2019届高三数学备考冲刺140分问题30转化与化归思想解决立体几何中的探索性问题
- 格式:doc
- 大小:1.76 MB
- 文档页数:30
分类讨论思想、转化与化归思想1.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( )A.a 1a 8>a 4a 5B.a 1a 8<a 4a 5C.a 1+a 8>a 4+a 5D.a 1a 8=a 4a 5答案 B解析 取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立,即a 1a 8<a 4a 5.2.设函数f (x )=⎩⎪⎨⎪⎧ 3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D.[1, +∞) 答案 C解析 由f (f (a ))=2f (a )得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1; 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C. 3.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线l 有( ) A.1条 B.2条 C.3条 D.4条答案 C4.已知数列{a n }的前n 项和S n =p n-1(p 是常数),则数列{a n }是( )A.等差数列B.等比数列C.等差数列或等比数列D.以上都不对答案 D解析 ∵S n =p n-1,∴a 1=p -1,a n =S n -S n -1=(p -1)p n -1(n ≥2),当p ≠1且p ≠0时,{a n }是等比数列;当p =1时,{a n }是等差数列;当p =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.5.如图,在棱长为5的正方体ABCD —A 1B 1C 1D 1中,EF 是棱AB 上的一条线段,且EF =2,点Q 是A 1D 1的中点,点P 是棱C 1D 1上的动点,则四面体PQEF 的体积()A.是变量且有最大值B.是变量且有最小值C.是变量且有最大值和最小值D.是常数答案 D解析 点Q 到棱AB 的距离为常数,所以△EFQ 的面积为定值.由C 1D 1∥EF ,C 1D 1⊄平面EFQ ,EF ⊂平面EFQ ,可得棱C 1D 1∥平面EFQ ,所以点P 到平面EFQ 的距离是常数,于是可得四面体PQEF 的体积为常数.6. 设点P (x ,y )满足约束条件⎩⎪⎨⎪⎧ x +y -3≤0,x -y +1≥0,x ≥1,y ≥1,则y x -x y 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎣⎢⎡⎦⎥⎤-32,32 C.⎣⎢⎡⎦⎥⎤-32,1 D.[-1,1] 答案 B 解析 作出不等式组⎩⎪⎨⎪⎧ x +y -3≤0,x -y +1≥0,x ≥1,y ≥1所表示的可行域,如图阴影部分所示(包括边界),其中A (2,1),B (1,2),令t =y x ,f (t )=t -1t,根据t 的几何意义可知,t 为可行域内的点与坐标原点连线的斜率,连接OA ,OB ,显然OA 的斜率12最小,OB 的斜率2最大,即12≤t ≤2.由于函数f (t )=t -1t 在⎣⎢⎡⎦⎥⎤12,2上单调递增,故-32≤f (t )≤32,即y x -x y 的取值范围是⎣⎢⎡⎦⎥⎤-32,32.7.已知函数f (x )=⎩⎪⎨⎪⎧ ln x ,x >0,m x,x <0,若f (x )-f (-x )=0有四个不同的实根,则m 的取值范围是( )A.(0,2e)B.(0,e)C.(0,1)D.⎝ ⎛⎭⎪⎫0,1e 答案 D8.已知函数f (x )=x (e x -e -x )-cos x 的定义域为[-3,3],则不等式f (x 2+1)>f (-2)的解集为( )A.[-2,-1]B.[-2,2]C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)答案 C解析 因为f (-x )=-x (e -x -e x )-cos(-x )=x (e x -e -x)-cos x =f (x ),所以函数f (x )为偶函数,令g (x )=x ⎝⎛⎭⎪⎫e x -1e x ,易知g (x )在[0,3]上为增函数,令h (x )=-cos x ,易知h (x )在[0,3]上为增函数,故函数f (x )=x (e x -e -x )-cos x 在[0,3]上为增函数,所以f (x 2+1)>f (-2)可变形为f (x 2+1)>f (2),所以2<x 2+1≤3,解得-2≤x <-1或1<x ≤2,故不等式f (x 2+1)>f (-2)的解集为[-2,-1)∪(1,2].9.