这次测试中,25名男生共完成了多少次跳绳?(3)若规定一分钟跳绳次数未达到170次为不达标,达到170~179次为基本达标,达到180次及以上为达标,请统计各层次人数,并选择适当的统计图表示你统计的结果.27.如图,100ACB ∠=︒,直线DE 过C 点,∠ACE 比∠ACD 大22°,90BCF ∠=︒.(1)请根据题意补画出射线CF ;(2)根据所画图形,求∠DCF 的度数.参考答案1.D【分析】计算求解即可.【详解】解:88--=-,故选:D .【点睛】本题考查了绝对值.解题的关键在于熟练掌握绝对值的运算.2.C【分析】设点A 表示的数为a ,则由题意知100a a ++=,计算求解即可.【详解】解:设点A 表示的数为a则由题意知100a a ++=解得5a =-故选C .【点睛】本题考查了数轴上的数的表示,相反数的定义.解题的关键在于明确互为相反数的两个数和为零.3.D【分析】根据两个方程有相同的解,可联立方程组,然后解二元一次方程组即可.【详解】解:联立方程组得3525x m x m +=⎧⎨-=⎩①②,①3-⨯②式得5615m m +=-解得:4m =-,则x=-3故选:D .【点睛】本题考查了方程的解与解二元一次方程组.解题的关键在于熟练掌握方程的解并正确的解方程组.4.C【分析】结合图形,根据直线、射线、两点之间,线段最短和平角的定义逐一进行判断即可.【详解】(1)直线BA 和直线AB 是同一条直线,直线没有端点,此说法正确;(2)射线AC 和射线AD 是同一条射线,都是以A 为端点,同一方向的射线,正确;(3)AB+BD >AD ,两点之间,线段最短,所以此说法正确;(4)因∠ACD是一个平角,故错误.所以共有3个正确.故选:C.【点睛】本题考查了直线、射线、线段的概念,属于基础题型,熟练掌握概念是解题关键.5.A【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.6.B【分析】先求得标价,等量关系为:标价×80%=成本+利润,把相关数值代入求解即可.【详解】设这种商品的成本价是x元,x×(1+50%)×80%=x+200,解得x=1000故答案选:B.【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.7.C【分析】直接利用百位数字乘100,表示出这个三位数即可.【详解】解: 一个三位数,百位数字是a,十位数字和个位数字组成的两位数是b,这个三位数是:100a b+.故选:C.【点睛】本题主要考查了列代数式,正确表示出百位数是解答关键.8.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,和“民”字一面相对面的字是“明”,故B正确.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.D【分析】根据等式的基本性质对各选项进行逐一判断即可.【详解】解:A 中若122x =,则14x =,故本选项错误;B 中若4223x x -=-,则432+2+=x x ,故本选项错误;C 中若()()51322x x --=+,则55243x x ---=,故本选项错误;D 中若3112123x x +--=,则()()3312126x x +--=,故本选项正确;故选:D .【点睛】本题考查了等式的性质.解题的关键在于熟练运用等式的性质对已知的等式进行变形.10.B【分析】亲自动手具体操作,或根据三棱锥的图形特点作答.【详解】沿它的棱AB 、AC 、AD 剪开展开后会以BC 、CD 、BD 向外展开形成如图B 样的图形,故选:B .【点睛】本题考查了几何体的展开图的知识,动手具体操作的同时,注意培养空间想象能力.11.B【详解】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .【点睛】本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.12.C【分析】设小长方形的长为m ,宽为n ,则由①图可知,2n m a +=,2m n =,可得14n a =,12m a =,由②图可知,大长方形的宽为3n ,表示出两个图中阴影部分的周长,计算求解即可.【详解】解:设小长方形的长为m ,宽为n由①图可知,2n m a +=,2m n=∴14n a =,12m a =由②图可知,大长方形的宽为3n∴①图阴影部分周长为()52232222a n n a n a +-=+=②图阴影部分周长为()()22322283a m n n a n n a-+⨯+=-+=∴图①阴影部分周长与图②阴影部分周长的差是51322a a a -=-故选C .【点睛】本题考查了二元一次方程组的几何应用.解题的关键在于表示出小长方形与大长方形的长、宽的数量关系.13.2.67×109【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将267368.8万精确到千万位并用科学记数法表示为:2.67×109.故答案为:2.67×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.两点确定一条直线【分析】根据直线的确定方法,易得答案.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的知识点是直线的性质:两点确定一条直线,解题的关键是熟练的掌握直线的性质:两点确定一条直线.15.5【分析】根据单项式的次数的定义解答.【详解】单项式312ax y 的次数是:1+3+1=5.故答案是:5.【点睛】本题考查了单项式.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.16.5233y x =-+【分析】把方程532x y +=看作关于y 的一元一次方程,然后解一次方程即可.【详解】解:532x y +=移项得:325y x=-系数化为1得:5233y x =-+.故答案为:5233y x =-+.【点睛】本题主要考查方程的基本变形.解题的关键在于熟练运用等式的性质.17.4-或0或4【分析】先根据绝对值和乘方的定义,结合已知条件分别求出a ,b 的值,再代入计算-a b 的值.【详解】解:∵224a b ==,∴22a b =±=±,∴当22a b ==,时,220a b -=-=;当22a b ==-,时.()224a b -=--=;当22a b =-=,时,224a b -=--=-;当22a b =-=-,时,()220a b -=---=故答案为:4-或0或4.【点睛】本题考查了绝对值和乘方的定义,代数式求值.解题的关键在于熟练掌握运算法则.18.65°42′【分析】先根据补角的定义求出∠α的补角,再除以2即可.【详解】解:由补角的定义可知,∠α的补角为:180°-∠α=180°-48°36′=131°24′,∵∠α的补角是∠β的2倍,∴∠β=12∠α=65°42′,故答案为:65°42′.【点睛】此题主要考查了补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.19.-6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:﹣22﹣16×[4﹣(﹣3)2]÷(﹣512)=﹣4﹣16×(4﹣9)×(﹣125)=﹣4﹣16×(﹣5)×(﹣125)=﹣4﹣2=﹣6.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.-2ab-1,5【分析】首先去括号进而合并同类项,再将已知代入求出答案【详解】解:原式=3a 2−6ab +4ab−3a 2−1=−2ab−1,当32a =,b =−2时,原式=−2×32×(−2)−1=6−1=5.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.3x =-【分析】按照解方程的步骤与方法解方程即可.【详解】解:2233236x x x -+-=-,去分母得,3(2)182(23)x x x --=-+去括号得,6318223x x x --=--,移项得,33618x -=--+,合并同类项得,39x -=,系数化为1,3x =-.【点睛】本题考查了一元一次方程的解法,解题关键是熟练运用一元一次方程的解法进行计算.22.51x y ==⎧⎨⎩【分析】整理方程组为一般式,再利用代入消元法求解可得.【详解】()x 1232122y x y +⎧=⎪⎨⎪+-=⎩①②由①得x+1=6y ③将③代入②得:2×6y ﹣y=22解得:y=2把y=2代入③得:x+1=12解得:x=11∴112x y =⎧⎨=⎩.23.(1)4(2)数轴上A 、B 、D 、E 各点表示的数分别为:10,10,4,7-【分析】(1)由线段的中点可表示21CB AC AB ==,12EB DE DB ==,根据线段的数量关系可表示EB CB CE =-,进而对CD CE DE =-计算求解即可;(2)根据以C 为原点,向右为正方向建立数轴,可知C 点表示的数为0,然后根据各线段的长度表示数轴上点即可.(1)解:∵C 是AB 的中点,E 是DB 的中点∴1102CB AC AB ===,12EB DE DB ==∵1073EB CB CE =-=-=∴734CD CE DE =-=-=∴CD 的长为4.(2)解:以C 为原点,向右为正方向建立数轴,则C 点表示的数为0∵10AC =,10CB =,4CD =,7CE =∴01010-=-,01010+=,044+=,077+=∴数轴上A 、B 、D 、E 各点表示的数分别为:10-,10,4,7.24.6.46【分析】设行驶时相邻两车之间的间隔为x 米,根据等量关系式:18辆小轿车之间的间隔+18辆小轿车车身总长=20秒×车的行驶速度,列出方程,再解方程即可.【详解】解:设行驶时相邻两车之间的间隔为x 米,36千米/小时=10米/秒,根据题意得:1718 5.011020x +⨯=⨯,解得: 6.46x =.答:行驶时相邻两车之间的间隔为6.46米.25.原来裤子的单价为200元,原来上衣的单价为800元【详解】试题分析:设裤子原来的单价是x 元,上衣原来的单价是y 元,根据等量关系:(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%),列出方程组即可解得.试题解析:设裤子原来的单价是x 元,上衣原来的单价是y 元,依题意得方程组:1000{(110%)(15%)1000(12%)x y x y +=-++=+,解得:200{800x y ==,答:这套服装原来裤子的单价为200元,原来上衣的单价为800元.点睛:本题主要考查二元一次方程组的应用,分析题意从中找到两个等量关系“(1)裤子+上衣=1000,(2)裤子降价10%后的价钱+上衣涨价5%后的价钱=1000(1+2%)”是解题的关键.26.(1)31(2)4500次(3)见解析【分析】(1)求出这组数据的极差即可;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次);(3)求出不达标的人数,基本达标的人数,达标的人数,画出条形图即可.(1)解:11−(−20)=31,答:跳绳次数最多的同学比次数最少的多跳31次;(2)25×180+1×(−20)+2×(−13)+4×(−6)+5×3+3×5+2×9+2×11=4500(次),答:25名男生共完成了多少次跳绳4500次.(3)不达标的人数有:3人,基本达标的人数有:4人,达标的人数有:18人,条形图计算如图所示:27.(1)画图见解析;(2)69︒或110︒【分析】(1)根据题意画出射线CF 的两种情况图形;(2)设ACD x ∠=︒,列出方程求出ACD ∠的度数,进而求出BCD ∠的度数,最后根据图形即可求解.(1)解:根据题意画图如下:(2)解:设ACD x ∠=︒,则22ACE x ∠=+()22180x x ++=,解得79x =,1006921∴∠=∠-∠=︒-︒=︒,BCD ACB ACD∴∠=︒-︒=︒或9021111902169DCF∠=︒+︒=︒.DCF。
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知代数式3x2-4x+6的值为9,则x2-x+6的值为()A.16B.8C.9D.72、在中,非正数有()A.1个B.2个C.3个D.4个3、-6的相反数是( )A.-6B.6C.-D.4、下面是关于0的一些说法,其中说法正确的个数是( ).①0是最小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数也不是偶数.A.0B.1C.2D.35、下列各组数中,互为倒数的一组是().A. 与B. 与C. 与D. 与6、的相反数是()A. B. C. D.7、下列各数中,最小的数是()A.5B.﹣3C.0D.28、已知,那么在数轴上与实数x对应的点可能是()A. B. C. 或 D. 或9、7的相反数是( )A.7B.-7C.D.-10、﹣2018的倒数是()A.﹣2018B.﹣C.D.201811、点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3B.2C.3或5D.2或612、下列计算正确的是()A.a 3+a 2=a 5B.a 3•a 2=a 6C.(a 2)3=a 5D.a 6÷a 2=a 413、下列计算①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③×(- )÷(-1)= ;④(-4)÷×(-2)=16.其中正确的个数()A.4个 B.3个 C.2个 D.1个14、若代数式的值与x的取值无关,则的值为()A.0B.﹣1C.﹣2D.215、关于x,y的方程组的解是,其中y的值被盖住了,但仍能求出m的值是()A.2B.3C.-1D.-2二、填空题(共10题,共计30分)16、若|x|=5,|y|=3,且xy>0,则x+y=________.17、如图,A、B、C、D是直线上的顺次四点,M、N分别是AB、CD的中点,且MN=6cm,BC=4cm,则AD=________.18、某轮船顺水航行了4小时,逆水航行了3小时,已知轮船有静水中的速度为每小时a千米,水流速度为每小时b干米,则轮船共航行了另________千米.19、如图所示,小明到小颖家有三条路,小明想尽快到小颖家请你帮他选条线路________20、计算:________.21、若,则________.22、计算(-1)100×(-1)33的结果是________.23、对于正整数a、b、c、d,符号表示运算ac-bd,已知1< <3,则b+d=________.24、钟表在3点30分时,它的时针与分针所夹的角是________度.25、若代数式的值为0,则代数式的值为________.三、解答题(共5题,共计25分)26、①②③④⑤-6cos45°-( -1)0⑥⑦⑧sin45°+3tan30°+4cos30°27、将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,﹣|﹣2|,﹣2.5,|﹣3|.28、(a﹣2)2+|b+1|=0,求:3a﹣2ab(a+b)2的值.29、(1)计算:﹣14﹣(1﹣0.5)×(2)解方程:=2.30、如果 x 是-4 的相反数,y 是- 的倒数的绝对值,求 y-x 的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、C5、A6、C7、B8、D9、B10、B11、D12、D13、C14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
