2019届人教版九年级数学下册课件:第二十六章 《反比例函数》单元检测题(共56张PPT)
- 格式:ppt
- 大小:4.25 MB
- 文档页数:56
人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。
4、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 3>x 2>x 1D 、x 3>x 1>x 2 5、如图4,A 、C 是函数y=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1, Rt △COD 的面积为S 2,则( )A 、S 1>S 2;B 、S 1<S 2;C 、S 1 =S 2;D 、S 1和S 2的大小关系不能确定6、在反比例函数1k y x -=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .27、如图,正比例函数y=x 与反比例y=的图象相交于A 、C 两点,AB ⊥x轴于B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( ) A 、1 B 、 C 、2 D 、8、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 9、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 10、若反比例函数xy 4-=的图象经过点(a ,-a ),则a 的值为( ) A 、2; B 、±2; C 、-2; D 、±4二、填空题(每小题4分,共40分)11、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 .12、函数22)2(--=ax a y 是反比例函数,则a 的值是13、正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则k = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若时,,则的取值范围是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、 y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .17、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=.18、点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是___________.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,则△ABC 的面积S =___________三、解答题(共50分)21、(8分)已知 21y y y += 若1y 与2x 成正比例关系 ,2y 与x 成反比例关系 ,且当X=-1时,y=3.由x=1时,y=-5时, 求y与x的函数关系式?22、(10分)如图所示:已知直线y=x 21与双曲线y=)0(>k xk交于A B两点,且点A的横坐标为4⑴ 求k的值 ⑵ 若双曲线y=)0(>k xk上的一点C 的纵坐标为8,求△AOC 的面积23、(8分)在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值24、(24分)如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由. (4)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.参考答案1、B2、D3、B4、C5、C6、D7、C8、D9、D 10、B 11、(2,1)12、-1 , 13、-5 14、-3 , 15、K <-116、y=x 5, 17、418、y=x6, 19、420、4 , 21、y=-x 2- x422、k=8, △AOC 的面积=15 23、k=6,24、(1) y=x 4, y=2x-2(2) =3, (3)在, (4)、x <-1 或 0< x <2人教版九年级下册第二十六章《反比例函数》单元测试及答案一、选择题1、已知反比例函数(≠0)的图象,在每一象限内,的值随值的增大而减少,则一次函数的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限2、函数自变量x的取值范围是()A. 全体实数B.C.x<1D.x≠13、若反比例函数的图象过点(2,1),则这个函数的图象一定过点 ( )A.(2,—1) B.(1,—2) C.(—2,1) D.(—2,—1)4、反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<2 B.k≤2 C.k>2 D.k≥25、如图,过双曲线(k是常数,k>0,x>0)的图象上两点A,B分别作AC⊥x轴于C,BD⊥x轴于D,则△AOC的面积S1和△BOD的面积S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.S1与S2无法确定6、已知, , 是反比例函数的图象上的三点,且,则、、的大小关系是( )A .B .C .D .7、当m ,n 是实数且满足m ﹣n=mn 时,就称点Q (m ,)为“奇异点”,已知点A 、点B 是“奇异点”且都在反比例函数y=的图象上,点O 是平面直角坐标系原点,则△OAB 的面积为( )A .1B .C .2D .8、如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y=的图象经过A ,B 两点,则菱形ABCD 的面积为( )A .2B .4C .2D .49、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC边在直线l 上滑动,使A ,B 在函数y=的图象上.那么k 的值是( )A.3 B.6 C.12 D.10、物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为.当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为()11、将一定浓度的溶液加水稀释,能正确表示加入水的质量与溶液酸碱度关系的是()12、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应().A .不小于m 3B .小于m 3C .不小于m 3D .小于m 313、如图,平面直角坐标系中,矩形ABCO 与双曲线y=(x >0)交于D 、E 两点,将△OCD沿OD 翻折,点C 的对称点C ′恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .3C .D .二、填空题14、.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .15、如图所示,直线y=x+a ﹣2与双曲线y=交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为 .16、某单位要建一个200 m 2的矩形草坪,已知它的长是y m ,宽是x m ,则y 与x 之间的函数解析式为______________;若它的长为20 m ,则它的宽为________m.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是(填“相离”、“相切”或“相交”).18、如图,已知点A在反比例函数(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .19、直线与双曲线交于、两点,则的值是.20、在双曲线上有三点,已知,则的大小关系是 .(用“<”连接)21、.如图,已知反比例函数的图象上有一组点B1,B2,…,B n,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为,S1+S2+…+S n= (用含n的式子表示).22、如图,双曲线y=在第一象限内的图象与等腰直角三角形OAB相交于C点和D点,∠A=90°,OA=1,OC=2BD,则k的值是____.23、如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为 .24、如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是.25、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米。