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.答案 -32解析 当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧ a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧ a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧ a =12,b =-2,所以a +b =-32. 10.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________. 答案 72或2 解析 若∠PF 2F 1=90°,则|PF 1|2=|PF 2|2+|F 1F 2|2,又|PF 1|+|PF 2|=6,|F 1F 2|=25,所以|PF 1|=143,|PF 2|=43,所以|PF 1||PF 2|=72. 若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20,且|PF 1|>|PF 2|,所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2. 综上知,|PF 1||PF 2|=72或2. 11.已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________. 答案 4 2 5解析 设a ,b 的夹角为θ,∵|a |=1,|b |=2,∴|a +b |+|a -b |=a +b 2+a -b 2=5+4cos θ+5-4cos θ.令y =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].∴|a +b |+|a -b |的最小值是4,最大值是2 5. 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,若椭圆上存在点P 使得∠F 1PF 2=120°,则椭圆C 离心率的取值范围是______________.答案 ⎣⎢⎡⎭⎪⎫32,1 解析 当点P 在短轴端点时,∠F 1PF 2达到最大值, 即∠F 1BF 2≥120°时,椭圆上存在点P 使得∠F 1PF 2=120°, 当∠F 1BF 2=120°时,e =c a =sin 60°=32,而椭圆越扁,∠F 1BF 2才可能越大, 椭圆越扁,则其离心率越接近1, 所以椭圆C 离心率的取值范围是⎣⎢⎡⎭⎪⎫32,1.。
高三数学复习资料(化归与转化的思想在解题中的应用)【考纲要求】考察考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平。
综合运用分类讨论、数形结合、转化与化归思想方法、以及待定系数法、配方法解决函数综合问题。
【考点分析】近几年高考函数部分重点考查基本初等函数的图像和性质,导数的几何意义和导数的应用,以及数学的思想方法。
在150分的试卷中占19-24分。
【重点与难点】本节结合函数与导数的知识,讲述在解决数学问题时转化与化归思想方法。
重点是“化归与转化的策略”,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、特殊与一般问题之间的互相转化等。
把转化的思想方法渗透到所有的数学教学内容和解题过程,难点如何保证转化的等价性。
【归纳】化归与转化应遵循的基本原则:(1)熟悉化原则,(2)简单化原则,(3)直观化原则,(4)正难则反原则,(5)和谐化原则。
策略一:化繁为简,化特殊为一般【例1】(2011辽宁理21)已知函数1ln )1()(2+++=ax x a x f .(1)讨论函数)(x f 的单调性;(2)设,1-<a 如果对任意),,0(,21+∞∈x x |,|4|)()(|2121x x x f x f -≥-求a 的取值范围.归纳:_________________________________________________________________________变式1:(2007年陕西))(x f 是定义在),0(+∞上的非负可导函数,且满足)()('x f x xf +,0≤对任意正数a 、b ,若,b a <则必有( )A .)()(a bf b af ≤B .)()(b af a bf ≤C .)()(b f a af ≤D .)()(a f b bf ≤策略二:等价命题的转化【例2】(2012广州一模调研改编)已知函数||ln )(b x x ax x f ++=是奇函数,且图像在点))(,(g f e 处的切线斜率为3(e 为自然对数的底数).(1)求实数a 、b 的值;(2)当),(1Z n m n m ∈>>时,证明:m n n m mn nm )()(>.