375教育资源网 树林学校2013-2014学年七年级数学第一学期期末考试试题姓名___________ 成绩___________一、认真选一选(每小题给出的四个选项中,只有一个是正确的。
每小题4分,共40分)1.-13的倒数是( ).(A )3 (B )-3 (C )13 (D )-132.下面合并同类项正确的是( )(A )3x +2x 2=5x 3(B )2a 2b -a 2b =1 (C )-ab -ab =0 (D )-y 2x +x y 2=0 3.已知地球上的陆地面积约为149000000平方千米,用科学记数法表示地球上的陆地面积约为( )平方千米(A ) 1.49×108 (B )1.49×109 (C )14.9×108 (D )14.9×109 4.下列去括号正确的是( )(A )()a b c a b c +-=++ (B )()a b c a b c --=-- (C )()a b c a b c --=-+ (D )()a b c a b c +-=++ 5.在同一平面内有不重合的三个点,过每两个点画一条直线,则共能画出( )条直线.(A )1 (B )3 (C )1或3 (D )不能确定 6.已知(2)2-x +1+y =0,则x+y 的值是( )(A )3 (B )-1 (C )-3 (D )17.某种商品的价格为a 元,降价10%后又降价10%,销售一下子上升了,降价后这种商品的价格为( )(A ) a 元 (B ) 0.81a 元 (C ) 1.08a 元 (D )0.96a 元 8.如果线段AB=6cm ,BC=5cm ,那么A 、C 两点间的距离是( ) (A )1 (B )11 (C )5.5 (D )11或1 9.)(C ) (D )10.某校七年级学生总人数为500,其男女生所占比例如下图所示,则该校七年级男生人数为( ) (A )48(B )52(C )240 (D )260 二、精心填一填(每题4分,共40分) 11. -5的相反数是 。
沪科版七年级上册数学期末考试试题一、单选题1.3的相反数为()A .﹣3B .﹣13C .13D .32.下列计算正确的是()A .22212315x x x -+=-B .232325a a a +=C .165m m m-=-D .10.2504ab ab -+=3.数据239.80亿用科学记数法可表示为()A .2.398×108B .2.398×1010C .0.2398×1012D .2.398×10114.若()22230a b ++-=,则b a 值为()A .16B .12-C .-8D .185.如果23n x y +与3213m x y --的差是单项式,那么m 、n 的值是()A .1m =,2n =B .0m =,2n =C .2m =,1n =D .1m =,1n =6.已知a 表示一个一位数,b 表示一个两位数,若b 把放在a 的左边,组成一个三位数,则这个三位数表示为()A .baB .10a b+C .100a b+D .10b a+7.若2,3m x n y -=+=,则()()m n x y --+=()A .-5B .-1C .1D .58.下列说法正确的是()A .多项式ab c +是二次三项式B .5不是单项式C .单项式32x y z -的系数是-1,次数是6D .多项式223x y +的次数是39.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是()A .0a b +<B .0a b -<C .0ab >D .0a b>10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺.现设绳长x 尺,木长y 尺,则可列二元一次方程组为()A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩二、填空题11.近似数46.0510⨯精确到____________位.12.当代数式235x x ++的值为7时,2262x x +-的值为__________.13.若使多项式2213mx 383x y y xy ----中不含有xy 的项,则m =__________.14.如果α∠和β∠互补,且αβ∠<∠,下列表达式:①90α-∠ ;②90β∠- ;③1()2βα∠+∠;④1()2βα∠-∠中,能表示α∠的余角的式子是__________.(请把所有正确的序号填在横线上)15.蚌埠某小区住房结构图如图(墙的厚度不计,单位:m ),陈老师在该小区买了此户型的房子,打算在厨房、卫生间和书房铺上地砖,如果铺地砖的手工费是80元/2m ,那么在厨房、卫生间和书房铺满地砖的手工费是____________元.三、解答题16.计算(1)2008215(2)(4)(8)⎡⎤--⨯---÷-⎣⎦(2)177********⎛⎫⎛⎫--÷- ⎪⎝⎭⎝⎭17.解方程(1)5361x x --=-+(2)12136x x +--=18.(1)解方程:123173x x -+-=(2)解方程组:53821n m m n +=⎧⎨-=⎩19.先化简,再求值()22223224a b a b abc a b a c abc ⎡⎤-----⎣⎦,其中2a =-,3b =-,1c =.20.小明在做作业时发现练习册上一道解方程的题目被墨水污染了,151232x x +--=-■,■是被污染的数,他很着急,翻开书后的答案找到这道题的解为:2x =,你能帮他补上“■”的数吗?写出你的解题过程.21.在整式的加减练习中,已知2232A a b ab abc =-+,小王同学错将“2A B -”看成“2A B +”算得错误结果为22434a b ab abc -+,请你解决以下问题:(1)求出整式B ;(2)求出正确计算结果.22.如图是一个零件的截面图,它是由一个梯形和一个半圆组成的,已知梯形上底为m ,下底为n ,高为h .(1)用代数式表示图中阴影部分面积.(2)当2m =厘米,4n =厘米,3h =厘米时,求阴影面积(结果含π).23.观察与计算:①3222111214=⨯⨯=,②3322211223(12)4+=⨯⨯=+,③333222112334(123)4++=⨯⨯=++,④33332221123445(1234)4+++=⨯⨯=+++……(1)写出第5个等式;(2)归纳算式中的规律,直接写出第n 个等式;(3)利用规律计算333367820++++ .24.某公司销售部门2021年上半年完成的销售额如下表.月份一月份二月份三月份四月份五月份六月份销售额(万元)-1.6-2.5+2.4+1.2-0.7+1.8(正号表示销售额比上个月上升,负号表示销售额比上个月下降)(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB=1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN=____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM=BN ,MN=43BM ,求m 和n 值.参考答案1.A【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可.【详解】解:3的相反数是﹣3.故选:A .【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.2.D【分析】根据合并同类项法则合并同类项,进行计算即可.【详解】A .2222123915x x x x -+=≠-,故选项A 错误;B .2332a a ,不是同类项,不能合并,故选项B 错误;C .16155m m m m -=≠-,故选项C 错误;D .1110.250444ab ab ab ab -+=-+=,故选项D 正确.故选D .【点睛】本题考查了同类项和合并同类项,掌握同类项定义,所含字母相同,相同字母的指数也相同的项是同类项,合并同类项法则只把同类项的系数相加减字母和字母的指数不变是解题的关键.3.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数【详解】解:239.80亿用科学记数法可表示为239.80×108=2.398×1010.故选B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据实数的非负性,得a=-2,b=3,代入幂计算即可.【详解】∵()22230a b ++-=,∴a=-2,b=3,∴b a =3(2)-=-8,故选C .【点睛】本题考查了实数的非负性,幂的计算,熟练掌握实数的非负性是解题的关键.5.C 【分析】根据23n x y +与3213m x y --的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵23n x y +与3213m x y --的差是单项式,∴23n xy +与3213m x y --是同类项,∴n+2=3,2m-1=3,∴m=2,n=1,故选C .【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.6.D【分析】根据数位的意义,可知b 表示一个两位数,把b 放到的左边a 组成一个三位数,即a 在个位,b 的十位和个位对应排在新数的百位、十位,b 扩大了10倍.【详解】解:这个三位数可以表示为10b+a .故选:D .【点睛】主要考查了三位数的表示方法,能够用字母表示数,理解数位的意义.三位数字的表示方法:百位数字×100+十位数字×10+个位数字.7.B【分析】把原式去括号移项,即可得出已知条件等式,代入数值即可.【详解】原式=m-n-x-y=(m-x)-(n+y),m-x=2,n+y=3,∴原式=2-3=-1,故答案选B .【点睛】本题考查的知识点是多项式乘多项式,解题的关键是熟练的掌握多项式乘多项式.8.C【分析】直接利用多项式的次数与项数确定方法,以及单项式次数与系数确定方法分别判断即可.【详解】解:A 、多项式ab c +是二次二项式,故A 错误;B 、5是单项式,故B 错误;C 、单项式32x y z -的系数是-1,次数是6,故C 正确.D 、多项式223x y +的次数是2,故D 错误;故选择:C .【点睛】此题主要考查了多项式的次数与项数和单项式次数与系数,正确把握相关定义是解题关键.9.B【分析】根据数轴上点的位置关系,可得a ,b 的关系,根据有理数的运算,可得答案.【详解】∵﹣1<a <0,b >1,∴选项A :0a b +>,故错误,不符合题意;选项B :0a b -<,正确,符合题意;选项C :0ab <,错误,不符合题意;选项D :0ab<,错误,不符合题意;故选:B .【点睛】本题考查了数轴,利用有理数的运算是解题关键.10.B【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解.【详解】解:设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩,故选:B .【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.11.百【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【详解】解:∵104是1万,6位万位,0为千位,5为百位,∴近似数6.05×104精确到百位;故答案为百.【点睛】此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.12.2【分析】由条件可得232x x +=,而222622(3)2x x x x +-=+-,从而可求得结果的值.【详解】解:∵2357x x ++=,∴232x x +=,故答案为:2.【点睛】本题是求代数式的值,关键是由条件求得232x x +=,运用了整体思想.13.19-【分析】由于多项式含有xy 项的有133mxy xy --,若不含xy 项,则它们的系数为0,由此即可求出m 值.【详解】解:∵多项式2213383x mxy y xy ----中不含xy 项,∴133mxy xy --的系数为0,即133m --=0,19m =-.故答案为19-.【点睛】本题难度较低,主要考查学生对合并同类项的掌握,先将原多项式合并同类项,再令xy 项的系数为0,然后解关于m 的方程即可求解.14.①②④【分析】根据余角和补角定义得出∠β=180°-∠α,∠α的余角是90°-α,分别代入,进行化简,再判断即可.【详解】∵∠α和∠β互补,∴∠β=180°-∠α,∠α的余角是90°-α,∠β-90°=180°-∠α-90°=90°-∠α,12(∠β+∠α)=12×(180°-∠α+∠α)=90°12(∠β-∠α)=12×(180°-∠α-∠α)=90°-∠α,正确的是①②④,故答案为①②④.【点睛】本题考查了余角和补角的定义,能知道∠α的余角=90°-∠α和∠α的补角=180°-∠α是解此题的关键.15.400xy【分析】根据结构图分别表示出厨房、卫生间和书房的面积,求和再乘以80即可.【详解】根据题意得:厨房面积=22x y xy ⋅=,卫生间面积=(43)x x y xy -=,书房面积=(42)2x y y xy -=,∴在厨房、卫生间和书房铺满地砖的手工费=(22)80xy xy xy ++⨯=580xy ⨯=400xy (元).故答案为:400xy .【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解答本题的关键.16.(1)7;(2)126-.【分析】(1)先计算乘方,再计算乘除,去括号,再计算加减即可;(2)先变带分数为假分数,把除变乘,利用乘法分配律简算,再计算加法即可.(1)解:2008215(2)(4)(8)⎡⎤--⨯---÷-⎣⎦,=[]15(2)16(8)--⨯--÷-,=[]1102---+,=1102-+-,=7;(2)解:177********⎛⎫⎛⎫--÷- ⎪⎝⎭⎝⎭,=2177748124⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭,=2177448127⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭,=11323-++,=536-+,=126-.【点睛】本题考查含乘方的有理数混合运算,掌握运算法则,先乘方,再乘除,最后加减,有括号先算小括号,中括号,再大括号,能简算的可简算.17.