人教版九年级下数学第二十六章反比例函数单元练习题(含答案).doc一、选择题1.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是() A.y1>y2B.y1=y2C.y1<y2D.不能确定2.将点P(4,3)向下平移1个单位长度后,落在函数y=的图象上,则k的值为() A.k=12B.k=10C.k=9D.k=83.函数y=ax2+1与函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.4.下列函数中,满足y的值随x的增大而增大的是()A.y=-2xC.y=D.y=x25.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N(次)与时间s(分)的函数关系图象大致是()A.B.C.D.6.在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<17.若y与x成反比例,x与z成反比例,则y与z的关系是()A.成正比例B.成反比例C.一次函数关系D.不能确定8.已知y=y1+y2,其中y1与成反比例且比例系数为k1,y2与x成正比例且比例系数为k2.若x=-1时,y=0,则k1,k2的关系为()B.k1k2=1C.k1k2=-1D.k1=k29.如图所示对应的函数解析式可能是()A.y=-B.y=-2xC.y=D.y=-10.给出的六个关系式:①x(y+1);②y=;③y=;④y=-;⑤y=;⑥y=;其中y是x的反比例函数是()A.①②③④⑥B.③⑤⑥C.①②④D.④⑥二、填空题11.已知y与x成反比例,且当x=-3时,y=4,则当x=6时,y的值为_______.12.已知三角形的面积是定值S,则三角形的高h与底a的函数关系式是h=____,这时h是a的______函数.13.设函数y=与y=x-2的图象的交点坐标为(a,b),则a2+b2的值为________.14.某住宅小区要种植面积为500 m2的矩形草坪,草坪长y(m)与宽x(m)之间的函数关系为____________________.15.在①y=;②y=-;③y=+1;④y=(a≠-1)四个函数中,为反比例函数的是______________.(填序号)16.在①y=2x-1;②y=-;③y=5x-3;④y=中,y是x的反比例函数的有______(填序号).17.某八年级学生在参与“学雷锋微博帮忙团”活动中,除5名“特困”学生未捐款外,其余学生共向灾区人民捐款4 000元,则平均每人捐款y(元)与该年级学生人数x(人) 之间的函数关系为________________.18.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为________________.19.某农业大学计划修建一块面积为2×106㎡的长方形实验田,该试验田的长y米与宽x米的函数解析式是______________.20.一批零件200个,一个工人每小时做10个,用关系式表示人数y(个)与完成任务所需的时间x(小时)之间的函数关系式为_______________.三、解答题21.已知圆锥的体积V=sh,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,请写出h关于s的函数解析式.22.画出y=-的图象.23.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.24.某地计划用120~180天(含120和180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5 000米3,工期比原计划减少了24天,则原计划和实际平均每天运送土石方各是多少万米3?25.画出反比例函数y=的图象.26.某气球充满了一定质量的气体,在温度不变的条件下,气球内气体的压强P(Pa)是气球体积V(m3)的反比例函数,且当V=1.5 m3时,P=16 000 Pa.(1)当V=1.2 m3时,求P的值;(2)当气球内的气压大于40 000 Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?27.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.28.作出反比例函数y=-的图象,并结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.答案解析1.【答案】A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.2.【答案】D【解析】点P(4,3)向下平移1个单位长度后得到点(4,2),把(4,2)代入函数y=中,得k=8,故选D.3.【答案】D【解析】分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,D选项图象符合.故选D.4.【答案】B【解析】A.在y=-2x中,k=-2<0,∴y的值随x的值增大而减小;B.在y=x-3中,k=1>0,∴y的值随x的值增大而增大;C.在y=中,k=1>0,∴y的值随x的值增大而减小;D.二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.5.【答案】D【解析】正常人做激烈运动停止下来后心跳次数随着时间的延长由快到慢逐渐趋向安静时正常心跳次数,即此段时间心跳次数N(次)与时间s(分)成反比例关系,所以其图象大致是选项D中的图象.6.【答案】A【解析】根据题意,在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,即可得k-1>0,解得k>1.故选A.7.【答案】A【解析】根据反比例关系的定义分别写出相应的解析式,根据y与z的数量关系即可进行判断.∵y与x成反比例,∴y=,∵x与z成反比例,∴x=,∴y=,故选A.8.【答案】A【解析】根据y1与成反比例且比例系数为k1,y2与x成正比例且比例系数为k2,可得k1的表示,k2的表示,根据y=y1+y2,若x=-1时,y=0,可得答案.k1=y1·,y2=k2x,y1=k1x,y=y1+y2,x=-1时,-k1-k2=0,k1+k2=0,故选A.9.【答案】D【解析】∵图象是双曲线,∴设函数关系式为y=,∵图象在第二、四象限,∴k<0,∴只有D符合条件,故选D.10.【答案】D【解析】①x(y+1)是整式的乘法,②y=不是反比例函数;③y=不是反比例函数,④y=-是反比例函数,⑤y=是正比例函数,⑥y=是反比例函数,故选D.11.【答案】-2【解析】设反比例函数为y=,当x=-3,y=4时,4=,解得k=-12.反比例函数为y=.当x=6时,y==-2,故答案为-2.12.【答案】反比例【解析】据等量关系“三角形的面积=×底边×底边上的高”列出函数关系式即可.由题意,得三角形的高h与底a的函数关系式是h=,由于S为定值,故h是a的反比例函数.13.【答案】10【解析】∵函数y=与y=x-2的图象的交点坐标为(a,b),∴ab=3,b=a-2,即a-b=2,∴a2+b2=(a-b)2+2ab=22+2×3=10.14.【答案】y=【解析】根据等量关系“矩形草坪长=矩形草坪面积÷矩形草坪宽”即可列出关系式.由题意,得草坪长y(m)与宽x(m)之间的函数关系为y=.15.【答案】①②④【解析】根据反比例函数的定义求解.为反比例函数的是y=;y=-;y=(a≠-1).所以反比例函数有①;②;④.16.【答案】①④【解析】①是反比例函数,②a=0时,不是反比例函数,③是一次函数,④是反比例函数.故答案为①④.17.【答案】y=(x>5)【解析】根据题意可得:平均每人捐款y(元)与该年级捐款学生人数(x-5)(人) 之积=4 000元,继而即可求出y与x的函数关系式.根据题意,得(x-5)×y=4 000,∴y=(x>5).18.【答案】(2,-3)【解析】根据题意知,点A与B关于原点对称,∵点A的坐标是(-2,3),∴B点的坐标为(2,-3).故答案是(2,-3).19.【答案】y=【解析】根据矩形的面积=长×宽,即可得出长y米与宽x米的函数解析式.由题意,得xy=2×106,故可得y=.20.【答案】y=【解析】根据等量关系“x个工人所需时间=工作总量÷x个工人工效”即可列出关系式.由题意,得人数x与完成任务所需的时间y之间的函数关系式为y==.故答案为y=.21.【答案】解∵V=sh,当h为10 cm时,底面积为30,∴V=×10×30=100(cm3),∴100=sh,∴h关于s的函数解析式为h=.【解析】首先根据已知求出V的值,进而代入V=sh,即可得出h与s的函数关系式.22.【答案】解列表,得描点,连线,得【解析】从正数,负数中各选几个值作为x的值,进而得到y的值,描点,连线即可.23.【答案】解(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v-20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v-20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t-(600-90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.【解析】(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.24.【答案】解(1)由题意,得y=,把y=120代入y=,得x=3;把y=180代入y=,得x=2,∴自变量的取值范围为2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意,得-=24,解得x=2.5或x=-3,经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去答:原计划每天运送2.5万米3,实际每天运送3万米3.【解析】(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据等量关系“工期比原计划减少了24天”列出方程求解即可.25.【答案】解列表,得描点,连线,得【解析】从正数,负数中各选几个值作为x的值,进而得到y的值,描点,连线即可.26.【答案】解(1)设函数解析式为P=,∵当V=1.5m3时,P=16 000 Pa,∴k=VP=24 000,∴P=,当V=1.2 m3时,P=20 000(Pa)(2)∵气球内的气压大于40 000(Pa)时,气球将爆炸,∴≤40 000,解之得V≥0.6,即气球的体积应不小于0.6 m3.【解析】(1)设出反比例函数解析式,利用待定系数法可得函数解析式;(2)根据题意,课列出不等式,可得气球体积的范围.27.【答案】解(1)设反比例函数的表达式为y=,把x=-1,y=2代入,得k=-2,所以反比例函数表达式为y=-.(2)将y=代入,得x=-3;将x=-2代入,得y=1;将x=-代入,得y=4;将x=代入,得y=-4,将x=1代入,得y=-2;将y=-1代入,得x=2,将x=3代入,得y=-.【解析】(1)设反比例函数的表达式为y=,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.28.【答案】解作出反比例y=-的图象,如图所示,(1)把x=2代入,得y=-=-2;(2)当x=1时,y=-4;当x=4时,y=-1,根据图象,得当1<x≤4时,y的取值范围为-4<y≤-1;(3)当y=1时,x=-4;当y=4时,x=-1,根据题意,得当1≤y<4时,x的取值范围为-4≤x<-1.【解析】作出反比例函数图象,如图所示,(1)把x=2代入反比例解析式求出y的值即可;(2)分别求出x=1与x=4时y的值,结合图象确定出y的范围即可;(3)分别求出y=1与y=4时x的值,结合图象确定出x的范围即可.