变式2:已知三次函数)()(23R d c b a d cx bx ax x f ∈+++=、、、为奇函数,且在点))1(,1(f 的切线方程为.22-=x y(1)求函数)(x f 的表达式;(2)如果过点),2(t 可作曲线)(x f y =的三条切线,求实数t 的取值范围.归纳:_________________________________________________________________________策略三:函数与方程、不等式之间的转化函数与方程、不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程,不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 基础练习:(1)0142>+-x x 解集为__________. (2)0312≤-+xx 解集为__________. (3)若不等式012>++x ax 的解集为},21|{t x x <<-则=a __________,=t __________. (4)不等式02>++c bx ax 的解集为},32|{<<x x 则不等式02>+-c bx ax 的解集为____.总结:_________________________________________________________________________【例3】若关于x 的方程05425|1||1|=-⋅-+-+-m x x 有实根,求m 的取值范围.归纳:________________________________________________________________________变式3:已知)(x f 为定义在实数集R 上的奇函数,且)(x f 在),0[+∞上是增函数.当θ≤02π≤时,是否存在这样的实数m ,使)cos 24()32(cos θθm m f f -+-)0(f >对所有的]2,0[πθ∈均成立?若存在,求出所有适合条件的实数m ;若不存在,请说明理由.归纳:________________________________________________________________________【巩固提高】1、若不等式342-+>+p x px x 对一切40≤≤p 均成立,试求实数x 的取值范围.已知函数的单调性求取值范围问题2、(2010开封模拟)已知函数.ln 2)(2x a x x x f ++=若函数)(x f 在区间]1,0(上为单调增函数,求实数a 的取值范围.归纳:________________________________________________________________________ 总结:________________________________________________________________________3、若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是( )A .),(+∞-∞B .),2(+∞-C .),0(+∞D .),1(+∞-(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决,体现了正难则反的原则.参考答案例1、解:(1))(x f 的定义域为),,0(+∞⋅++=++=xa ax ax x a x f 1221)('2 当0≥a 时,,0)('>x f 故)(x f 在),0(+∞单调增加当1-≤a 时,,0)('<x f 故)(x f 在),0(+∞单调减少当01<<-a 时,令,0)('=x f 解得aa x 21+-= 则当)21,0(a a x +-∈时,.0)('>x f ),21(+∞+-∈aa x 时,.0)('<x f 故)(x f 在)21,0(a a +-单调增加,在),21(+∞+-a a 单调减少. (2)不妨假设,21x x ≥ 而,1-<a 由(1)知在),0(+∞单调减少,从而),,0(,21+∞∈∀x x ||4|)()(|2121x x x f x f -≥-等价于),,0(,21+∞∈∀x x 11224)(4)(x x f x x f +≥+ ①令,4)()(x x f x g += 则421)('+++=ax xa x g ①等价于)(x g 在),0(+∞单调减少,即0421≤+++ax x a 从而212)12(1224)12(1214222222-+-=+---=+--≤x x x x x x x a 故a 的取值范围为].2,(--∞ 归纳:通过确定21,x x 的大小关系化繁为简;通过构造函数化特殊为一般;通过分离参数避免讨论。