(1)x=4(2)x=2【解析】(1)解:移项得:-5x+6x=1+3,合并得:x=4;(2)解:去分母得:2(x+1)-(x-2)=6,去括号得:2x+2-x+2=6,移项合并得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.18.(1)3x =-;(2)11m n =⎧⎨=⎩【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组利用代入消元法求出解即可.【详解】(1)去分母得:3﹣6x ﹣21=7x+21,移项合并得:13x=﹣39,解得:x=﹣3;(2)53821n m m n +=⎧⎨-=⎩①②,由②得:n=2m ﹣1③,把③代入①得:10m ﹣5+3m=8,解得:m=1,把m=1代入③得:n=1,则方程组的解为11m n =⎧⎨=⎩.【点睛】本题考查了解一元一次方程以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.abc+4a 2c ,22.【分析】原式去括号合并得到最简结果,将a 、b 、c 的值代入计算即可求出值.【详解】解:3a 2b−[2a 2b−(2abc−a 2b)−4a 2c]−abc=3a 2b−(2a 2b−2abc+a 2b−4a 2c)−abc=3a 2b−2a 2b+2abc-a 2b+4a 2c −abc=abc+4a 2c ,当a=−2,b=−3,c=1时,原式=(-2)×(-3)×1+4×(-2)2×1=6+16=22.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.20.4=■,过程见解析【分析】先将2x =代入方程,进而得到关于“■”的方程,解一元一次方程即可求解.【详解】解: 151232x x +--=-■的解为2x =21101232+-∴-=-■即()332103⨯--=-■10=6-■4∴=■【点睛】本题考查了一元一次方程的解,解一元一次方程,掌握解一元一次方程的步骤是解题的关键.21.(1)2222a b ab abc-++(2)2285a b ab -【分析】(1)根据结果减去2A ,进而根据整式的加减运算化简即可求得整式B ;(2)按要求计算2A B -,根据去括号,合并同类项进行计算化简即可.(1)解:∵2232A a b ab abc =-+,2A B +=22434a b ab abc-+∴224342a b ab abc A B -+-=()2222434232a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc=-+-+-2222a b ab abc=-++(2)解:∵2232A a b ab abc =-+,B2222a b ab abc =-++∴2A B -=()22232a b ab abc -+()2222a b ab abc --++222264222a b ab abc a b ab abc=-++--2285a b ab =-【点睛】本题考查了整式的加减运算,正确的去括号是解题的关键.22.(1)()2128m m n h +-π(2)92π⎛⎫- ⎪⎝⎭平方厘米【分析】(1)根据梯形的面积=12(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把2m =厘米,4n =厘米,3h =厘米代入(1)中的代数式进行计算即可得解.(1)解:∵梯形的上底为m ,下底为n ,高为h .∴S 梯形=()12m n h +,S 半圆=2221112228m r m ⎛⎫== ⎪⎝⎭πππ∴S 阴影=S 梯形-S 半圆=()()221112228m m n h r m n h +-=+-ππ∴阴影部分面积为:()2128m m n h +-π.(2)解:∵S 阴影=()2128m m n h +-π,2m =厘米,4n =厘米,3h =厘米∴S 阴影=()()22112243928282m m n h πππ⨯⎛⎫+-=⨯+⨯-=- ⎪⎝⎭平方厘米∴阴影部分面积为:92π⎛⎫- ⎪⎝⎭平方厘米.【点睛】本题考查了列代数式,代数式求值,熟练掌握梯形的面积公式,半圆的面积公式是解题的关键,实质是考查整式的加减运算.23.(1)3333322211234556(12345)4++++=⨯⨯=++++;(2)33332221123(1)(12)4n n n n ++++=+=+++ ;(3)43875【分析】(1)根据已知等式,找出规律即可;(2)根据已知等式,找出规律并归纳,总结出公式即可;(3)根据总结公式,先算出()333312320++++ ,再减去()3333312345++++即可.【详解】(1)3333322211234556(12345)4++++=⨯⨯=++++(2)33332221123(1)(12)4n n n n ++++=+=+++ (3)333367820++++ ()()3333333331232012345=++++-++++ 22221120215644⎛⎫⎛⎫=⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭44100225=-43875=24.(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元(2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.【分析】(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销售额;求出销售额最高与最低之差即可;(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.(1)解:设2020年12月完成销售额为a万元.根据题意得:2021年上半年的销售额分别为:a-1.6;a-1.6-2.5=a-4.1;a-4.1+2.4=a-1.7;a-1.7+1.2=a-0.5;a-0.5-0.7=a-1.2;a-1.2+1.8=a+0.6,a+0.6-(a-4.1)=4.7(万元);则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元;(2)解:由(1)2020年12月完成销售额为a万元,2021年6月的销售额为a+0.6万元,a+0.6-a=0.6>0,所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.【点睛】本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键.25.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,1322=-n m;(3)4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩.【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n32m -+ =;(3)由已知可得|m+3|=|n﹣1|,n﹣m43=|m+3|,分情况求解即可.【详解】(1)MN=n﹣m.故答案为:n﹣m;(2)分三种情况讨论:①M是A、N的中点,∴n+(-3)=2m,∴n=2m+3;②A是M、N点中点时,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中点时,-3+m=2n,∴n32m -+ =;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MN43=BM,∴n﹣m43=|m+3|,∴3133412m nn m m+=-⎧⎨-=+⎩或3133412m nn m m+=-⎧⎨-=--⎩或3133412m nn m m+=-+⎧⎨-=+⎩或3133412m nn m m+=-+⎧⎨-=--⎩,∴4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩或35mn=⎧⎨=-⎩.∵n>m,∴4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩.。
沪科版七年级上册数学期末考试试题一、单选题1.已知方程组224x y kx y +=⎧⎨+=⎩的解满足2x y +=,则k 的值为()A .2-B .4-C .2D .42.3的相反数为()A .﹣3B .﹣13C .13D .33.根据等式的性质,下列变形正确的是()A .由-13x =23y ,得x =2y B .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-54.若3a x y 与b x y 是同类项,则a b +的值为()A .2B .3C .4D .55.如图,AM 为∠BAC 的平分线,下列等式错误的是()A .12∠BAC=∠BAM B .∠BAM=∠CAMC .∠BAM=2∠CAMD .2∠CAM=∠BAC6.若4a =,2=b ,且a b +的绝对值与它的相反数相等,则a b +的值是()A .2-B .6-C .2-或6-D .2或67.若1∠与2∠互为余角,1∠与3∠互为补角,则下列结论:①3290∠-∠=︒;②3227021∠+∠=︒-∠;③3122∠-∠=∠;④312∠<∠+∠.其中正确的有()A .4个B .3个C .2个D .1个8.某立体图形的表面展开图如图所示,这个立体图形是()A.B.C.D.9.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则202120222018a b c++的值为()A.2017B.2018C.2019D.010.将大小相同的小圆按如图所示的规律摆放:第①个图形有5个小圆,第②个图形有10个小圆,第③个图形有17个小圆,…依此规律,第⑥个图形的小圆个数是()A.65B.60C.55D.5011.如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为()A.3B.4C.6D.812.七年级(1)班同学在研学旅行时乘坐观光车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,请问此次旅行共有多少人,多少辆车?设共有x人,可列方程()A.9232x x-+=B.()3229x x+=-C.9232x x+-=D.()3229x x-=+二、填空题13.若x是非负数,则x______0(填“>,≥,<,≤,=”中的一个).14.如图是某班全班40名学生一次数学测验分数段统计图,根据统计图所提供的信息计算优良率(分数80分以上包括80分的为优良)为______(填入百分数).15.为了解神舟飞船的设备零件的质量情况,选择抽样调查的方式是否合理______(填是或否).16.数轴上A ,B 两点分别为﹣10和90,两只蚂蚁分别从A ,B 两点出发,分别以每秒钟3个单位长和每秒钟2个单位长的速度匀速相向而行,经过________秒,两只蚂蚁相距20个单位长.17.如图,一个长方形的长为a ,宽为b ,将它剪去一个正方形①,然后从剩余的长方形中再剪去一个正方形③,最后剩下长方形②.请用含a 、b 的代数式表示:(1)正方形③的边长为______________.(2)长方形②的面积为______________.18.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列以及各条对角线上的三个数字之和均相等,则图中a 的值为______.19.有一数值转换器,原理如图所示,若开始输入x 的值是3,则第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,依次继续下去…,第2020次输出的结果是_______________________.三、解答题20.(1)()22022911332125⎛⎫⎛⎫-+-÷-+--⨯- ⎪ ⎪⎝⎭⎝⎭;(2)先化简,再求值:222233232m mn m mn mn mn ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦,其中4m =-,1n =.21.已知:如图,点C 是线段AB 的中点,2cm CD =,8cm BD =,求AD 的长.22.如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE =35°,求∠ACB 的度数;(2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.23.已知:如图①,60AOB ∠=︒,40COD ∠=︒,OB 与OC 重合,OP 平分AOC ∠,OQ 平分BOD ∠.(1)POQ ∠=______(2)将COD ∠绕着点O 逆时针方向旋转,使()0180BOC ∠αα=≤<︒,当80α=︒时,如图②,求POQ ∠的度数.24.某中学七年级一班学生去商场购买了A 品牌足球1个、B 品牌足球2个,共花费210元,七年级二班同学在同一商场购买了A 品牌足球3个、B 品牌足球1个,共花费230元.(1)求A ,B 两种品牌足球的价格各为多少元?(2)为响应“足球进校园”的号召,学校使用专项经费1500元全部用来购买A ,B 两种品牌的足球供学生使用(要求两种足球都必须购买,专项经费必须用完),那么学校有多少种不同的购买方案?请分别求出每种方案购买A ,B 两种品牌足球的个数.25.已知线段15cm AB =,点C 在线段AB 上,且:3:2AC CB =.(1)求线段AC,CB的长;(2)点P是线段AB上的动点且不与点A,B,C重合,线段AP的中点为M,设cmAP m①请用含有m的代数式表示线段PC,MC的长;②若三个点M,P,C中恰有一点是其它两点所连线段的中点,则称M,P,C三点为“共谐点”,请直接写出使得M,P,C三点为“共谐点”的m的值.26.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市宣传环保部门为了提高实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其它垃圾)根据统计图提供的信息,解答下列问题:(1)在这次抽样调查中,一共有吨的生活垃圾;(2)请将条形统计图补充完整;(3)扇形统计图中,B所对应的百分比是,D所对应的圆心角度数是;(4)假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾多少吨?27.《孙子算经》是一本十分著名的中国古代数学典籍.其中有这样一道题.原文如下:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.间:木长几何?大意为:用一根绳子去量根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?请用方程(组)解答上述问题.