九年级(下)第一次段测数学试卷(解析版)一、选择题(本大题共10小题,共30.0分)1.在将式子(m>0)化简时,小明的方法是:;小亮的方法是:;小丽的方法是:.则下列说法正确的是()A. 小明、小亮的方法正确,小丽的方法不正确B. 小明、小丽的方法正确,小亮的方法不正确C. 小明、小亮、小丽的方法都正确D. 小明、小丽、小亮的方法都不正确2.如图,丝带重叠的部分一定是()A. 正方形B. 矩形C. 菱形D. 都有可能3.若关于x的不等式组有实数解,则a的取值范围是()A. B. C. D.4.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对()A. 平均数、众数B. 平均数、极差C. 中位数、方差D. 中位数、众数5.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.6.如图,AT是⊙O的切线,AB是⊙O的弦,∠B=55°,则∠BAT等于()A.B.C.D.7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.B.C.D.8.如图,直线l上有两动点C、D,点A、点B在直线l同侧,且A点与B点分别到l的距离为a米和b米(即图中AA′=a米,BB′=b米),且A′B′=c米,动点CD之间的距离总为S米,使C到A的距离与D到B的距离之和最小,则AC+BD的最小值为()A. B.C. D.9.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A. B. C. D.10.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x 轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.分解因式:a2+2ab+b2-4=______.12.三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是______.13.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是______.14.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为______.15.二次函数y=x2-8x的最低点的坐标是______.16.二次函数y=x2+2的图象,与y轴的交点坐标为______.三、计算题(本大题共1小题,共10.0分)17.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个红球的概率为0.75.(1)根据题意,袋中有______个蓝球;(2)若第一次随机摸出一球,不放回,再随机摸出第二个球,请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).四、解答题(本大题共8小题,共92.0分)18.解方程:(1)=(2)+1=.19.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.20.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.21.如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tan B的值.22.已知关于x的一元二次方程x2-(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2-(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式.23.如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C.(1)求线段AB的长;(2)求以直线AC为图象的一次函数的解析式.24.Rt△ABC中,∠ACB=90°,CD为高线,点E在边BC上,且BE=2EC,连接AE,EF⊥AE,与边AB相交于点F.(1)如图1,当tan∠BAC=1时,求证:EF=2EG(2)如图2,当tan∠BAC=2时,则线段EF、EG的数量关系为______;(3)如图3,在(2)的条件下,将∠FEG绕点E顺时针旋转α,旋转后EF边所在的直线与边AB相交于点F′,EG边所在的直线与边AC相交于点H,与高线CD相交于点G′,若AH=3,且=,求线段G′H的长.25.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF∥AB交BC于点F,连接EF.(1)求证:OF⊥CE;(2)求证:EF是⊙O的切线;(3)若⊙O的半径为3,∠EAC=60°,求CD的长.答案和解析1.【答案】C【解析】解:在将式子(m>0)化简时,小明的方法是:===,正确;小亮的方法是:==,正确;小丽的方法是:===,正确,则小明、小亮、小丽的方法都正确.故选:C.小明的方法为原式分子分母乘以有理化因式,化简得到结果;小亮的方法为将分子利用二次根式性质化简,约分即可得到结果;小丽得方法为分子利用二次根式性质化简,再利用二次根式除法法则逆运算变形,计算即可得到结果.此题考查了分母有理化,根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.2.【答案】C【解析】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S=BC•AE=CD•AF.又AE=AF.▱ABCD∴BC=CD,∴四边形ABCD是菱形.故选:C.首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.3.【答案】A【解析】解:解不等式2x>3x-3,得:x<3,解不等式3x-a>5,得:x>,∵不等式组有实数解,∴<3,解得:a<4,故选:A.分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a的不等式,求出a的取值范围即可.本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a的不等式是解答此题的关键.4.【答案】D【解析】解:∵有一半的学生考79分以上,一半的学生考不到79分,∴79分是这组数据的中位数,∵大部分的学生都考在80分到85分之间,∴众数在此范围内.故选:D.根据两位老师的说法中的有一半的学生考79分以上,一半的学生考不到79分,可以判断79分是中位数,大部分的学生都考在80分到85分之间,可以判断众数.本题考查了统计量的选择,解题的关键是抓住题目中的关键词语.5.【答案】D【解析】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2+k开口向上与y 轴交点在原点下方,都不符;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,D符合.故它们在同一直角坐标系中的图象大致是D.故选:D.根据k>0,k<0,结合两个函数的图象及其性质分类讨论.本题主要考查二次函数、反比例函数的图象特点,熟练掌握函数图象的特点是解题的关键.6.【答案】C【解析】解:连接OA,则∠AOB=2∠BAT,OA⊥AT,∵OA⊥AT,∴∠OAT=90°,∴∠OAB=90°-∠BAT,∵∠B+∠AOB+∠OAB=180°,∴∠B+2∠BAT+90°-∠BAT=180°,解得∠BAT=35°.故选:C.连接OA,则∠AOB=2∠BAT,∠OAT=90°,故可用∠BAT表示出∠OAB的度数,再根据三角形的内角和定理解答即可.本题考查的是切线的性质及三角形内角和定理,解答此类问题往往通过作辅助线连接圆心和切点,利用垂直关系求解.7.【答案】B【解析】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故选:B.根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.本题考查了旋转的性质,利用旋转的性质是解题关键.8.【答案】D【解析】解:∵P′E=c-S,BE=a+b,∴P′B==,故选:D.做线段AP∥L且AP=S,且点P在点A的右侧,作P关于L的对称点P′,连接BP′交直线L于点D,在L上D的左侧截取DC=S,此时BP′即为所求的最小值,作P′E⊥BB′交BB′的延长线于E,利用勾股定理求解即可.考查最短路线问题及平移问题的综合应用;用平移和对称的知识综合解决最短路线问题是解决本题的关键;构造出直角三角形解决问题是解决本题的难点.9.【答案】B【解析】解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选:B.根据圆周角定理及已知对各个结论进行分析,从而得到答案.本题利用了相交弦定理,相似三角形的判定和性质,垂径定理求解.10.【答案】B【解析】解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(-,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(-)=b2-,∴ab=-3.∴a,b应满足关系式ab=-3.故选:B.利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.此题主要考查了平行四边形的性质以及矩形的性质和点的坐标关于一点中心对称的性质,灵活应用平行四边形的性质是解决问题的关键.11.【答案】(a+b+2)(a+b-2)【解析】解:原式=(a+b)2-22=(a+b+2)(a+b-2),故答案为:(a+b+2)(a+b-2).前三项利用完全平方公式分解,再进一步利用平方差公式分解可得.本题考查了分组分解法分解因式,分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.12.【答案】【解析】解:∵三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,其中函数的图象在第一象限内y随x的增大而增大的有y=3x,y=x2,∴所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是:.