高考数学指南:转化与化归思想在数学答题中的应用(含范例详解)所谓转化与化归思想,就是将待解决的问题和未解决的问题,采取某种策略,转化归结为一个已经能解决的问题;或者归结为一个熟知的具有确定解决方法和程序的问题;归结为一个比较容易解决的问题,最终求得原问题的解。
一、转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知问题,以便于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题转化为二维平面问题,通过简单问题的解决思路和方法,获得对复杂问题的解答启示和思路以达到解决复杂问题的目的。
(3)具体原则:化归方向应由抽象到具体。
(4)和谐统一性原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律。
(5)正难则反的原则:当问题正面讨论遇到困难时,应想到问题的反面;或问题的正面较复杂时,其反面一般是简单的;设法从问题的反面去探求,使问题获得解决。
二、转化与化归思想常用到的方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题。
(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径。
(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题。
(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径。
(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径。
(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题。
(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化的目的。
(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时,原命题往往难以得证,这时常把结论加强,使之成为原命题充分条件,从而易证。
转化与化归思想在立体几何中的体现摘要:转化与化归的思想,是数学学科与其他学科相比,一个特有的数学思想方法,化归思想的核心是把生问题转化为熟问题,我们平时解题的过程实质上就是一个缩小已知与求解差异的过程,一个生题变熟题的过程。
因此,解每一道题,无论是难题还是易题,都离不开化归,所以说,转化与化归是数学思想方法的灵魂。
本文就其基本理论和其在立体几何中的体现做一简单介绍。
关键词:转化;化归;思想;立体几何;体现解决数学问题时,常遇到一些问题直接求解较为困难,这时就需要通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
转化与化归思想的实质是揭示联系,实现转化。
除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。
从这个意义上讲,解决数学问题就是从未知向已知转化的过程。
转化与化归的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
转化有等价转化和非等价转化。
等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
转化思想方法的特点是实现问题的规范化,模式化,以便应用已知的理论、方法和技巧达到问题的解决,其形式如下图:转化与化归应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
问题30转化与化归思想解决立体几何中的探索性问题一、考情分析立体几何中的探究性问题既能够考查学生的空间想象力,又可以考查学生的意志力和探究意识,逐步成为近几年高考命题的热点和今后命题的趋势之一,探究性问题主要有两类:一是推理型,即探究空间中的平行与垂直关系,可以利用空间线面关系的判定与性质定理进行推理探究;二是计算型,即对几何体中的空间角与距离、几何体的体积等计算型问题的有关探究,此类问题多通过求角、求距离、体积等的基本方法把这些探究性问题转化为关于某个参数的方程,根据方程解的存在性来解决.二、经验分享1.对命题条件的探索常采用以下三种方法:(1)先猜后证,即先观察与尝试给出条件再给出证明.(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)把几何问题转化为代数问题,探索出命题成立的条件.2.对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在.这是一种最常用也是最基本的方法对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.3.