参考答案1.C2.A3.B4.C5.C6.C7.B8.A9.D10.D11.B12.A13.≥14.75%15.否16.16或2417.-a b22--ab a b32【分析】(1)正方形③的边长为=大长方形的长−正方形①的边长.(2)长方形②的面积=大长方形的面积−正方形③的面积-正方形①的面积.【详解】解:(1)如图所示,正方形③的边长为a−b.(2)如图所示,长方形②的面积=大长方形的面积−正方形③的面积-正方形①的面积=ab−2b-(a−b)(a−b)=3ab−a2−2b2.故答案是:a−b;3ab−a2−2b2.【点睛】本题考查了列代数式,解题的关键是掌握图中三个矩形的边长间的数量关系.18.-2【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为-6,则-6+a+2=-6,即可得.【详解】解:∵-1+0+(-5)=-6,∴-6+a+2=-6,解得:a=-2,故答案为:-2.【点睛】本题考查了有理数的加减,解题的关键是理解题意和掌握有理数的加减.19.1【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=3时,第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,第4次输出的结果是1,第5次输出的结果是6,第6次输出的结果是3,第7次输出的结果是8,第8次输出的结果是4,第9次输出的结果是2,第10次输出的结果是1,…,从第7次输出的结果开始,每次输出的结果分别是8,4,2,1,6,3,…,每6个数一个循环.所以2020÷6=336…4,所以2020次输出的结果是1.故答案为:1.20.(1)1;(2)22mn mn +,−12【分析】(1)先算乘方和绝对值,再算乘除,最后计算加法;(2)先去小括号,合并同类项后再去大括号,最后合并同类项即得化简的式子,再把m 与n 的值代入即可求得原式的值.【详解】(1)()22022911332125⎛⎫⎛⎫-+-÷-+--⨯- ⎪ ⎪⎝⎭⎝⎭2419595⎛⎫=-+⨯-+⨯ ⎪⎝⎭1(2)4=-+-+1=(2)222233232m mn m mn mn mn ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦22223(32)3m mn m mn mn mn =-+-++22223(3)3m mn m mn mn =-+-+2222333m mn m mn mn =--++22mn mn=+当4m =-,1n =时,原式22(4)1(4)112=⨯-⨯+-⨯=-21.12cm【分析】由已知可得AC=CB=10cm ,则由AD=AC+CD 可求得结果.【详解】∵点C 是线段AB 的中点,2cm CD =,8cmBD =∴AC=CB=CD+BD=2+8=10(cm)∴AD=AC+CD=10+2=12(cm)【点睛】本题考查了线段中点的含义,线段的和运算,掌握这两个知识点是关键.22.(1)145°;(2)40°;(3)∠ACB 与∠DCE 互补,理由见解析.【详解】解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°-35°=145°.(2)∵∠ACD=∠ECB=90°,∴∠DCE=180°-140°=40°.(3)∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB ,∴∠ACB+∠DCE=180°,即∠ACB 与∠DCE 互补.23.(1)50°(2)50°【分析】(1)由角平分线的性质及角的和差关系即可求得结果;(2)由角平分线的性质可得∠AOP 及∠BOQ 的度数,从而由角的和差关系可求得结果.(1)解:∵OP 平分AOC ∠,OQ 平分BOD ∠,∴11603022BOP AOB ∠=∠==︒⨯︒,11402022BOQ COD ∠=∠=⨯︒=︒,∴302050POQ BOP BOQ ∠=∠+∠=︒+︒=︒,故答案为:50°;(2)解:∵∠AOB+∠BOC+∠COD=60°+80°+40°=180°,∠AOC=∠AOB+∠BOC=60°+80°=140°,∴180********BOD AOB ∠=︒-∠=︒-︒=︒,∵OP 平分AOC ∠,OQ 平分BOD ∠,∴111407022AOP AOC ∠=∠=⨯︒=︒,111206022BOQ BOD ∠==⨯︒=︒,∴60607050POQ AOB BOQ AOP ∠=∠+∠-∠=︒+︒-︒=︒.24.(1)A 种品牌足球的价格50元,B 种品牌足球的价格80元;(2)学校有3种购买足球的方案,方案一:购买A 品牌足球22个、B 品牌足球5个;方案二:购买A 品牌足球14个、B 品牌足球10个;方案三:购买A 品牌足球6个、B 品牌足球15个.【分析】(1)设A 种品牌的足球价格为x 元,B 种品牌的足球价格为y 元,根据等量关系“购买A 品牌足球1个、B 品牌足球2个,共花费210元;购买A 品牌足球3个、B 品牌足球1个,共花费230元”,列出二元一次方程组并求解即可;(2)设购买A 品牌足球m 个,购买B 品牌足球n 个,根据总价=单价×数量,列出m 、n 的二元一次方程,求出正整数解即可.【详解】解:(1)设A 种品牌足球的价格为x 元,B 种品牌足球的价格为y 元,依题意得:22103230x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩,答:A 种品牌足球的价格50元,B 种品牌足球的价格80元;(2)设购买A 品牌足球m 个,购买B 品牌足球n 个,根据题意得:50m +80n =1500,即5m +8n =150,∵m 、n 均为正整数,∴225m n =⎧⎨=⎩或1410m n =⎧⎨=⎩或615m n =⎧⎨=⎩,则学校有3种购买足球的方案,方案一:购买A 品牌足球22个、B 品牌足球5个;方案二:购买A 品牌足球14个、B 品牌足球10个;方案三:购买A 品牌足球6个、B 品牌足球15个.【点睛】本题主要考查了二元一次方程、二元一次方程组的应用,审清题意、找准等量关系,列出二元一次方程和二元一次方程组成为解答本题的关键.25.(1)AC=9cm ,CB=6cm(2)①(9)cm PC m =-或(9)cm m -,19cm 2MC m ⎛⎫=- ⎪⎝⎭;②6或12【分析】(1)由:3:2AC CB =可得35AC AB =,25CB AB =,从而可求得AC 、CB 的长;(2)①分点P 在线段AC 上和点P 在线段CB 上两种情况分别计算即可;②分点P 在线段AC 上和点P 在线段CB 上两种情况列方程,可求得m 的值.(1)∵15cm AB =,点C 在线段AB 上,且:3:2AC CB =∴33159(cm)55AC AB ==⨯=,22156(cm)55CB AB ==⨯=(2)∵M 为线段AP 的中点∴11cm 22AM MP AP m ===①当点P 在线段AC 上时(9)cm PC AC AP m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭当点P 在线段CB 上时(9)cm PC AP AC m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭②当点P 在线段AC 上时,则MP=PC ∴192m m =-解得:m=6当点P 在线段CB 上时,则MC=PC∴199 2m m -=-解得:m=12综上所述,m=6或12【点睛】本题考查了求线段长度,线段中点的意义及线段的和差,掌握线段中点的意义、线段的和差是解题的关键.注意(2)小题要分类讨论.26.(1)50;(2)详见解析;(3)30%,36°;(4)500吨【分析】(1)从两个统计图中可得到“A可回收垃圾”的有27吨,占垃圾数量的54%,可求出调查的垃圾数量;(2)求出“B餐厨垃圾的吨数,即可补全条形统计图;(3)B餐厨垃圾的15吨占垃圾数量50吨的百分比即可,D有害垃圾占550,因此圆心角占360°的550即可;(4)样本估计总体,样本中喜欢“D有害垃圾”的占550,因此估计5000吨的550是“有害垃圾”的吨数.【详解】(1)27÷54%=50吨,故答案为:50,(2)50﹣27﹣3﹣5=15吨,补全条形统计图如图所示:(3)15÷50=30%,360°×550=36°,故答案为:30%,36°,(4)5000×550=500吨,答:该城市每月产生的5000吨生活垃圾中有害垃圾500吨.【点睛】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题,样本估计总体是统计中常用的方法.27.6.5尺【分析】设木头长x尺,则绳子长(x+4.5)尺,根据“将绳子对折再量木条,木头剩余1尺”,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设木头长x尺,则绳子长(x+4.5)尺,根据题意得:x−12(x+4.5)=1,解得x=6.5.答:木头长6.5尺.。
沪科版七年级上册数学期末考试试卷一、选择题。
(每小题只有一个答案正确)1.冬季某天北京、合肥、济南三个城市的最低气温分别是10-℃,1℃,7-℃,则任意两城市中最大的温差是()A .3℃B .8℃C .11℃D .17℃2.已知一个多项式与()2234x x +-的和为()222x x +-,则此多项式是()A .22x +B .22x -+C .22x --D .22x -3.如图所示,OA 是北偏东60︒方向的一条射线,若射线OB 与射线OA 垂直,则OB 的方位角是()A .北偏西30°B .北偏西60︒C .东偏北30°D .东偏北60︒4.若|a|=8,|b|=5,且a+b>0,那么a-b 的值是()A .3或13B .13或-13C .3或-3D .-3或-135.如图,数轴的单位长度为1,如果R ,T 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的绝对值最大()A .PB .RC .QD .T6.某商场购进一批服装,每件进价为200元,由于换季滞销商场决定将这种服装按标价的六折出售,若打折后每件服装仍能获利20%,则该服装的标价是()A .300元B .350元C .400元D .450元7.若单项式315x y x y a b +-与3414x ya b +-的和仍是单项式,则x ,y 的值是()A .32x y =⎧⎨=⎩B .23x y =⎧⎨=-⎩C .10=⎧⎨=⎩x y D .36x y =⎧⎨=-⎩8.规定⊗是一种新的运算符号,且2a b a ab a ⊗=-+,则()23-⊗的值为()A .12-B .0C .8D .4-9.已知3a b -=,2c d +=,则()()b c a d +--的值为()A .1B .1-C .5D .5-10.已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中能表示∠β的余角的有()个.A .1个B .2个C .3个D .4个二、填空题11.方程1ax x =+的解是1x =,则关于x 的方程42ax a =-的解为__________.12.小超同学在计算30A +时,误将“+”看成了“-”算出结果为12,则正确答案应该为__________.13.1836273226''''''︒-︒=__________.14.如图,C 是线段AB 上的一点,且13AB =,5CB =,M 、N 分别是AB 、CB 的中点,则线段MN 的长是___.15.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是______cm .16.已知∠1和∠2互补,∠2和∠3互补.若∠1=40°,则∠3=________°.三、解答题17.(1)计算:223113(2)(6)3⎛⎫-+⨯---÷- ⎪⎝⎭(2)解方程:211232x x++-=18.先化简再求值22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22,3x y =-=19.关于x、y的方程组2564x ymx ny+=-⎧⎨-=⎩.与关于x、y的方程组35168x ynx my-=⎧⎨+=-⎩的解相同,求2021(2)m n+20.用火柴棒按下面的方式搭图形(1)把下表填完整:图形编号①②③火柴棒根数7(2)第n个图形需要火柴棒的根数为s,则s=_____(用含字母n的代数式表示)(3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.21.如图,长方形长为8m,宽为6m,现从四个角割去四个边长为2m的小正形,然后折叠成一个无盖的长方体.(1)求长方体的体积(用含有m的代数式表示)(2)当12m=时,求此时长方体体积.22.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?23.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型...........解决问题........,并直接应用上述模型的结论24.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面的个数;(2)当x 为多少时,裁剪出的侧面和底面恰好全部用完?此时能做多少个盒子?参考答案1.C 【分析】根据最大温差等于最高温度减去最低温度,列式()110--,再计算即可得到答案.【详解】解: 温度最高的是1,C ︒最低的是10,C -︒∴两城市中最大的温差是()11011011.C --=+=︒故选:.C 【点睛】本题考查的是有理数的减法的应用,掌握有理数的减法是解题的关键.2.B 【分析】先根据题意列出代数式,再去括号,合并同类项即可得答案.【详解】∵一个多项式与()2234x x +-的和为()222x x +-,∴()222x x +--()2234x x +-=2x 2+x-2-2x 2-3x+4=-2x+2,∴此多项式是-2x+2,故选:B .【点睛】本题考查了整式的加减运算,在计算中,去括号时,一定要注意符号的变化;熟练掌握合并同类项法则是解题关键.3.A 【分析】由,60,OA OB AOC ⊥∠=︒利用角的和差关系求解,BOC ∠从而可得答案.【详解】解:,60,OA OB AOC ⊥∠=︒ 9030,BOC AOC ∴∠=︒-∠=︒所以OB 的方位角是北偏西30.︒故选:.A 【点睛】本题考查的是垂直的定义,角的和差,方位角的含义,掌握以上知识是解题的关键.4.A 【分析】根据绝对值的性质结合a+b>0得出a ,b 的取值情况,然后利用有理数减法法则计算.【详解】解:∵|a|=8,|b|=5,∴a =±8,b =±5,又∵a +b >0,∴a =8,b =±5.当a =8,b =5时,a−b =8-5=3,当a =8,b =-5时,a−b =8-(-5)=13,∴a−b 的值是3或13,故选A .