故答案为:.由三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,其中函数的图象在第一象限内y随x的增大而增大的有y=3x,y=x2,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.【答案】6【解析】解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是6故答案为:6首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.此题主要考查了由三视图判断几何体,考查了空间想象能力,解答此题的关键是要明确:由三视图想象几何体的形状,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状.14.【答案】【解析】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠B=∠C=60°,∴∠BAP+∠APB=180°-60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°-60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=3,CP=BC-BP=3-1=2,BP=1,即=,解得:CD=,故答案为:.根据等边三角形性质求出AB=BC=AC=3,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△BAP∽△CPD,主要考查了学生的推理能力和计算能力.15.【答案】(4,-16)【解析】解:y=x2-8x=(x-4)2-16,∵a=1>0,∴二次函数图象开口向上,二次函数y=x2-8x的最低点的坐标是(4,-16).故答案为:(4,-16).利用配方法将二次函数解析式由一般式变形为顶点式,由此即可找出该函数图象的最低点的坐标.本题考查了二次函数的最值,利用配方法将二次函数解析式由一般式变形为顶点式是解题的关键.16.【答案】(0,2)【解析】解:y=x2+2,当x=0时,y=0+2=2,即抛物线与y轴的交点坐标为(0,2),故答案为:(0,2).把x=0代入求出y,即可得出答案.本题考查了二次函数的图象和性质,能熟记二次函数的性质的内容是解此题的关键.17.【答案】1【解析】解:(1)设袋中有x个蓝球,根据题意得=0.75,解得x=1,即袋中有1个蓝球.故答案为1;(2)画树状图为:共有12种等可能的结果数,其中两球中至少一个球为蓝球的结果数为6种,所以P(A)==.(1)设袋中有x个蓝球,根据概率公式得到=0.75,然后解方程即可(2)先画树状图展示所有12种等可能的结果数,找出两球中至少一个球为蓝球的结果数,然后根据概率公式求解.本题考查了列表法或画树状图法:用列表法或画树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后根据概率的公式求事件A和B的概率.18.【答案】解:(1)由原方程,得2(x+1)=4,2x=4-2,x=1,经检验,x=1是原方程的增根,所以原方程无解.(2)由原方程,得x-3+x-2=-3,2x=-3+5,x=1,经检验,x=1是原方程的根.【解析】(1)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根;(2)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根.考查了解分式方程.解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19.【答案】解:(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据题意得:,解得:.答:该民营企业从外地购得A种商品400件,B种商品200件.(2)设租甲种货车a辆,则租乙种货车(6-a)辆,根据题意得:,解得:≤a≤,∵a为整数,∴a=3或4,∴有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【解析】(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据总价=单价×数量结合用14000元从外地购进A、B两种商品共600件,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设租甲种货车a辆,则租乙种货车(6-a)辆,由要一次性将A、B两种商品运往某城市,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再结合a为整数,即可找出各租车方案.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键。
第二十六章 反比例函数一、选择题【本大题共6小题,每小题5分,共30分)1、点【-3,4)在反比例函数y =k x的图象上,则下列各点中不在此函数图象上的是【 )A 、【-4,3)B 、【3,-4)C 、【2,-6)D 、【-6,-2)2、已知反比例函数y =-2x,下列结论不正确的是【 )A 、图象必经过点【-1,2)B 、y 随x 的增大而增大C 、图象在第二、四象限内D 、若x >1,则y >-23、当x >0时,四个函数y =-x ,y =2x +1,y =-1x ,y =2x,其中y 随x 的增大而增大的有【 )A 、1个B 、2个C 、3个D 、4个4、二次函数y =ax 2+b 【b >0)与反比例函数y =a x在同一平面直角坐标系中的图象可能是【 )图15、已知【x 1,y 1),【x 2,y 2),【x 3,y 3)是反比例函数y =-4x的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是【 )A 、y 3<y 1<y 2B 、y 2<y 1<y 3C 、y 1<y 2<y 3D 、y 3<y 2<y 16、反比例函数y 1=k x【0<k <3,x >0)与y 2=3x【x >0)的图象如图2所示,反比例函数y 1的图象上有一点A ,其横坐标为a ,过点A 作x 轴的平行线交反比例函数y 2的图象于点B ,连接AO ,BO ,若△ABO 的面积为S ,则S 关于a 的函数的大致图象是【 )图2图3二、填空题【本大题共6小题,每小题5分,共30分)7、已知点P 【3,-2)在反比例函数y =kx【k ≠0)的图象上,则k =________;在第四象限内,y 随x 的增大而________、8、已知反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是________、9、已知蓄电池的电压为定值,使用蓄电池时,电流I 【单位:A)与电阻R 【单位:Ω)是反比例函数关系,它的图象如图4所示、如果以此蓄电池为电源的用电器的限制电流不超过12 A,那么该用电器的可变电阻R 应控制的范围是________、图410.如图5,点A 在函数y =4x【x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为________、图511、如图6,已知双曲线y 1=1x 【x >0),y 2=4x 【x >0),P 为双曲线y 2=4x上的一点,且PA ⊥x 轴于点A ,PB ⊥y轴于点B ,PA ,PB 分别交双曲线y 1=1x于D ,C 两点,则△PCD 的面积为________、图612、如图7,直线y =x +4与双曲线y =k x【k ≠0)相交于A 【-1,a ),B 两点,在y 轴上找一点P ,当PA +PB 的值最小时,点P 的坐标为________、图7三、解答题【本大题共4小题,共40分)13、【8分)已知反比例函数y =kx【k 为常数,k ≠0)的图象经过点A 【2,3)、 【1)求这个函数的解析式;【2)判断点B 【-1,6),C 【3,2)是否在这个函数的图象上,并说明理由; 【3)当-3<x <-1时,求y 的取值范围、14、【10分)已知函数y 1=x -1和y 2=6x.【1)在所给的坐标系中画出这两个函数的图象; 【2)求这两个函数图象的交点坐标; 【3)观察图象,当x 在什么范围内时,y 1>y 2?图815、【10分)反比例函数y =k2x 和一次函数y =2x -1的图象如图9所示,其中一次函数的图象经过点【a ,b ),【a +k ,b +k +2),且点A 在第一象限,是两个函数图象的一个交点、【1)求反比例函数的解析式、【2)在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由、图916、【12分)如图10①所示,在△OAB 中,A 【0,2),B 【4,0),将△AOB 沿x 轴向右平移m 个单位长度,得到△O ′A ′B ′.【1)当m =4时,如图②所示,若反比例函数y =kx的图象经过点A ′,一次函数y =ax +b 的图象经过A ′,B ′两点,求反比例函数及一次函数的解析式;【2)若反比例函数y =k x的图象经过点A ′及A ′B ′的中点M ,求m 的值、图10详解详析1、[解析] D ∵点【-3,4)在反比例函数y =k x的图象上, ∴k =【-3)×4=-12. A 项,∵【-4)×3=-12,∴此点在该反比例函数的图象上,故本选项不符合题意、 B 项,∵3×【-4)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意、 C 项,∵2×【-6)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意、 D 项,∵【-6)×【-2)=12≠-12,∴此点不在该反比例函数的图象上,故本选项符合题意、 故选D. 2、B3、[解析] B 正比例函数y =-x 中,y 随x 的增大而减小;一次函数y =2x +1中,y 随x 的增大而增大;反比例函数y =-1x 中,k <0,x >0时,y 随x 的增大而增大;反比例函数y =2x中,k >0,x >0时,y 随x 的增大而减小、所以符合题意的有2个、故选B.4、B5、[解析] A ∵在反比例函数y =-4x中,k =-4<0,∴函数图象在第二、四象限,在每一象限内,y 随x 的增大而增大、 ∵x 1<x 2<0,∴0<y 1<y 2. ∵x 3>0, ∴y 3<0,∴y 3<y 1<y 2.