解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论;第二步:证明探求结论的正确性;第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.三、题型分析(一) 空间线面关系的探索性问题1.空间平行关系的探索性问题【例1】如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.(1)求证:AD ⊥平面BC C 1 B 1;(2)设在棱11B C 上是否存在点E ,使得A 1E ∥平面ADC 1?请给出证明.【分析】(1)利用正棱柱的性质——侧棱与底面垂直,得到1CC ⊥面ABC ,从而1CC AD ⊥,然后结合已知即可得证;(2)根据正三棱柱的性质即可判断点的存在性,当E 为棱11B C 的中点时,有1//A E AD ,从而可证A 1E ∥平面ADC 1.【解析】(1)在正三棱柱中,C C 1⊥平面ABC ,AD ⊂平面ABC ,∴ AD ⊥C C 1.又AD ⊥C 1D ,C C 1交C 1D 于C 1,且C C 1和C 1D 都在面BC C 1 B 1内,∴ AD ⊥面BC C 1 B 1.(2)存在点E ,当点E 为棱11B C 的中点时,A 1E ∥平面ADC 1.由(1),得AD ⊥BC .在正三角形ABC 中,D 是BC 的中点.当E 为B 1C 1的中点时,A 1E ∥平面ADC 1.事实上,正三棱柱ABC -A 1B 1C 1中,四边形BC C 1 B 1是矩形,且D 、E 分别是BC 、B 1C 1的中点,所以B 1B ∥DE ,B 1B=DE .又B 1B ∥AA 1,且B 1B =AA 1,∴DE ∥AA 1,且DE =AA 1.所以四边形ADE A 1为平行四边形,所以E A 1∥AD .而E A 1 面AD C 1内,故A 1E ∥平面AD C 1.【点评】线面平行与垂直是高考考查空间线面关系证明的两个重点,此类探究性问题的求解,一定要灵活利用空间几何体的结构特征,注意其中的平行与垂直关系,如该题中正棱柱中侧棱与底面垂直关系的应用;E 为棱11B C 的中点时,有1//A E AD 等的灵活应用,帮助我们能够准确地判断探究性问题的结论,丙直接迅速地把握证明的思路.【小试牛刀】【湖南省怀化市2019届高三3月第一次模拟】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.(1)求证:;(2)若平面,求二面角的大小;(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.【解析】(1)连交于,由题意.在正方形中,,所以平面,得(2)由题设知,连,设交于于,由题意知平面.以为坐标原点,,,分别为轴、轴、轴正方向,建立坐标系如图.设底面边长为,则高.则,,又平面,则平面的一个法向量,平面的一个法向量,则,又二面角为锐角,则二面角为;(3)在棱上存在一点使平面.由(2)知是平面的一个法向量,且,设,则又平面,所以,则.即当时,而不在平面内,故平面.2.空间垂直关系的探索性问题【例2】棱长为2的正方体中,E 为棱11C D 的中点,F 为棱BC 的中点.(1)求证:1AE DA ⊥;(2)求在线段1AA 上是否存在点G ,使AE ⊥面DFG.?试证明你的结论.【分析】(1)先根据正方体的性质得到11DA AD ⊥,1DA AB ⊥,进而证明1DA ⊥面11ABC D ,故可得到结论;(2)首先根据正方体的结构特征确定点G 的存在性和具体位置,然后进行证明.【解析】(1)连接1AD ,1BC , 由正方体的性质可知11DA AD ⊥,1DA AB ⊥,所以1DA ⊥面11ABC D ,所以1DA AE ⊥.(2) 存在点G ,当点G 为1A 点,AE ⊥面DFG.证明如下:由(1) 知1DA AE ⊥,取CD 的中点H ,连AH, EH .由DF ⊥AH , DF ⊥EH ,AH EH = H ,得DF ⊥平面AHE ,所以DF ⊥AE.又因为,所以AE ⊥面DFA 1,即AE ⊥面DFG.【点评】以特殊几何体为背景的空中线面关系的探究性问题,很容易忽视几何体中的一些特殊的平行、垂直关系,导致探究性问题的结论、证明的思路受阻.如该题中(1)问需要利用棱与一组平行平面垂直的性质得到线面垂直关系,作为证明的起点;(2)问如果忽视(1)中结论的应用,则就无法判断结果,无法进行证明.【小试牛刀】【江西省吉安市2019届期末】如图,四面体中,平面,,,.证明平面;在线段上是否存在点,使得,若存在,求的值,若不存在,请说明理由.【解析】由题设知,,,,平面ABC ,,,平面PAB .点D为PC的中点,且,使得.理由如下:在平面ABC内,过点B作,垂足为E,在平面PAC内,过点E作,交PC于点D,连结BD,由平面ABC,知,,平面DBE,平面DBE,,在中,,点E为AC的中点,则点D为PC的中点,在中,,,,.