本题考查了绝对值的性质以及有理数的加减运算,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要看清条件,以免漏掉答案或写错.5.A【分析】根据相反数的定义确定出RT的中点为原点,然后根据绝对值的定义解答即可.【详解】解:如图,∵R,T表示的数互为相反数,∴线段RT的中点O为原点,∴点P的绝对值最大.故选:A.【点睛】本题考查相反数与绝对值,熟练掌握相反数及绝对值的定义是解题关键.6.C【分析】设该服装的标价为x元,用x表示出六折出售的价钱,每件服装的进价乘20%求出获利的价钱,再用六折出售的价钱减去标价等于获利的价钱,列方程求解.【详解】解:设该服装的标价为x元,由题意得,0.6x-200=200×20%0.6x-200=400.6x=240x=400;答:该服装标价是400元.故选:C.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.7.B 【分析】由单项式315x y x y a b +-与3414x y a b +-的和仍是单项式,可得单项式315x y x y a b +-与3414x ya b +-是同类项,再根据同类项的概念列方程组,解方程组可得答案.【详解】解: 单项式315x y x y a b +-与3414x ya b +-的和仍是单项式,∴单项式315x y x y a b +-与3414x y a b +-是同类项,∴334x y x y x y+=⎧⎨-=+⎩整理得:3332x y x y +=⎧⎨=-⎩①②把②代入①得:3,y -=3,y ∴=-把3y =-代入②得:36,x =2,x ∴=2.3x y =⎧∴⎨=-⎩故选:.B 【点睛】本题考查的是同类项的概念,二元一次方程组的解法,掌握以上知识是解题的关键.8.C 【分析】原式利用已知的新定义计算即可得到结果.【详解】解:根据题中的新定义化简得:-2⊗3=4+6-2=8,故选:C .本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.B 【分析】先去括号进行化简,然后把3a b -=,2c d +=代入计算,即可得到答案.【详解】解:()()b c a d +--=b c a d +-+=()()a b c d --++,∵3a b -=,2c d +=,∴原式=321-+=-;故选:B .【点睛】本题考查了整式的加减混合运算,去括号法则和添括号法则,解题的关键是熟练掌握运算法则进行解题.10.C 【分析】互补即两角的和为180°,互余即两角的和为90°,根据这一条件判断即可.【详解】解:已知∠β的余角为:90°−∠β,故①正确;∵∠α和∠β互补,且∠α>∠β,∴∠α+∠β=180°,∠α>90°,∴∠β=180°−∠α,∴∠β的余角为:90°−(180°−∠α)=∠α−90°,故②正确;∵∠α+∠β=180°,∴12(∠α+∠β)=90°,故③错误,∴∠β的余角为:90°−∠β=12(∠α+∠β)−∠β=12(∠α−∠β),故④正确.所以①②④能表示∠β的余角,故答案为:C .本题考查了余角和补角的定义,牢记定义是关键.11.3x =【分析】由方程1ax x =+的解是1x =,可求解2,a =再把2a =代入42ax a =-,再解方程即可得到答案.【详解】解: 方程1ax x =+的解是1x =,2,a ∴=∴关于x 的方程42ax a =-为:2422,x =⨯-26,x ∴=3,x ∴=故答案为: 3.x =【点睛】本题考查的是一元一次方程的解及解一元一次方程,掌握以上知识是解题的关键.12.48【分析】由3012,A -=求解,A 再计算30A +即可得到答案.【详解】解:3012,A -= 18A ∴=,30301848.A ∴+=+=故答案为:48.【点睛】本题考查的是有理数的加减运算,一元一次方程的应用,掌握以上知识是解题的关键.13.11336'''︒或者11.06︒【分析】按角的四则运算法则进行运算,同时按照1=601=60''''︒,,进行换算,从而可得答案.【详解】解:183627322618356273226''''''''''''︒-︒=︒-︒11336.'''=︒或33611336=11++606060⎛⎫⎛⎫'''︒︒︒︒ ⎪ ⎪⨯⎝⎭⎝⎭110.06=︒+︒11.06.=︒故答案为:11336'''︒或者11.06︒.【点睛】本题考查的是角的换算,角的加减运算,掌握以上知识是解题的关键.14.4.【分析】根据中点定义可得到AM=BM=12AB ,CN=BN=12CB ,再根据图形可得NM=AM-AN ,即可得到答案.【详解】解:M 是AB 的中点,1 6.52AM BM AB ∴===,N Q 是CB 的中点,1 2.52CN BN CB ∴===,6.5 2.54NM BM CN ∴=-=-=.故答案为:4.【点睛】本题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.15.75【详解】解:设长方体的长和宽分别为a 、b ,桌子高为h .由①图知:h +a -b =80cm ,①由②图知:h +b -a =70cm ,②由①+②可得2h =150cm ,∴h =75cm .故答案为75.16.40【解析】【分析】根据∠1=40°,∠1和∠2互补,可求得∠2的度数,然后根据∠2和∠3互补,求得∠3的度数.【详解】解:∵∠1=40°,∠1和∠2互补,∴∠2=180°-∠1=140°,∵∠2和∠3互补,∴∠3=180°-∠2=40°.故答案为:40.【点睛】考查补角的相关计算;用到的知识点为:互补的2个角和为180°.17.(1)29(2)1x =【分析】(1)先计算乘方,然后计算乘除,最后计算加减,即可得到答案;(2)先去分母、去括号,然后移项合并,系数化为1,即可得到答案.【详解】解:(1)223113(2)(6)3⎛⎫-+⨯---÷- ⎪⎝⎭=13(8)(6)9-+⨯---⨯=12454--+=29;(2)211232x x++-=,∴122(21)3(1)x x -+=+,∴124233x x --=+,∴77x =,∴1x =;【点睛】本题考查了解一元一次方程,有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则进行解题.18.化简结果:23x y -+,代数式的值:46.9【分析】先去括号,再合并同类项可得化简的结果,再把22,3x y =-=代入化简后的结果可得代数式的值.【详解】解:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭22123122323x x y x y ⎛⎫=-++-+ ⎪⎝⎭23x y =-+当22,3x y =-=,上式()22332⎛⎫ =⨯⎝-+⎪⎭-446699=+=【点睛】本题考查的是整式的加减运算,化简求值,去括号,掌握以上知识是解题的关键.19.1【分析】由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩,解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩,得224228m n n m +=⎧⎨-=-⎩,解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(1)见解析;(2)52s n =+;(3)存在,见解析,第23个图形【分析】(1)观察图形与表格发现,后一个图形比前一个图形多用5根火柴棒,由此得出第三个图形比第二个图形多用5根火柴棒,第四个图形比第三个图形多用5根火柴棒;(2)由后一个图形比前一个图形多用5根火柴棒,而第一个图形用了7根火柴;即7=5×1+2,即可求出第n 个图形需要(5n+2)根小棒;(3)将s=117代入计算,即可求出答案.【详解】解:(1)根据题意,把下表填完整:图形编号①②③火柴棒根数71217(2)第一个图形用了7根火柴;即7=5×1+2;第二个图形用了12根火柴;即12=5×2+2;第三个图形用了17根火柴;即17=5×3+2;…∴第n 个图形需要(5n+2)根小棒;∴52s n =+;故答案为:52s n =+.(3)根据题意,当117s =时,则52117n +=,解得:23n =,第23个图形共有117根火柴棒.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出发生变化的位置,并且观察变化规律,进而用式子表示一般规律.21.(1)316m (2)2【分析】(1)先求出长方体的长、宽、高,然后由体积公式即可求出答案;(2)把12m =代入计算,即可求出答案.【详解】解:(1)根据题意,长方体的长为:8224m m m m --=,长方体的宽为:6222m m m m --=,长方体的高为:2m ,∴长方体的体积为:342216m m m m ⨯⨯=;(2)根据题意,当12m =时,则此时长方体体积为:31116()16228⨯=⨯=.【点睛】本题考查了用代数式表示长方体的体积,需熟记公式,且认真观察图形,得出等量关系是解题的关键.22.(1)图形见解析(2)3(3)每月回收的塑料类垃圾可以获得378吨二级原料.【分析】(1)根据D 类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图.(2)求得C 组所占的百分比,即可求得C 组的垃圾总量:(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可.【详解】解:(1)观察统计图知:D 类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨.∴B 类垃圾共有50×30%=15吨.∴条形统计图补充完整为:(2)∵C 组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨.(3)5000×54%××0.7=738(吨),∴每月回收的塑料类垃圾可以获得378吨二级原料.23.(1)6;(2)(1)2m m -;(3)28【解析】试题分析:(1)从左向右依次固定一个端点A C D ,,找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.试题解析:(1)∵以点A 为左端点向右的线段有:线段AB 、AC 、AD ,以点C 为左端点向右的线段有线段CD 、CB ,以点D 为左端点的线段有线段DB ,∴共有3+2+1=6条线段;(2)()1.2m m -理由:设线段上有m 个点,该线段上共有线段x 条,则x =(m −1)+(m −2)+(m −3)+…+3+2+1,∴倒序排列有x =1+2+3+…+(m −3)+(m −2)+(m −1),∴2x =m +m +…+m,(m −1)个m ,(1)2m m x -∴=(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行()881282⨯-=场比赛.24.(1)276x +,955x -;(2)x 为7时,裁剪出的倒面和底面恰好全部用完,此时能做30个盒子.【分析】(1)由侧面数为,A B 两种方法裁剪的侧面数之和可得答案,底面数是B 方法裁剪的底面数,从而可得答案;(2)由一个三棱柱需要2个底面,3个侧面可列方程为:()()22763955x x +=-,再解方程可得答案.【详解】解:(1)由题意得:侧面有:()()641967642+76x x x x x +-=+-=个,底面有:()()519955x x -=-个,(2)由一个三棱柱需要2个底面,3个侧面可得:()()22763955x x +=-415228515,x x ∴+=-19133,x ∴=解得7x =,此时能做:27+76=303⨯(个).所以当x 为7时,裁剪出的倒面和底面恰好全部用完,此时能做30个盒子.【点睛】本题考查的是列代数式,一元一次方程的应用,掌握利用一元一次方程解决配套问题是解题的关键.。
沪科版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、生物课题研究小组对附着在物体表面的三个微生物(课题组成员把他们分别标号为1,2,3)的生长情况进行观察记录,这三个微生物第一天各自一分为二,产生新的微生物(依次被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录),那么标号为1000的微生物会出现在()A.第7天B.第8天C.第9天D.第10天2、点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个B.3个C.2个D.1个3、如图,从A到B有3条路径,最短的路径是③,理由是()A.两点之间,线段最短B.两点确定一条直线C.两点间距离的定义 D.因为③是直的4、若2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,则-n m的值为()A.-25B.25C.-32D.325、计算:-32+(-3)2的值是( )A.-12B.0C.-18D.186、小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A. B. C.D.7、如图,已知直线,直线分别交、于点、,于点,则图中与互余的角有().A.1个B.2个C.3个D.4个8、下列四个数中,小于0的是()A.-1B.0C.1D.29、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“抗”字所在面相对的面上的汉字是()A.一B.定C.胜D.利10、解方程3x+7=32-2x正确的是()A.x=25B.x=5C.x=39D.11、观察以下一列数的特点:,,,,,,,则第个数是()A. B. C. D.12、我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=2 22=4 23=8 …31=3 32=9 33=27 …新运算log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③13、如果关于的不等式组的解集为,且整数使得关于的二元一次方程组的解为整数(均为整数),则符合条件的所有整数的和是()A. B.2 C.6 D.1014、若6x3m y4与﹣x9y2n是同类项,则m,n的值分别是()A.m=2,n=3B.m=3,n=2C.m=﹣3,n=2D.m=﹣2,n=315、有理数的相反数是()A.2B.C.-2D.二、填空题(共10题,共计30分)16、由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.17、若-3x a-2b y7与2x8y5a+b是同类项,则a=________,b=________.18、已知:,,,,…,根据上面各式的规律,等式中口里应填的数是________.19、我们规定一种运算:,按照这种运算的规定,请解答下列问题:当________时,.20、 ________.21、若(x﹣2)x=1,则x=________.22、-3与a互为倒数,则a等于________.23、的相反数是________.24、如图,在△ABC中,∠A=800,∠ABC与∠ACB的平分线义交于点O,则∠BOC=________度.25、如图,有一根木棒放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5(单位:),则木棒长为________ .三、解答题(共5题,共计25分)26、已知(a+1)2+(2b-3)2+|c-1|=0,求的值.27、数学课上李老师让同学们做一道整式的化简求值题,李老师把整式在黑板上写完后,让一位同学随便给出一组,的值,老师说答案.当刘阳刚说出,的值时,李老师不假思索,立刻说出了答案.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你能说出其中的道理吗?28、把下列各数在数轴上表示出来,并用“<”连接;﹣(﹣3);﹣|﹣2.5|;0;(﹣1)3;229、完成下面的证明过程:如图,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.求证:BE∥DF.证明:∵AB∥CD,(已知)∴∠ABC+∠C=180°.(________)又∵AD∥BC,(已知)∴________+∠C=180°.(________)∴∠ABC=∠ADC.(________)∵BE平分∠ABC,(已知)∴∠1=∠ABC.(________)同理,∠2=∠ADC.∴________=∠2.∵AD∥BC,(已知)∴∠2=∠3.(________)∴∠1=∠3,∴BE∥DF.(________)30、一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,填写表中空格.点的个数线段的条数2 13 34 65 106 157参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、C5、B6、A7、D8、A9、B10、B11、D12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