故选A.6、[解析] B 延长BA 交y 轴于点C ,如图所示、∵S =S △OBC -S △OAC =12×3-12k =12【3-k ),∴S 为定值、故选B. 7、[答案] -6 增大[解析] ∵点P 【3,-2)在反比例函数y =k x【k ≠0)的图象上, ∴k =3×【-2)=-6. ∵k =-6<0,∴反比例函数y =-6x的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大、∴在第四象限内,y 随x 的增大而增大、 8、[答案] a >12[解析] ∵函数图象有一支位于第一象限, ∴2a -1>0,∴a >12.故填a >12.9、[答案] R ≥3 Ω[解析] 由题意可得I =UR .将【9,4)代入I =U R,得U =IR =36.∵以此蓄电池为电源的用电器的限制电流不超过12 A, ∴36R≤12,解得R ≥3 Ω.10、[答案] 2 6+4[解析] ∵点A 在函数y =4x 【x >0)的图象上,∴设点A 的坐标为【n ,4n)【n >0)、在Rt △ABO 中,∠ABO =90°,OA =4, ∴OA 2=AB 2+OB 2. 又∵AB ·OB =4n·n =4,∴【AB +OB )2=AB 2+OB 2+2AB ·OB =42+2×4=24, ∴AB +OB =2 6或AB +OB =-2 6【舍去)、∴C △ABO =AB +OB +OA =2 6+4. 11、[答案] 98[解析] ∵点P 在双曲线y 2=4x 上,∴可设点P 的坐标为【a ,4a ),∴点C 的纵坐标为4a,点D 的横坐标为a .∵点C ,D 在双曲线y 1=1x 上,∴点C ,D 的坐标分别为【a 4,4a ),【a ,1a ),∴PC =a -a 4=34a ,PD =4a -1a =3a,∴S △PCD =12·34a ·3a =98.12、[答案] 【0,52)[解析] 把点A 的坐标【-1,a )代入y =x +4,得-1+4=a ,解得a =3,即A 【-1,3)、把点A 的坐标代入双曲线的解析式y =k x,得3=-k ,解得k =-3.联立两函数解析式,得⎩⎪⎨⎪⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-1,y 1=3,⎩⎪⎨⎪⎧x 2=-3,y 2=1, ∴点B 的坐标为【-3,1)、作点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为满足要求的点P ,此时PA +PB 的值最小,点C 的坐标为【1,3)、设直线BC 的解析式为y =mx +b ,把B ,C 两点的坐标代入y =mx +b , 得⎩⎪⎨⎪⎧-3m +b =1,m +b =3,解得⎩⎪⎨⎪⎧m =12,b =52,∴直线BC 的函数解析式为y =12x +52,与y 轴的交点坐标为【0,52)、13、解:【1)∵反比例函数y =k x的图象经过点A 【2,3),把点A 的坐标代入解析式,得3=k2,解得k =6.∴这个函数的解析式为y =6x.【2)点B 不在这个函数的图象上,点C 在这个函数的图象上、 理由:分别把点B ,C 的坐标代入y =6x,可知点B 的坐标不满足函数解析式,点C 的坐标满足函数解析式, ∴点B 不在这个函数的图象上,点C 在这个函数的图象上、 【3)∵当x =-3时,y =-2; 当x =-1时,y =-6.又由k >0,知当x <0时,y 随x 的增大而减小, ∴当-3<x <-1时,-6<y <-2.14、[解析] 【1)画图的步骤:列表,描点,连线、需注意函数y 1的自变量取值范围是全体实数;函数y 2的自变量取值范围是x ≠0.【2)交点都适合这两个函数解析式,应让这两个函数解析式组成方程组求解即可、 【3)从交点入手,看在交点的哪一边一次函数的函数值大于反比例函数的函数值、解:【1)函数y 1的自变量的取值范围是全体实数;函数y 2的自变量的取值范围是x ≠0.列表可得:x …-5-4-3-2-112345…y 1=x-1 … -6 -5 -4 -3 -2 0 1 2 3 4 …y 2=6x…-65 -32-2 -3 -6 6 3 232 65…【2)联立两个函数解析式,得⎩⎪⎨⎪⎧y =x -1,y =6x, 解得⎩⎪⎨⎪⎧x 1=-2,y 1=-3,⎩⎪⎨⎪⎧x 2=3,y 2=2. ∴两函数图象的交点坐标分别为【-2,-3),【3,2)、【3)观察图象可得:当-2<x <0或x >3时,y 1>y 2.15、解:【1)∵一次函数y =2x -1的图象经过点【a ,b ),【a +k ,b +k +2),∴⎩⎪⎨⎪⎧b =2a -1,b +k +2=2(a +k )-1,解得k =2, ∴反比例函数的解析式为y =1x. 【2)存在、由⎩⎪⎨⎪⎧y =1x ,y =2x -1,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-12,y =-2,∴点A 的坐标是【1,1),∴OA = 2.①当OA =OP 时,点P 的坐标为【-2,0)或【2,0);②当AO =AP 时,点P 的坐标为【2,0);③当PO =PA 时,点P 的坐标为【1,0)、综上所述,点P 的坐标为【-2,0)或【2,0)或【2,0)或【1,0)、16、解:【1)由题意知:点A ′的坐标为【4,2),点B ′的坐标为【8,0),∵反比例函数y =kx的图象经过点A ′, ∴k =4×2=8,∴反比例函数的解析式为y =8x. 分别把【4,2),【8,0)代入y =ax +b ,得⎩⎪⎨⎪⎧4a +b =2,8a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =4.∴经过A ′,B ′两点的一次函数的解析式为y =-12x +4. 【2)当△AOB 沿x 轴向右平移m 个单位长度时,点A ′的坐标为【m ,2),点B ′的坐标为【m +4,0), 则A ′B ′的中点M 的坐标为【m +2,1),∴2m =m +2,解得m =2,∴当m =2时,反比例函数y =k x 的图象经过点A ′及A ′B ′的中点M .。
人教版九年级数学下册《第26章反比例函数》单元测试题一.选择题(共10小题,每小题3分,满分30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有( )A.0个B.1个C.2个D.3个2.关于反比例函数y=,下列说法错误的是( )A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=23.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为( )A.4B.5C.6D.84.如图,在反比例函数y=(x>0)的图象上有A,B,C,D四点,他们的横坐标依次是1,2,3,4,分别过这些点作x轴和y轴的垂线,图中构成的阴影部分的面积从左到右依次是S1,S2,S3.则下列结论正确的是( )A.S1=S2+S3B.S1=2S2﹣S3C.S1=2S2+S3D.S1=2S2+2S35.函数y=和y=kx+2(k≠0)在同一直角坐标系中的大致图象是( )A.B.C.D.6.已知点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,则( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2 D.y2<y1<y37.已知(x1,y1)和(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1与y2的大小关系是( )A.y1<y2B.y1≤y2C.y1>y2D.y1≥y28.在平面直角坐标系中,点A是双曲线y1=(x>0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2=(x<0)交于点B,连接AB,已知=2,则=( )A.4B.﹣4C.2D.﹣29.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数图象上的三点,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定10.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为( )A.﹣2B.﹣3C.﹣6D.﹣8二.填空题(共6小题,每小题3分,满分18分)11.如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为 .12.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是 .13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值 .14.如图,Rt△AOB的一条直角边OA在x轴上,且S△AOB=2,若某反比例函数图象的一支经过点B,则该反比例函数的解析式为 .15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为 .16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为 .三.解答题(共6小题)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为 ;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.18.如图,直线y1=2x﹣6与反比例函数y2=的图象交于点A(4,2).(1)求k的值及另一个交点的坐标;(2)当y1<y2时,求x的取值范围.19.已知:如图,两点A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)图象的两个交点.(1)求一次函数和反比例函数的的解析式.(2)求△AOB的面积.(3)观察图象,直接写出不等式kx+b≥的解集.20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?参考答案一.选择题1.