(二) 空间角的探索性问题【例3】如图,在四棱锥中平面,且,.;(1)求证:AB PC(2)在线段PD上,是否存在一点M,使得二面角的大小为45°,如果存在,求BM与平面MAC 所成角的正弦值,如果不存在,请说明理由.【分析】(1)证明线线垂直,一般利用线面垂直性质定理,即从线面垂直出发给予证明,而线面垂直的证明,需要利用线面垂直判定定理:先根据平几知识寻找线线垂直,如由等腰三角形性质得AB AC ⊥,又由条件PA ⊥平面ABCD ,得线线垂直:PA AB ⊥,这样就转化为线面垂直AB ⊥平面PAC ,即得AB PC ⊥(2)研究二面角大小,一般利用空间向量比较直接:先根据题意建立恰当的直角坐标系,设立各点坐标,利用方程组求各面法向量,根据向量数量积求两法向量夹角,最后根据二面角与法向量夹角关系列方程组,解出M 点坐标,确定M 点位置,再利用线面角与向量夹角互余关系求BM 与平面MAC 所成角的正弦值【解析】(1)证明:如图,由已知得四边形ABCD 是直角梯形,由已知,可得ABC ∆是等腰直角三角形,即AB AC ⊥,又PA ⊥平面ABCD ,则PA AB ⊥,所以AB ⊥平面PAC ,所以AB PC ⊥..............4分(2)存在. 法一:(猜证法)观察图形特点,点M 可能是线段PD 的中点,下面证明当M 是线段PD 的中点时,二面角的大小为45°.过点M 作MN AD ⊥于N ,则//MN PA ,则MN ⊥平面ABCD .过点M 作MG AC ⊥于G ,连接NG ,则MGN ∠是二面角的平面角,因为M 是线段PD 的中点,则,在四边形ABCD 求得1NG =,则.在三棱锥M ABC -中,可得,设点B 到平面MAC 的距离是h ,,则,解得h =.在Rt BMN ∆中,可得BM =,设BM 与平面MAC 所成的角为θ,则.法二:(作图法)过点M 作MN AD ⊥于N ,则//MN PA ,则MN ⊥平面ABCD ,过点M 作MG AC ⊥于G ,连接NG ,则MGN ∠是二面角的平面角.若,则NG MN =,又,易求得1MN =,即M 是线段PD 的中点. (以下同解法一)法三:(向量计算法)建立如图所示空间直角坐标系,则.设,则M 的坐标为.设(),,n x y z =是平面AMC 的一个法向量,则n AC n AM ⎧=⎨=⎩ ,得,则可取.又()0,0,1m =是平面ACD 的一个法向量,所以,此时平面AMC 的一个法向量可取,BM 与平面AMC 所成的角为θ,则.【点评】空间角的探究性问题要注意两个方面:一是空间角的正确表示,即利用直线的方向向量和平面的法向量表示空间角时要注意两者的准确转化;二是注意我们再利用方程判断存在性时,要特别注意题中的条件限制,如点在线段上等.【小试牛刀】如图,在直三棱柱中,,2ABC π∠=,D 是BC 的中点.(1)求证:1//A B 平面1ADC ;(2)求二面角的余弦值;(3)试问线段11A B 上是否存在点E ,使AE 与1DC 成3π角?若存在,确定E 点位置,若不存在,说明理由.【解析】(1)证明:连结1AC ,交1AC 于点O ,连结OD .由是直三棱柱,得 四边形11ACC A 为矩形,O 为1AC 的中点.又D 为BC 中点,所以OD 为1A BC ∆中位线,所以1//A B OD ,因为 OD ⊆平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . (2)解:由是直三棱柱,且2ABC π∠=,故两两垂直.如图建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)C ,(0,2,0)A ,1(2,0,1)C ,(1,0,0)D .所以,.设平面1ADC 的法向量为(,,)n x y z = ,则有10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,所以, 取1y =,得.易知平面ADC 的法向量为(0,0,1)v =.由二面角是锐角,得.所以二面角的余弦值为23.(3)解:假设存在满足条件的点E .因为E 在线段11A B 上,1(0,2,1)A ,1(0,0,1)B ,故可设(0,,1)E λ,其中[0,2]λ∈.所以,.因为AE 与1DC 成3π角,所以即,解得1λ=,所以当点E 为线段11A B 中点时,AE 与1DC 成3π角.【例4】如图,直四棱柱中,侧棱12AA =,底面ABCD 是菱形,2AB =,,P 为侧棱1BB 上的动点.(1)求证:1D P AC ⊥;(2)在棱1BB 上是否存在点P ,使得二面角的大小为120 ?试证明你的结论.【分析】(1)利用直四棱柱的结构特征,证明AC ⊥平面BB 1D 1D 即可得证结论.(2)可以利用空间线面关系做出二面角的平面角,根据二面角的大小列出方程,依据方程解的情况进行判断.