沪科版七年级上册数学期末考试试题一、单选题1.13-的相反数是()A .3B .3-C .13D .13±2.数据58亿元用科学记数法表示为()A .5.8×107B .0.58×108C .5.8×108D .5.8×1093.若42m a b -与225m n a b -是同类项,则m n -的值是()A .3B .3-C .1D .1-4.如图,点C ,D 在线段AB 上,且AC =CD =DB ,点E 是线段AB 的中点.若AD =8,则CE 的长为()A .2B .3C .4D .55.学校图书室整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,则下列所列方程中正确的是()A .440x +240x +×12=1B .440x +240x +×8=1C .1224040x x ++×12=1D .1224040x x ++×8=16.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于A .30°B .45︒C .50︒D .60︒7.把方程1263x x +-=去分母,下列变形正确的是()A .212x x -+=B .2(1)12x x -+=C .2112x x -+=D .2(1)2x x -+=8.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是()A .EB .C C .D D .A9.若方程组23133530a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是()A .8.31.2x y =⎧⎨=⎩B .10.30.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩10.如图,用菱形纸片按照如下规律拼成下列图案,若第n 个图案中有2021张纸片,则n 的值为()A .503B .504C .505D .506二、填空题11.已知a ,b ,c 的位置如图所示,则|a|+|a+b|﹣|c ﹣b|=_____.12.比较图中BOC ∠、BOD ∠的大小:因为OB 和OB 是公共边,OC 在BOD ∠的内部,所以BOC ∠________BOD ∠.(填“>”,“<”或“=”)13.如果一个角的补角是120°,那么这个角的余角为______.14.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推……,线段2022AC 的长为_______15.按如图所示的程序计算:当输入的x 值为-3时,则输出的值为______16.如图,OC 为AOB ∠内部的一条射线,若100AOB ∠=︒,2536BOC '∠=︒,则AOC ∠的度数为______.三、解答题17.计算:(1)()()15216-+--(2)2018116(2)3--÷-⨯-18.解方程:(1)52318x x +=-;(2)211123x x +--=.19.解方程组:1123324x y x y +⎧-=⎪⎨⎪+=⎩①②20.化简或求值(1)化简:()()22252432a a a a ---+;(2)先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x ,y 满足(x ﹣2)2+|y+1|=021.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若42AOB ∠=︒,36DOE ∠=︒,求BOD ∠的度数;(2)若AOD ∠与BOD ∠互补,且30DOE ∠=︒,求AOC ∠的度数.22.先阅读下列内容,然后解答问题.因为111122=-⨯;1112323=-⨯;1113434=-⨯;1114545=-⨯.所以11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯请解答:(1)应用上面的方法计算:111112233420192020++++⨯⨯⨯⨯ ;(2)类比应用上面的方法计算:111113355720192021++++⨯⨯⨯⨯ .23.如图,C 是线段AB 上一点,M ,N 分别是AC ,BC 的中点.(1)若6cm AC =,4cm BC =,求线段MN 的长;(2)若线段CM 与线段CN 的长度之比为2:1,且线段2cm CN =,求线段AB 的长.24.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.25.学校准备购买一批课外读物,为使课外读物满足学生们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______________名同学;(2)条形统计图中,m=_________,n=__________;(3)扇形统计图中,艺术类读物所在扇形的圆心角是多少度?参考答案1.C2.D3.A4.A5.B6.A7.B8.B9.C 10.C 11.﹣2a ﹣c 12.<13.30°14.2022112-15.616.74°24'17.(1);(2)0.【分析】(1)先把减法变成加法,从左向右依次计算即可.(2)首先计算乘方、绝对值,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=-15+21+6=12;(2)原式=-1-6÷(-2)×13=-1+3×13=-1+1=0.18.(1)10x =-(2)14x =【分析】(1)按照移项,合并同类项,系数化为1解答;(2)方程两边同时乘以6,去分母求解.(1)移项,得5320x x -=-.合并同类项,得220x =-.系数化为1,得10x =-.∴方程的解为10x =-.(2)去分母,得()()321216x x +--=.去括号,得63226x x +-+=.移项,得62623x x -=--.合并同类项,得41x =.系数化为1,得14x =.所以方程的解为14x =.19.21x y =⎧⎨=-⎩【分析】根据加减消元法即可求解.【详解】解:整理,得328324x y x y -=⎧⎨+=⎩①②由①+②,得612x =解得2x =由①-②得44y -=解得1y =-∴方程组的解为21x y =⎧⎨=-⎩20.(1)228a a +(2)﹣3x+y 2,-5【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入原式计算即可求出值.(1)解:原式22=104128a a a a -+-228a a=+(2)原式22131=223223-+-+x x y x y 2=3x y -+由(x ﹣2)2+|y+1|=0知x ﹣2=0,y+1=0,解得x =2,y =-1,∴原式=﹣3×2+(﹣1)2=-5.【点睛】本题考查了整式的混合运算,求代数式的值,非负性,掌握去括号与合并同类项法则是解题的关键.21.(1)78°;(2)80°.【分析】(1)根据角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)结合图形可得BOD BOC DOC ∠=∠+∠,然后将角度代入计算即可;(2)由互补可得180AOD BOD ∠+∠=︒,结合图形可得:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得12BOC AOC ∠=∠,利用等量代换得出321802AOC DOE ∠+∠=︒,将已知角度代入求解即可.【详解】解:(1)OB 是AOC ∠的平分线,且42AOB ∠=︒,OD 是COE ∠的平分线,且36DOE ∠=︒,∴42AOB BOC ∠=∠=︒,36COD DOE ∠=∠=︒,∴423678BOD BOC DOC ∠=∠+∠=︒+︒=︒,∴78BOD ∠=︒;(2)∵AOD ∠与BOD ∠互补,∴180AOD BOD ∠+∠=︒,由图知:AOD AOC COD ∠=∠+∠,BOD BOC COD ∠=∠+∠,由角平分线定义知:12BOC AOC ∠=∠,∴11802AOC DOE AOC DOE ∠+∠+∠+∠=︒,即321802AOC DOE ∠+∠=︒,∵30DOE ∠=︒,∴32301802AOC ∠+⨯︒=︒,即80AOC ∠=︒.22.(1)20192020(2)10102021【分析】①根据阅读部分得到的规律,列出式子进行计算即可;②由1111(1)13323==⨯-⨯,11111()3515235==⨯-⨯…,据此规律对原式变形计算即可.(1)解:111112233420192020++++⨯⨯⨯⨯ ;111111112233420192020-+-+-+- 211200=-20192020=;(2)解:111113355720192021++++⨯⨯⨯⨯ 11111111111123235257220192020⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111123355720192021⎛⎫=⨯-+--++- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭10102021=.23.(1)5cm ;(2)12cm 【分析】(1)根据线段中点的性质得出CM 和CN 的长,即可求出MN 的长;(2)由CM 和CN 的比例关系以及CN 的长,求出CM 的长,再根据中点的性质求出AC 和BC 的长,即可求出AB 的长.【详解】解:(1)∵M ,N 分别是AC ,BC 的中点,∴13cm 3CM AC ==,12cm 2CN BC ==,∴()325cm MN CM CN =+=+=;(2)∵线段CM 与线段CN 的长度之比为2:1,2cm CN =,∴线段4cm CM =,∵M ,N 分别是AC ,BC 的中点,∴28cm AC CM ==,24cm BC CN ==,∴()8412cm AB AC BC =+=+=.【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.24.(1)(1)甲厂收费为:0.2500x +元;乙厂收费为:0.4x 元;(2)乙厂更合算.【分析】(1)根据题意即可写出两印刷厂的收费;(2)把x=2400依次代入甲乙两厂的收费代数式即可求解比较.【详解】解:(1)甲厂收费为:0.2500x +元;乙厂收费为:0.4x 元.(2)将2400x =代入0.2500x +,得出0.22400500980⨯+=(元)将2400x =代入0.4x ,得出0.42400960⨯=(元)∴乙厂更合算.25.(1)200;(2)40,60;(3)72.【分析】(1)根据文学类人数及其所占百分比可得总人数;(2)用总人数乘以科普类所占百分比即可得n 的值,再将总人数减去其他类别人数可得m 的值;(3)用360°乘以艺术类占被调查人数的比例即可得.【详解】(1)本次调查中,一共调查学生70÷35%=200(名);(2)n=200×30%=60,m=200-70-60-30=40;(3)艺术类读物所在扇形的圆心角是360°×40200=72°.。
沪科版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学记数法表示为()A.603×B.6.03×C.60.3×D.0.603×2、方程组的解是()A. B. C. D.3、如图,作边长为4的等边,延长至点,使得,再以为边作等边.延长至点,使得=2 ,再以为边作等边,以此类推…….若点、、、……分别是、、、……的中点,则的长度为()A.6058B.6060C.6062D.60644、若的相反数是3,,且,则的值是()A.3B.3或-9C.-3或-9D.-95、已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2008的值为()A.2008B.2009C.2011D.20126、如果,其中xyz≠0,那么x:y:z=()A.1:2:3B.2:3:4C.2:3:1D.3:2:17、下列说法正确的是()A.不是正数的数一定是负数,不是负数的数一定是正数B.零是正数不是负数C.零既是正数也是负数D.零既不是正数也不是负数8、尺规作图作∠AOB的平分线如下:以O为圆心,任意长为半径画弧交OA、OB 于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,连结CD,则下列结论一定正确的个数有()个.①∠AOP=∠BOP;②OC=PC;③OA∥DP;④OP是线段CD的垂直平分线.A.1B.2C.3D.49、数中最大的是()A.1B.-3C.D.010、一个实数a的相反数是5,则a等于()A. B.5 C. D.-511、计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣412、下列各式中,合并同类项正确的是()A.2x+x=2x 2B.2x+x=3xC.a 2+a 2=a 4D.2x+3y=5xy13、按某种标准,多项式a2﹣2a﹣1与ab+b+2属于同一类,则下列符合此类标准的多项式是()A.x 2﹣yB.a 2+4x+3C.a+3b﹣2D.x 2y+y﹣114、已知x2+16x+k是完全平方式,则常数k等于()A.64B.48C.32D.1615、-3的相反数是()A.3B.C.-3D.二、填空题(共10题,共计30分)16、如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A 3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为 ________(结果用含正整数n的代数式表示).17、用围棋子按下面的规律摆图形,则摆第个图形需要围棋子的枚数是________.18、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB=________度.19、小明带X元钱,买每kgb元的桃子,买了3kg,还剩(________)元;如果X=30, b=4时,小明剩下(________)元。