解:①y=﹣2x是正比例函数;②y=是反比例函数;③y=x﹣1是反比例函数;④y=5x2+1是二次函数,反比例函数共2个,故选:C.2.解:A、图象关于原点对称,故原题说法正确;B、在每一象限内y随x的增大而减小,故原题说法错误;C、图象分别位于第一、三象限,故原题说法正确;D、若点M(a,b)在其图象上,则ab=2,故原题说法正确;故选:B.3.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.4.解:∵S1=1×(k﹣)=,S2=1×(﹣)=,S3=1×(﹣)=,∴S1=2S2+2S3.故选:D.5.解:在函数y=和y=kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数y=的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选:B.6.解:∵k2+1>0,∴反比例函数y=的图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小.∵﹣3<0,∴C(﹣3,y3)在第三象限,∴y3<0.∵0<1<2,∴点A(1,y1),B(2,y2)在第一象限.∵2>1,∴0<y2<y1,∴y3<y2<y1.故选:B.7.解:∵反比例函数y=中,k=1>0,∴图象位于第一、三象限,∴当x1<x2<0时,y1>y2.故选:C.8.解:作AD⊥x轴于D,BE⊥x轴于E,∵点A是双曲线y1=(x>0)上的点,点B是双曲线y2=(x<0)上的点,∴S△AOD=|k1|=k1,S△BOE=|k2|=﹣k2,∵∠AOB=90°,∴∠BOE+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOE=∠OAD,∵∠BEO=∠ADO=90°,∴△BOE∽△OAD,∴=()2,∴=22,∴=﹣4,故选:B.9.解:∵点A(﹣1,y1),B(1,y2),C(2,y3)是函数图象上的三点,∴y1=﹣=1,y2=﹣=﹣1,y3=﹣=﹣.∵﹣1<﹣<1,∴y2<y3<y1故选:B.10.解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(﹣1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入y=,得y=2,∴B(1,2),∴BN=2,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴PM=OA+AM=1+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×2=﹣6,故选:C.二.填空题11.解:依据比例系数k的几何意义可得,△PAO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.12.解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,∴m+2>0,∴m>﹣2,故答案为:m>﹣2.13.解:∵当x>0时,y随x的增大而减小,∴m﹣2>0,解得:m>2,∴m可以是4,故答案为:4.14.解:设反比例函数的关系式为y=,由题意得,S△AOB=2=|k|,所以k=﹣4或k=4(舍去),反比例函数的关系式为y=﹣,故答案为:y=﹣.15.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|=×6=3,则△ABC的面积为6,故答案为6.16.解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=2CD,∴S△OAE=S△OEB=1=|k|,∴k=2或k=﹣2(舍去),故答案为2.三.解答题17.解:(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率为=;故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x,y)在反比例函数y=图象上的有4种,因此点(x,y)在反比例函数y=图象上的概率P==.18.解:(1)把A(4,2)代入y2=中得:2=,解得k=8,由解得或,∴另一个交点坐标为(﹣1,﹣8);(2)观察图象可知,当y1<y2时,x的取值范围是0<x<4或x<﹣1.19.解:(1)∵A(﹣4,2)在上,∴m=﹣4×2=﹣8.∴反比例函数的解析式为.∵B(n,﹣4)在上,∴n=2,∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴,解之得,∴一次函数的解析式为y=﹣x﹣2;(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO==6;(3)由图可得,不等式kx+b≥的解集为x≤﹣4或0<x≤2.20.解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(4,),N(,4),∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣×4×﹣(4﹣)2=6,解得k=8.21.解:(1)有图象知,a=3;又由题意可知:当3≤x≤8时,y与x成反比,设.由图象可知,当x=3时,y=6,∴m=3×6=18;∴y=(3≤x≤8);(2)把y=3分别代入y=2x和y=得,x=1.5和x=6,∵6﹣1.5=4.5>4,∴抗菌新药可以作为有效药物投入生产.22.解:(1)由表可知,xy=6000,∴y=(x>0);(2)根据题意,得:W=(x﹣2)•y=(x﹣2)•=6000﹣;(3)∵x≤10,∴6000﹣≤4800,即当x=10时,W取得最大值,最大值为4800元,答:当日销售单价x定为10元/个时,才能获得最大日销售利润,最大利润是4800元.。
人教版九年级下《第26章反比例函数》单元检测试卷【有答案】教版九年级数学下册第26章反比例函数单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知反比例函数的图象经过点,则它的解析式是()A. B. C. D.2.函数的图象可能是()A. B.C. D.3.若直线与双曲线相交于点,则等于()A. B. C. D.4.已知正比例函数与反比例函数的图象交于、两点,若点,则点的坐标为()A. B. C. D.5.购买斤水果需元,购买一斤水果的单价与的关系式是()A. B.(为自然数)C.(为整数)D.(为正整数)6.对于反比例函数,当自变量的值从增加到时,函数值减少了,则函数的解析式为()A. B. C. D.7.已知与成正比例,与成反比例,则与之间的关系为()A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例8.在同一直角坐标系下,直线与双曲线的交点的个数为()A.个B.个C.个D.不能确定9.反比例函数的图象如图,点是该函数图象上一点,轴,垂足是点,如果,则的值为()A. B. C. D.10.若,则在同一直角坐标系内,函数和的图象大致是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若正比例函数和反比例函数的图象的一个交点为、,则另一个交点为________.12.反比例函数,其图象分别位于第一、第三象限,则的取值范围是________.13.已知点是反比例函数上一点,矩形的周长是,正方形和正方形的面积之和为,则反比例函数的解析式是________.14.如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为平行四边形,则它的面积为________.15.如图,直线,分别与双曲线在第一象限内交于点,,若,则________.16.已知,,是反比例函数的图象上的三点,且,则,,的大小关系是________.17.若,在函数的图象上,则当、满足________时,.18.已知近视眼镜的度数与镜片焦距成反比例,若度近视眼镜镜片的焦距是,则与的函数关系式为________.19.若点在反比例函数的图象上,则________.20.双曲线的部分图象如图所示,那么________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.已知反比例函数的图象经过点.求的值;在如图所示的正方形网格中画出这个函数的图象.22.如图所示的曲线是一个反比例函数的图象的一支,且经过点.求该曲线所表示的函数解析式;当时,根据图象请直接写出的取值范围.23.如图,点是反比例函数在第二象限内图象上一点,点是反比例函数在第一象限内图象上一点,直线与轴交于点,且,连接、,求的面积.24.如图,将透明三角形纸片的直角顶点落在第四象限,顶点、分别落在反比例函数图象的两支上,且轴于点,轴于点,分别与轴,轴相交于点,,点的坐标为.(1)________;试说明;当四边形的面积和的面积相等时,求点的坐标.25.如图,一次函数的图象与反比例函数的图象相交于、两点.根据图象,分别写出、的坐标;求出两函数解析式;根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.26.如图,已知反比例函数的图象与正比例函数的图象交于点,求正比例函数的解析式及两函数图象另一个交点的坐标;试根据图象写出不等式的解集.答案1.D2.C3.A4.A5.A6.A7.B8.C9.D10.D11.12.13.或14.15.16.17.,,18.19.20.21.解:把点代入,得,解得.由知,该反比例函数为,即该反比例函数图象上点的横、纵坐标的乘积为,其图象如图所示:22.解:设反比例函数解析式为,∵图象经过,∴ ,∴反比例函数解析式为;由反比例函数图象可直接看出当时,.23.解:分别过、两点作轴,轴,垂足为、,∵ ,∴ ,设,则,故梯形.24.;反比例函数解析式为,设点坐标为,∵ 于点,于点,∴ 点坐标为,点坐标为,点坐标为,∴,,,,∴,,∴,∴ ; ∵四边形的面积,∴••,整理得,解得,(舍去),∴ 点坐标为.25.解:由图象得,.设一次函数的解析式为,;把、点的坐标代入得解得,∴一次函数的解析式为,设反比例函数的解析式为,把点坐标代入得,解得,∴反比例函数的解析式为.当或时一次函数的值反比例函数的值.26.解: ∵点过反比例函数的图象,则有,∴ .又∵正比例函数,∴ ,∴ .另一个交点和点关于原点对称,∴ 坐标为.∴正比例函数解析式为,另一个交点的坐标为;根据图象得:不等式的解集是或.。