【解析】(1)连接BD ,则AC ⊥BD ,∵D 1D ⊥底面ABCD ,∴AC ⊥D 1D ∴AC ⊥平面BB 1D 1D ,∵D 1P ⊂平面BB 1D 1D ,∴D 1P ⊥AC .(2)存在这样的点P ,下证明之.连接D 1O ,OP ,∵D 1A =D 1C ,∴D 1O ⊥AC ,同理PO ⊥AC ,∴∠D 1OP 是二面角D 1—AC —P 的平面角.∴∠D 1OP =120°.设,∵60°,则,∴.在111Rt D B P ∆中,.在1D OP ∆中,由余弦定理得,即.----10分整理得,解得13x =或5x =(舍).∴棱1BB 上是否存在点P ,使得二面角的大小为120 ,此时13BP =.【点评】空间线面关系、空间角的探究问往往与空间线面关系的证明、空间角与距离的求解相结合综合命题,解决此类探究性问题可从两个角度解决,一是直接利用传统的几何方法进行逻辑推理,必须熟练掌握特殊几何体的结构特征,注意平行与垂直关系的利用;二是直接利用向量法,此种方法简单直接,但也存在这很多易错易混的问题,特别是直线的方向向量与平面的法向量之间的运算与空间线面关系、空间角之间的正确转化是一个易错点.要熟记结论,灵活运用几何体的结构特征进行判断,准确进行两类关系之间的转化.【小试牛刀】 在四棱锥中P ABCD -,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且,分别为PC BD 、的中点.(1)求证://EF 平面PAD;(2)在线段AB 上是否存在点G ,使得二面角C PD G --,若存在,请求出点G 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,G 为AB 的中点.【解析】(1)证明:连接AC ,由正方形性质可知,AC 与BD 相交于点F ,所以,在PAC ∆中,//EF PA . 又PA ⊂平面,PAD EF ⊄平面PAD . 所以//EF 平面PAD .(2)取AD 的中点O ,连接,OP OF ,因为PA PD =,所以PO AD ⊥,又因为侧面PAD ⊥底面ABCD ,交线为AD ,所以PO ⊥平面ABCD ,以O 为原点,分别以射线,OA OF 和OP 为x 轴,y 轴和z 轴建立空间直角坐标系,O xyz -,不妨设2AD =.则有,假设在AB 上存在点,则.因为侧面PAD ⊥底面ABCD ,交线为AD ,且底面是正方形,所以CD ⊥平面PAD ,则CD PA ⊥,由得PD PA ⊥,所以PA ⊥PDC ,即平面PDC 的一个法向量为.设平面PDG 的法向理为(),,n x y z = ,由00PD n DG n ⎧=⎨=⎩ 即020x z x a --=⎧⎨+=⎩,亦即2z x x y a =-⎧⎪⎨=-⎪⎩,可取. 所以.解得1,1a a ==-(舍去).所以线段AB 上存在点G ,且G 为AB 的中点,使得二面角C PD G --. (三)空间距离的探索性问题【例5】如图,已知AB ⊥平面是等腰直角三角形,其中2EBC π∠=,且.(1)在线段BE 上是否存在一点F ,使//CF 平面ADE ?(2)求线段AB 上是否存在点M ,使得点B 到面CEM 的距离等于1?如果存在,试判断点M 的个数;如果不存在,请说明理由.【分析】(1)问可利用线面平行的性质定理,利用过直线CF 的平面与平面ADE 交点的位置便可确定点F 的位置;(2)问设MB 的长度,利用等积变换求出B 到面CEM 的距离,构造关于MB 长度的方程,根据方程解的情况进行判断.【解析】(1)当F 为BE 的中点时,//CF 平面ADE .证明:取BE 的中点F 、AE 的中点G ,连结//CD GF∴CFGD ∴是平行四边形,//CD GD∴//CF ∴平面ADE(2)不存在.设MB x =,在Rt BEC ∆中,,又因为MB ⊥面BEC ,所以.则在Rt MBE ∆中,同理,.在Rt MEC ∆中,,取EC 的中点H ,因为ME MC =,所以MH EC ⊥,而.故.因为点B 到面CEM 的距离等于1,所以.而,所以,解得x =.所以在线段AB 上只存在一点M ,当且仅当BM =B 到面CEM 的距离等于1.【点评】探究线面平行问题时,应注意几何体的结构特征,也可根据是否能构造中位线或比例线段从而找出线线平行关系进行判断.该题易出现的问题是忽视点P 在线段AB 上的限制条件,误以为方程的解就是结果而忽视对λ的取值范围的技巧.【小试牛刀】如图,在四棱锥P-ABCD 中,平面PAD ⊥底面 ABCD ,侧棱PA=PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD=2AB=2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)线段AD 上是否存在点Q ,使得它到平面PCDAQQD值;若不存在,请说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ)13.