沪科版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、计算a+(-a)的结果是()A.2aB.0C.-a 2D.-2a2、如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=38°,则∠AOD的度数是()A.52°B.90°C.104°D.142°3、下列各对数中,是互为相反数的是()A.+(﹣2)和﹣(+2)B.﹣(﹣2)和﹣2C.+(+2)和﹣(﹣2) D.(﹣2) 3和3 24、下列运算正确的是()A.5a 2+3a 2=8a 4B.a 3•a 4=a 12C.(a+2b)2=a 2+4b 2D.(a-b)(-a-b)=b 2-a 25、某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为()A.2.58×10 7元B.0.258×10 7元C.2.58×10 6元 D.25.8×10 6元6、将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.60567、已知且,则xy的值等于()A.10和-10B.10C.10D.以上答案都不对8、图为在某居民小区中随机调查的10户家庭一年的月均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是()A.6.5,7B.7,6.5C.7,7D.6.5,6.59、下列计算正确的是()A.a 4+a 4=2a 4B.C.(a 4) 3=a 7D.10、﹣7的相反数是()A. B.7 C.﹣ D.﹣711、小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况12、下列四个数中,最大的数是()A.0B.2C.﹣3D.413、下列结论正确的是()A.有理数包括正数和负数B.无限不循环小数叫做无理数C.0除以任何数都得0 D.两个有理数的和一定大于每一个加数14、已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°15、下列各式正确的是()A.﹣8+5=3B.(﹣2) 3 =6C.﹣2﹣1=﹣1D.(﹣2) 2 =4二、填空题(共10题,共计30分)16、如果﹣x m y与2x2y n+1是同类项,则m=________,n=________.17、若多项式与多项式相加后不含二次项,则的值为________.18、把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数为________.19、一项工程,甲单独做4天能完成工程的,那么甲的工作效率是________。
沪科版七年级上册数学期末考试试题一、单选题1.下列四个有理数中是负数的是()A .0B .12-C .2D .3.52.34-表示()A .3个4-相乘B .3个4相乘的相反数C .4个3-相乘D .4个3相乘的相反数3.数据“14.1亿”用科学记数法表示应为()A .14.1×108B .1.41×108C .1.41×109D .1.41×10104.某立体图形的表面展开图如图所示,这个立体图形是()A .B .C .D .5.若使方程()31m x -=是关于x 的一元一次方程,则m 的值是()A .3m ≠-B .0m ≠C .3m ≠D .3m >6.下列不是同类项的是()A .3ab -与3b aB .12与0C .23x y 与26xy -D .2xyz 与zyx-7.方程()3235x x --=去括号变形正确的是()A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=8.已知点A 、B 、P 在一条直线上,则下列等式中,能判断P 是线段AB 的中点的是()A .AP BP =B .12BP AB =C .2AB AP =D .AP PB AB+=9.把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1-C 2=()A .10cmB .20cmC .30cmD .40cm10.如图,若A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是()A .a+b <0B .b ﹣c >0C .ab >0D .0c d>二、填空题11.若一个角度数是115°6′,则这个角的补角是___________.12.若a 、b 互为相反数,则a-(2-b )的值为_____13.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列以及各条对角线上的三个数字之和均相等,则图中a 的值为______.14.如果x=-2是关于x 的方程3x+5=x-m 的解,则m=___________15.如图,在数轴上有A 、B 两个动点,O 为坐标原点.点A 、B 从图中所示位置同时向数轴的负方向运动,A 点运动速度为每秒2个单位长度,B 点运动速度为每秒3个单位长度,当运动___________秒时,点O 恰好为线段AB 中点.三、解答题16.(1)计算:29835245-÷--⨯+();(2)化简:2222212(126)3(2)2a b ab a b ab a b --+-.17.先化简再求值:3(3xy –x 2)−(2x 2−xy ),其中x=1,y=2.18.解方程:2531162x x -+-=19.(1)解方程:4372153x x ---=;(2)解方程组:3+2y=14y=6x x ⎧⎨--⎩20.某粮库10月23日到25日这3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):日期10月23日10月24日10月25日进出库情况26+,38-20-,34+32-,15-(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库的装卸费是每吨8元,出库的装卸费是每吨10元,那么这3天要付出多少装卸费?21.如图,点C 、D 是线段AB 上两点,AC ∶BC =3∶2,点D 为AB 的中点.(1)如图1所示,若AB =40,求线段CD 的长.(2)如图2所示,若E 为AC 的中点,ED =7,求线段AB 的长.22.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)若一用户需Ⅰ型的窗框2个,Ⅱ型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)已知y>x,求一个Ⅰ型的窗框比一个Ⅱ型的窗框节约这种材料多少米?23.某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了名学生,扇形统计图中D对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1800名学生,试估计该校选择“一般了解”的学生有多少人?24.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.(1)如图1,过点O作射线OE,使OE为∠AOD的角平分线,当∠COE=25°时,∠BOD的度数为;(2)如图2,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF 平分∠BOD,求∠EOF的度数;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,当∠EOF=10°时,求∠BOD的度数.参考答案1.B【分析】根据任何正数前加上负号都是负数依次判断即可.【详解】解:A既不是正数也不是负数;B是负数;C、D均为正数;故选:B.【点睛】题目主要考查正数和负数的定义,深刻理解正数、负数的定义是解题关键.2.B【分析】根据在一个数的前面加上负号就是这个数的相反数,乘方是几个相同因数的简便运算,可得答案.-⨯⨯,表示3个4相乘的相反数【详解】解:34-的底数为4,为444故选:B.【点睛】本题考查了有理数的乘方,注意34-的底数是4,(﹣4)3的底数是﹣4.3.C【详解】解:14.1亿写作1410000000,绝对值较大的数表示成10n a ⨯的形式1.41a =,1019n =-=∴14.1亿可表示成91.4110⨯故选C .【点睛】本题考查了科学记数法.解题的关键在于确定a n 、的值.4.A【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A .【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.C【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可【详解】解:∵方程()31m x -=是关于x 的一元一次方程,∴30m -≠即3m ≠,故选C .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.6.C【分析】根据同类项的性质,对各个选项逐个分析,即可得到答案.【详解】A 、3ab -与3b a ,所含字母相同,且相同的字母的指数也相同,是同类项,故本选项不合题意;B 、12与0,都是不含字母的单项式,是同类项,故本选项不合题意;C 、23x y 与26xy -,所含字母相同,但是相同字母的指数不相同,不是同类项,故本选项符合题意;D 、2xyz 与zyx -所含字母相同,且相同的字母的指数也相同,是同类项,故本选项不合题意;故选:C .【点睛】本题考查了同类项的知识;解题的关键是熟练掌握同类项的性质,有些字母顺序不同,只要确定所含字母相同,且相同的字母的指数也相同,就是同类项.7.D【分析】直接利用去括号法则化简得出答案即可.【详解】解:3x−2(x−3)=5,去括号得:3x−2x+6=5,故选:D .【点睛】本题主要考查了解一元一次方程,正确掌握去括号法则是解题关键.8.A【分析】根据线段中点的定义和性质判断选项的正确性.【详解】解:∵AP=BP ,且点A 、B 、P 在一条直线上,∴P 是线段AB 的中点,故A 正确;若12BP AB =,则点P 不一定在线段AB 上,不一定是线段AB 的中点,故B 错误;若2AB AP =,则点P 不一定在线段AB 上,不一定是线段AB 的中点,故C 错误;若AP PB AB +=,则点P 只要在线段AB 上就能满足,不一定是线段AB 的中点,故D 错误.故选:A .【点睛】本题考查线段的中点,解题的关键是掌握线段中点的定义和性质.9.D【分析】设图2与图3中的大长方形的宽为acm ,则长为()20+a cm ,图1中的长方形长为xcm ,宽为ycm ,结合图形分别表示出两个长方形的周长,然后相减即可得.【详解】解:设图2与图3中的大长方形的宽为acm ,则长为()20+a cm ,图1中的长方形长为xcm ,宽为ycm ,由图2可知:()1202440C a a a =++⨯=+;由图3可知:20x y a +=+,()()()222022=++-+-C a a x a y ,()24042=++-+a a x y ,6402(20)=+-+a a ,4a =,则21440440-=+-=C C a a (cm),故选:D .【点睛】题目主要考查整式加减的运用,理解题意,结合图形列出代数式是解题关键.10.B【分析】结合数轴,根据代数式性质计算,即可得到答案.【详解】根据题意,得:0a b c d<<<<∴0a b +<,0b c -<,0ab >,0c d>∴选项A 、C 、D 正确,选项B 错误;故选:B .【点睛】本题考查了数轴、代数式的知识;解题的关键是熟练掌握代数式的性质,从而完成求解.11.64°54'【分析】根据补角的定义(若两个角之和为180︒,则这两个角互为补角)进行求解即可得.【详解】解:180********''︒-︒=︒,故答案为:6454'︒.【点睛】题目主要考查补角的定义,理解补角的定义是解题关键.12.-2【分析】根据题意可先求出a=-b 的关系式,然后代入计算即可.【详解】解:∵a ,b 互为相反数,∴a=-b ,∴a-(2-b )=-b-2+b=-2.故答案为:-2.【点睛】本题考查了代数式求值、相反数的概念,根据相反数的概念得到a=-b 是解题的关键.13.-2【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为-6,则-6+a+2=-6,即可得.【详解】解:∵-1+0+(-5)=-6,∴-6+a+2=-6,解得:a=-2,故答案为:-2.14.-1【分析】把x=−2代入方程即可得到一个关于m 的方程,从而求解.【详解】解:把x=−2代入方程,得:−6+5=−2−m ,解得:m=-1,故答案是:−1.15.45【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒点A ,B 表示的数为,-2-2t ,6-3t ,根据题意可知-2-2t <0,6-3t >0,化简|-2-2t|=|6-3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点,根据题意可得,经过t 秒,点A 表示的数为-2-2t ,AO 的长度为|-2-2t|,点B 表示的数为6-3t ,BO 的长度为|6-3t|,因为点B 不能超过点O ,所以0<t <2,则|-2-2t|=|6-3t|,因为-2-2t <0,6-3t >0,所以,-(-2-2t )=6-3t ,解得t=45.故答案为:45.16.(1)6;(2)223a b ab --【分析】(1)先计算乘方,再计算乘除,最后计算加减,即可求解;(2)先去括号,再合并同类项,即可求解.【详解】解:(1)29835245-÷--⨯+()4895295=-⨯+⨯+482=-++6=;(2)2222212(126)3(2)2a b ab a b ab a b --+-2222226336a b ab a b ab a b=-++-223a b ab =--.17.10xy –5x 2,15.