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=-8xD.y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y都随x的增大而增大,则k的值可以是()A.2 B.0 C.﹣2 D.14.函数y=﹣x+1与函数y= -2x在同一坐标系中的大致图象是()DCBAy yyy5.若正比例函数y=﹣2x与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)6.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()xC.4 D.5k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x是反比例函数?18.(本题8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y2在第一象限的图象,1y=4x,过y1上的任意一点A,作x轴的平行线交y2于y2的解析式.=4xy=kx的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC (2)若CD=1,求直线OC的解析式.y轴对称的点的坐标是.(2)反比例函数y=3x关于y轴对称的函数的解析式为.(3)求反比例函数y=kx(k≠0)关于x轴对称的函数的解析式.22.(本题10分)如图,Rt△ABC的斜边AC的两个顶点在反比例函数y=1kx的图象上,点B在反比例函数y=2kx的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交于点A(﹣1,4)(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.24.(本题12分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直与x 轴,垂足为点B ,反比例函数y=kx(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB=4,AD=3, (1)求反比例函数y=kx的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误; B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x 的未知数的次数是﹣2;故本选项错误. 故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则S=12 ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.3.【答案】∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1﹣k<0,∴k>1.故k可以是2(答案不唯一),故选A.4.【答案】函数y=﹣x+1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A.5.【答案】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,2),∴另一个交点的坐标是(1,﹣2).故选B.6.【答案】∵点A是反比例函数y=kx图象上一点,且AB⊥x轴于点B,∴S△AOB=12|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.7.【答案】∵反比例函数y=kx(k≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B、﹣12×4=﹣2,故此点,在反比例函数图象上;C、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D、12×4=2≠﹣2,故此点不在反比例函数图象上.故选B.8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B.9.【答案】依照题意画出图形,如下图所示.x6x ﹣n=0, ∴mn ≥﹣9. 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m= 故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2). 14.【答案】:∵反比例函数y=kx的图象过点P (2,6),∴k=2×6=12,故答案为:12. 15.【答案】根据题意,得﹣3=k2,解得,k=﹣6. 16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12. 故答案为:12.18.【解答】∵在矩形OABC 中,OA=3,OC=2,∴B (3,2), ∵F 为AB 的中点,∴F (3,1), ∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0); 19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB , k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ), ∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3, ∴x •y=﹣6,而xy=k ,∴k=﹣6, ∴所求反比例函数解析式为y=﹣6x; (2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6. ∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3, 即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x; (3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x, ∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x 得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2k x 得k 2=3×3=9, 所以点B 所在函数图象的解析式为y=9x. 23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上, ∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点, 的坐标为(﹣12,2). 2,2). 24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ), ∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+). ∵点C 、点D 均在反比例函数y=kx的函数图象上,解得:m=1,k=4. ∴反比例函数的解析式为y=4x. (2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴,cos∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
人教版九年级下第二十六章反比例函数测试卷含答案第二十六章 反比例函数单元测试卷一.选择题:(每题3分,共21分)1.下列函数中,变量y 是x 的反比例函数的是( ).A . 21xy =B .1--=x y C .32+=x y D .11-=x y 2.在物理学中压力F ,压强p 与受力面积S 的关系是:SFp =则下列描述中正确的是( ).A 当压力F 一定时,压强p 是受力面积S 的正比例函数;B 当压强p 一定时,压力F 是受力面积S 的反比例函数;C 当受力面积S 一定时,压强p 是压力F 的反比例函数;D 当压力F 一定时,压强p 是受力面积S 的反比例函数3.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(-4.若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( ).5.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图 象如图所示.当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (13题图) A .不大于3m 3524;B .不小于3m 3524;C .不大于3m 3724;D .不小于3m 37246.如图,正比例函数k 1-( ). A B C DA .B .C .D .7.正方形ABCD 的顶点A (2,2),B(-2,2)C(-2,-2),反比例函数xy 2=与x y 2-=的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是( ) . A 、2 B 、4 C 、8 D 、6二.填空题:(每题3分,共24分)8.函数13--=x y 的自变量的取值范围是 . 9.反比例函数xy 6=当自变量2-=x 时,函数值是 .10.图象经过点)4,2(--A 的反比例函数的解析式为 . 11.当0<x 时,反比例函数xy 3-=中,变量y 随x 的增大而 . 12.函数2||)1(--=k x k y 是y 关于x 反比例函数,则它的图象不经过 的象限.13.反比例函数x ky =与一次函数2+=x y 图象的交于点),1(a A -,则=k . 14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中021<<x x 且21y y >,则k 的范围是 .15.已知:点A 在反比例函数图象上,B x AB 轴于点⊥, 点C (0,1),且AB C ∆的面积是3,如图,则反比 例函数的解析式为 . 三.