【分析】先去括号,再合并同类项完成化简,再将字母的值代入求值即可.【详解】解:3(3xy –x 2)−(2x 2−xy )=9xy –3x 2−2x 2+xy=10xy –5x 2,当x=1,y=2时,原式=10×1×2–5×12=20–5=15.【点睛】本题考查了整式的化简求值,掌握去括号、合并同类项法则是解题的关键.18.x =﹣2.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得,(2x ﹣5)﹣3(3x+1)=6,去括号得,2x ﹣5﹣9x ﹣3=6,移项得,2x ﹣9x =6+5+3,合并同类项得,﹣7x =14,系数化为1得,x =﹣2.19.(1)1423x =-;(2)12x y =-⎧⎨=⎩【分析】(1)先去分母,再去括号,然后移项合并同类项,即可求解;(2)由①+②×2可得1x =-,再代入②,即可求解.【详解】解:4372153x x ---=去分母得:()()34315572x x --=-,去括号得:129153510x x --=-,移项合并同类项得:2314x -=,解得:1423x =-;(2)3+2=14=6x y x y ⎧⎨--⎩①②由①+②×2得:1111x =-,解得:1x =-,把1x =-代入②得:()416y ⨯--=-,解得:2y =,∴原方程组的解为12x y =-⎧⎨=⎩.20.(1)3天前粮库里的存量525吨,(2)这3天要付出1098元装卸费.【分析】(1)先求出进库与出库粮食的总和,用总和的符号判定是出库还是进库,负出正进,是进库的用480减三天之和,是出库的用480加上三天总和计算即可;(2)用进库粮食吨数总和×8+出库粮食吨数总和×10计算即可.【详解】解:(1)26-38-20+34-32-15=(26+34)-(38+20+32+15)=60-105=-45,∴3天前粮库里的存量=480+45=525吨,(2)60×8+105×10=48+1050=1098元.∴这3天要付出1098元装卸费.21.(1)4(2)35【分析】(1)根据AC ∶BC =3∶2,AB =40,可得24AC =,再由点D 为AB 的中点.可得2201AD AB ==,即可求解;(2)设3,2AC x BC x ==,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x ==,再由E 为AC 的中点,可得1322AE AC x ==,从而得到DE AD AE x =-=,即可求解.(1)解:∵AC ∶BC =3∶2,AB =40,∴3402432AC =⨯=+,∵点D 为AB 的中点.∴2201AD AB ==,∴4CD AC AD =-=;(2)解:设3,2AC x BC x ==,则5AB x =,∵点D 为AB 的中点.∴1522AD AB x ==,∵E 为AC 的中点,∴1322AE AC x ==,∴5322DE AD AE x x x =-=-=,∵ED =7,∴7x =,∴535AB x ==.22.(1)1213x y +;(2)y x -【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个Ⅱ型的窗框的用料减去1个Ⅰ型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个Ⅰ型窗框用料(32x y +)米;1个Ⅱ型窗框用料(23x y +)米;(1)2个Ⅰ型窗框和3个Ⅱ型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y=+++1213x y =+;(2)1个Ⅱ型窗框和1个Ⅰ型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y=+--y x =-.23.(1)60名,18°;(2)见解析;(3)540人【分析】(1)“B 比较了解”的有24人,占调查人数的40%,可求出调查人数,进而求出“D 不了解”所占的百分比,进而计算其相应的圆心角的度数,(2)求出“A 非常了解”的人数,即可补全条形统计图;(3)样本估计总体,样本中“C 一般了解”的占1860,因此估计总体1800名学生的1860是“一般了解”的人数.【详解】解:(1)24÷40%=60(名),360°×360=18°;(2)60×25%=15(人),补全条形统计图如图所示:(3)1800×1860=540人,答:该校1500名学生中选择“一般了解”的有540人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.24.(1)50°(2)135°(3)55°或35°【分析】(1)根据已知求出EOD ∠,由角平分线定义可得2AOD EOD ∠=∠,根据平角定义可得结论;(2)由已知得出∠AOC+∠BOD=90°,由角平分线定义得出∠EOC=12∠AOC ,∠DOF=12∠BOD ,即可得出答案;(3)分OF 在OE 的左侧和右侧两种情况讨论求解即可.(1)∵OE 为∠AOD 的角平分线,∴2AOD EOD∠=∠又∵∠COD =90°,∠COE =25°∴65EOD ∠=︒,∴2130AOD EOD ∠=∠=︒,∴180********BOD AOD ∠=︒-∠=︒-︒=︒故答案为:50°;(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE 为∠AOC 的角平分线,OF 平分∠BOD ,∴∠EOC=12∠AOC ,∠DOF=12∠BOD ,∴∠EOF=∠COD+∠EOC+∠DOF=90°+12(∠AOC+∠BOD )=90°+12×90°=135°,(3)①如图∵OF 是COD ∠的角平分线∴1452COF COD ∠=∠=︒∵10EOF ∠=︒∴451035COE COF EOF ∠=∠-∠=︒-︒=︒∵OC 是AOE ∠的平分线∴35AOC COE ∠=∠=︒,∴180180359055BOD AOC COD ∠=︒-∠-∠=︒-︒-︒=︒②如图同理可得∴55AOC COE ∠=∠=︒,∴180180559035BOD AOC COD ∠=︒-∠-∠=︒-︒-︒=︒综上,BOD ∠的度数为55°或35°.。
1、在(―1)3,(―1)2,―22,(―3)2
这四个数中,最大的数与最小的数的和等于【 】 A .6 B .8 C .-5 D .5 2、新疆地区的面积约占我国国土面积的
6
1
,我国国土面积约9600000平方千米,用科学记数法表示新疆地区的面积为【 】 A .0.16×107平方千米 B .1.6×106平方千米 C .16×105平方千米 D .160×104平方千米 3、已知│x │=2,则下列四个式子中一定正确的是【 】 A .x=2 B .x=–2 C .x 2=4 D .x 3=8 4、已知代数式2x 2+3y+7的值是8,,那么代数式4x 2+6y+9的值是【 】 A .18 B .11 C .2 D .、1 5、下列统计活动中,适合用问卷调查方法收集数据的是【 】 ①班级同学的身高;②近五年清华大学招生数;③学生对数学学科教师的满意程度;④1小时某路口通过的车辆数.
A .①②
B .②③
C .①③
D .③④ 5、已知单项式–5x 3y n 与5x m +1y 3是同类项,则m -n 的值为【 】 A .5 B .–1 C .1 D .–5 6、下列说法中,不正确的是【 】
A .若点C 在线段BA 的延长线上,则BA =AC -BC
B .若点
C 在线段AB 上,则AB =AC +BC C .若AC +BC >AB ,则点C 一定在线段BA 外
D .若A 、B 、C 三点不在一直线上,则AB <AC +BC
7、右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学 补画的情况(图中阴影部分),
A B C D
2013-2014年度沪科版数学七年级上册期末测试卷1
8、一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意,下面所列的方程正确的是【 】
A .600×0.8-x=20
B .600×8-x=20
C .600×0.8=x-20
D .600×8=x-20
9、观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是【 】
A.2003年农村居民人均收入低于2002
年
B.农村居民人均收入比上年增长率低于9%的有2年
C.农村居民人均收入最多时2004年
D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加
10、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是【 】 A .买甲站的 B .买乙站的
C .买两站的都可以
D .先买甲站的1罐,以后再买乙站的
11、已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是【 】 A .a >b B .ab <0 C .a b ->0 D .b a +>0
2013-2014年度沪科版数学七年级上册期末测试卷2
12、下面是一个被墨水污染过的方程:
-=-
x x 21212 ,答案显示此方程的解
2005200420032001· · · 0
a
b
是
35=
x ,被墨水遮盖的是一个常数,则这个常数是【 】 A .2 B .-2 C .21-
D .21
13、能断定A 、B 、C 三点共线的是【 】
A .A
B =2,B
C =3,AC =4 B .AB =6,BC =6,AC =6 C .AB =8,BC =6,AC =2
D .AB =12,BC =13,AC =15 14、下面是反映世界人口情况的数据:1957年、1974年、1987年、1999年的世界人口数依次为30亿、40亿、50亿、60亿,预计2005年世界人口将达80亿,2050年世界人口将达90亿.上面的数据不能制成【 】
A .统计表
B .条形统计图
C .折线统计图
D .扇形统计图 15、“五·一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折.乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是【 】
A .甲比乙优惠
B .乙比甲优惠
C .两店优惠条件相同
D .不能进行比较 16、如图,∠AOB =130°,射线OC 是∠AOB 内部任意一条射线,OD 、O
E 分别是∠AOC 、∠BOC 的角平分线,下列叙述正确的是【 】
A .∠DOE 的度数不能确定
B .∠AOD =1
2∠EOC
C .∠AO
D +∠BO
E =65° D .∠BOE =2∠COD 二、填空题
17、某校办印刷厂今年四月份盈利6万元,记作+6元,五月份亏损了2.5万元,应计作______万元.
2013-2014年度沪科版数学七年级上册期末测试卷3
18、若2x+3与–1
3互为倒数,则x= ______.
19、一个角的补角比它的余角的4倍还多15
角的度数是 .
20、某中学对200名学生进行了关于“造成学生睡眠少 的原因”的调查,将调查结果制成扇形统计图(如图)
,
由图中的信息可知认为“造成学生睡眠少的主要原因是
作业太多”的人数有
名. 21、“鸡兔同笼”是我国古代《孙子算经》上的一道名题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?运用方程的思想,我们可以算出笼中有鸡______只.
22、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.
23.时钟在4点半时,时针与分针的夹角为 度.
24.若一个二元一次方程组的解为⎩
⎨
⎧=-=,1,2y x 则这个方程组可以是__________
25.已知4||=x ,
21
||=
y ,且xy <0,则y x 的值等于 . 26.若单项式523y x 与 1
312---n m y x 是同类项,则n m = . 27.若2)2(y x -与|52|-+y x 互为相反数,则2005
)(y x -= .
2013-2014年度沪科版数学七年级上册期末测试卷4
28.已知A 、B 、C 三点在同一直线上,AB =16cm ,BC =10cm ,M 、N 分别是AB 、BC 的中点,则MN 等于 .
29.已知:x -2y +3=0,则代数式(2y -x)2-2x +4y -1的值为 . 30. 一个长方形的周长为24cm.如果宽增加2cm ,就可成为一个正方形.则这个长方形的宽为__________cm.
31. 上午8∶00时,时针与分针夹角(钝角)为__________度.
1 2 3 n … …
32、班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条还任意转动;钉两颗钉子时,木条再也不动了. 用数学知识解释这种现象为_______________
33(1)
1
3
1
2
2
3
=
+
-
-x
x
;(2)
311
1
362
x x x
+-
-=-
.
(3)⎪⎩
⎪
⎨
⎧
=
-
+
=
+
.
11
)1
(2
,
2
3
1
y
x
y
x
(4)
()()
⎪⎩
⎪
⎨
⎧
=
-
-
+
=
-
+
+
2
5
4
6
2
2
y
x
y
x
y
x
y
x
2013-2014年度沪科版数学七年级上册期末测试卷5
34、矩形的长和宽如图所示,当矩形周长为12时,求a的值。
35.如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,∠BOC=70°(1)画出∠BOC的平分线OE;
(2)求∠COD和∠DOE的度数.
36、如图,直线AB与CD相交于点O,OP是∠BOC
的平分线,∠DOF=90,如果∠AOD=40°.
求:(1)∠COP的度数;
(2)∠BOF的度数.
2013-2014年度沪科版数学七年级上册期末测试卷6
37观察下表,填表后再解答问题:
a+3 3a–1
图形…
●的个数8 24 …
★的个数 1 4 …
(3)试求第几个图形中有120个“●”?并求该图形中有多少个“★”.
38、某药业集团生产的某种药品包装盒的侧面展开图如图所示.如果长方体盒子的
长比宽多4cm,求这种药品包装盒的体积.
2013-2014年度沪科版数学七年级上册期末测试卷7
39 在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买
门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
(1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,
用什么样的方式购票更省钱?2013-2014年度沪科版数学七年级上册期末测试卷8
14cm
长宽
高13cm。