解答题:(共55分) 16、(9分)函数12)1(---=m m xm y 是反比例函数,(1)求 m 的值;(2)指出该函数图象所在的象限,在每个象限内,y 随x 的增大如何变化?;(3)判断点(12 ,2)是否在这个函数的图象上.17、(9分)如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使一次函数的值大于反比例函数的值的x18.(10分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积)S 2其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条粗1.6 mm 2时,面条的总长度是多少米?19.(10分)如图,正方形ABCD 的边长是2,E ,F 分别在BC ,CD 两边上,且E ,F 与BC ,CD 两边的端点不重合,AEF ∆的面积是1,设BE=x ,DF=y.(1)求y 关于x 函数的解析式;(2) 判断在(1)中,y 关于x 的函数是什么函数? (3)写出此函数自变量x 的范围.20.(7分)已知:反比例函数的图象经过)2,1(a a A )1,12(aaa a B ---两点, 〈1〉 求反比例函数解析式;〈2〉 若点C )1,(m 在此函数图象上,则ABC ∆的面积是 .(填空)21.(10分)如图,已知直线m x y +=1与x 轴,y 轴分别交于点A 、B ,与双曲线xky =2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). ⑴ 分别求出直线及双曲线的解析式;⑵利用图象直接写出,当x 在什么范围内取值时,21y y >.xyD CBAO答案:一、选择题:1.B ;2.D ;3.B ;4.B ;5.B ;6.D ;7.C 二.填空题:8.1≠x ;9.3-=y ;10.xy 8=;11.增大;12.第一、三象限;13. ,1- 14.1->k 15.xy 6=; 三.解答题:16.解:(1)m 2-m-1=-1,m=0或m=1.因为m-1≠0,所以m=0.(2)所以解析式为x y 1-=,在每个象限内y 随x 的增大而增大;(3)将x=21代入得:y=-2. 17.(1)将A(-2,1)代入y=x m 得:m=-2.所以反比例函数y=x2-,将(1,n )代入反比例函数得:n=-2.将(-2,1),(1,-2)代入y=kx+b 中,得k=-1,b=-1,所以y=-x-1.(2)x<-2或0<x<1.18(1) xy 128= (2)80m ; 19.(1)3+=x y xy 2-=(2)12-<<-x20.<1>x y 2=,<2> 3 21.(1)xy 2=(2)反比例函数(3)20<≤x。
人教版九年级数学下册第26章反比例函数单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列函数中表示y是x的反比例函数的是()A.y=−2xB.y=2008xC.y=8x+1D.y=2x22. 已知点(1, 1)在反比例函数y=kx(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是()A. B.C. D.3. 对于反比例函数y=−3x,下列说法正确的是()A.它的图象在第一、三象限B.点(1, 3)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大4. 若反比例函数y=1x的图象上有两点P1(1, y1)和P2(2, y2),那么()A.y2<y1<0B.y1<y2<0C.y2>y1>0D.y1>y2>05. 在同一平面直角坐标系中,函数y=−x+k(−2<k<2)与y=1x的图象的公共点的个数是()A.0个B.1个C.2个D.3个6. 购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=24x(x>0) B.y=24x(x为自然数)C.y=24x(x为整数) D.y=24x(x为正整数)7. 下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在这个函数图象上的点是()A.(5, 1) B.(−1, 5)C.(53, 3) D.(−3, −53)8. 已知反比例函数y=kx(k<0)的图象上有两点A(x1, y1),B(x2, y2),且0<x1<x2,设y1−y2=a,则()A.a>0B.a<0C.a≥0D.a≤09. 下列四个关系式中,y是x的反比例函数的是()A.y=4xB.y=13xC.y=1x2D.y=1x+1精品 Word 可修改欢迎下载10. 已知反比例函数y=m2x 的图象过点(−3, −12),且y=mx的图象位于二、四象限,则m的值为()A.36B.±6C.6D.−6二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知点(a, −1)在反比例函数y=2x的图象上,则a=________.12. 已知反比例函数y=kx(k≠0)的图象与正比例函数y=mx(m≠0)的图象交于点(2, 1),则其另一个交点坐标为________.13. 反比例函数y=(2k+1)x k2−2在每个象限内y随x的增大而增大,则k=________.14. 若点(√3,−√3)在反比例函数y=kx(k≠0)的图象上,则k=________.15. 已知反比例函数y=k−1x的图象在第二、四象限内,那么k的取值范围是________.16. 设函数y=x−3与y=2x 的图象的两个交点的横坐标为a、b,则1a+1b=________.17. 有一块长方形试验田面积为3×106m2,试验田长y(单位:m)与宽x(单位:m)之间的函数关系式是________.18. 已知反比例函数y=2x的图象经过点A(m, 1),则m的值为________.19. 已知函数y=(m2+2m−3)x|m|−2.(1)若它是正比例函数,则m=________;(2)若它是反比例函数,则m=________.20. 双曲线y=kx 的部分图象如图所示,那么k=________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 已知函数y=2m+1x m2−24的图象是双曲线.(1)求m的值;(2)若该函数的图象经过第二、四象限,求函数的表达式.22. 已知反比例函数y=kx(k为常数,且k≠0)的图象经过点A(2, 3)(1)画出这个反比例函数的图象并观察,这个函数的图象位于哪些象限?y随x怎样变化?(2)判断点B(−1, 6),C(3, 2)是否在这个函数的图象上,并说明理由.精品 Word 可修改欢迎下载23. 在平面直角坐标系xOy中,已知:直线y=−x反比例函数y=kx的图象的一个交点为A(a, 3).(1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线l的另一个交点坐标.24. 已知反比例函数y=1−2mx的图象经过点(−1, 4).(1)试确定m的值;(2)图象经过哪些象限?(3)若A(−1, y1),B(−4, y2),C(1, y3)是该函数图象上的点,试比较y1,y2,y3的大小;(4)直接回答点D(2, −2),E(−14, 16)是否在这个函数的图象上.25. 已知A(x1, y1),B(x2, y2)是反比例函数y=−2x图象上的两点,且x2−x1=−2,x1⋅x2=3.(1)在图中用“描点”的方法作出此反比例函数的图象;(2)求y1−y2的值及点A的坐标;(3)若−4<y≤−1,依据图象写出x的取值范围.26. 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)精品 Word 可修改欢迎下载答案1. B2. C3. D4. D5. A6. A7. B8. B9. B10. D11. −212. (−2, −1)13. −114. −315. k<116. −1.517. y=3×106x18. 219. 3;(2)若它是反比例函数,则|m|−2=−1,解得:m1=1,m2=−1,∴m=−1.故答案为:−1.20. 221. 解:(1)根据题意得:m2−24=1,解得:m=±5.(2)∵函数的图象经过第二、四象限,∴2m+1<0,解得m<−12,∴m=−5,∴函数的表达式y=−9x.22. 解:(1)∵反比例函数的图象经过点A(2, 3),如图,∴k=2×3=6>0,∴这个函数的图象分布在一三象限,且在每一象限内y随x的增大而减小;(2)∵(−1)×6=−6,2×3=6,∴点B(−1, 6)不在这个函数的图象上,点C(3, 2)在这个函数的图象上.23. 解:(1)因为A(a, 3)在直线y=−x上,则a=−3,即A(−3, 3),又因为A(−3, 3)在y=kx的图象上,可求得k=−9,所以反比例函数的解析式为y=−9x;(2)另一个交点坐标是(3, −3).24. 解:(1)∵反比例函数y=1−2mx的图象经过点(−1, 4),∴4=1−2m−1,∴m=52;(2)∵1−2m=−4<0,精品 Word 可修改欢迎下载精品 Word 可修改 欢迎下载∴图象经过二、四象限;(3)∵反比例函数为:y =−4x , ∵A(−1, y 1),B(−4, y 2),C(1, y 3)是该函数图象上的点, ∴y 1=4,y 2=1,y 3=−4,∴y 1,y 2,y 3的大小是y 1>y 2>y 3;(4)当x =2时,y =−2,当x =−14时,y =16, ∴D(2, −2),E(−14, 16)在这个函数的图象上. 25. 解(1),(2)∵x 2−x 1=−2,x 1⋅x 2=3, ∴y 1−y 2=−2x 1−(−2x 2)=2(x 1−x 2)x 1x 2=2×23=43;由x 1−x 2=2得x 2=x 1−2,代入x 1⋅x 2=3得:x 12−2x 1−3=0,解得x 1=−1或x 1=3,当x 1=−1时,y 1=−2−1=2; 当x 1=3时,y 2=−23,∴点A 的坐标(−1, 2)或(3, −23);(3)如图,当−4<y ≤−1时,x 的取值范围为12<x ≤2. 26. 解:(1)设p =kv , 由题意知120=k 0.8, 所以k =96, 故p =96v;(2)当v =1m 3时,p =961=96(kPa);(3)当p =140kPa 时,v =96140≈0.69(m 3).所以为了安全起见,气体的体积应不少于0.69m 3.。