【解析】(Ⅰ)证明:在PAD ∆中PA PD =,O 为AD 中点,所以PO AD ⊥.又侧面PAD ⊥底面ABCD ,平面PAD 平面,PO ⊂平面PAD ,所以PO ⊥平面ABCD .(Ⅱ)连接AC 、BO假设存在点Q ,使得它到平面PCD 的距离为.设QD x =,则12DQC S x ∆=因为//BC AD ,O 为AD 的中点,2AD BC =所以//BC OD ,且BC OD =所以CD OB =因为AB AD ⊥,且所以在Rt POC∆中,PC=所以所以由,即解得32 x=所以存在点Q满足题意,此时13 AQQD=.解决此类探究性问题的基本思路就是设出参数,根据空间线面关系的判定和性质定理进行推理,或根据角、距离、体积等的求解方法用参数表示出相关的数据,建立关于参数的方程,根据方程解的存在性以及解的个数问题来处理.解题过程需要注意以下三个问题:1.熟练把握空间线面关系的性质定理,在探究空间线面关系的有关问题时,可以把探究的结论作为已知条件,利用性质定理逐步进行推导;2.熟练掌握求解空间角、空间距离以及几何体体积等的基本方法,通过设置合适的参数,建立关于某个参数的方程,转化为方程的解的问题进行探究;3.合理设参,准确计算.探究性问题中的点往往在线段上或某个平面图形内,我们可以利用线段长度的比值设置参数,但也要注意参数的取值范围的限制.四、迁移运用1.【2018届高考数学高考复习指导大二轮专题复习】如图,在△ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;类似地有命题:在三棱锥A-BCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有=S△BCM·S△BCD.上述命题是 ( )A. 真命题B. 增加条件“AB⊥AC”才是真命题C. 增加条件“M为△BCD的垂心”才是真命题D. 增加条件“三棱锥A-BCD是正三棱锥”才是真命题【答案】A【解析】因为AD⊥平面ABC,AE⊂平面ABC,BC⊂平面ABC,所以AD⊥AE,AD⊥BC.在△ADE中,AE2=ME·DE,又A点在平面BCD内的射影为M,所以AM⊥平面BCD,AM⊥BC,所以BC⊥平面ADE,所以BC⊥DE,BC⊥AE.又,所以.选A.2.【福建省厦门市2018届高三下学期第一次质量检查(3月)】矩形中,,为中点,将沿所在直线翻折,在翻折过程中,给出下列结论:①存在某个位置,;②存在某个位置,;③存在某个位置,;④存在某个位置,.其中正确的是()A. ①②B. ③④C. ①③D. ②④【答案】C【解析】根据题意画出如图所示的矩形:翻折后如图:.对于①,连接,交于点,易证,设,则,,所以,,则,即,,所以翻折后易得平面,即可证,故①正确;对于②,若存在某个位置,,则平面,从而平面平面,即在底面上的射影应位于线段上,这是不可能的,故②不正确;对于③,若存在某个位置,,则平面,平面⊥平面,则就是二面角的平面角,此角显然存在,即当在底面上的射影位于的中点时,直线与直线垂直,故③正确;对于④,若存在某个位置,,因为,所以平面,从而,这与已知矛盾,故④不正确.故选C.3.【陕西省汉中市重点中学2019届高三下学期3月联考】如图,在正方体中,点是底面的中心,是线段的上一点.(1)若为的中点,求直线与平面所成角的正弦值;(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由.【解析】不妨设正方体的棱长为2,以,,分别为,,轴建立如图所示的空间直角坐标系,则,,,.(1)因为点是的中点,所以点的坐标为.所以,,.设是平面的法向量,则,即.取,则,所以平面的一个法向量为.所以.所以直线与平面所成角的正弦值为.(2)假设存在点使得平面平面,设.显然,.设是平面的法向量,则,即,取,则,,所以平面的一个法向量为.因为,所以点的坐标为.所以,.设是平面的法向量,则,即.取,则,所以平面的一个法向量为.因为平面平面,所以,即,,解得.所以的值为2.即当时,平面平面.4.【山东省菏泽市2019届高三下学期第一次模拟】在四棱锥中,平面,四边形是直角梯形,,,,,,,设为棱上一点,.(1)求证:当时,;(2)试确定的值使得二面角为.【解析】(1)证明:因为,,过作于,则为中点,所以,又,所以.所以,因为平面,所以,,。
求圆锥曲线方程的策略一般有以下几种:①几何分析法+方程思想;②设而不求+韦达定理;③第二定义+数形结合;④参数法+方程思想。
几何分析法,利用图形结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出关于方程中参数的方程,解出参数值即可得到圆锥曲线方程,要求平面几何中相似等数学知识必须十分熟练。
设而不求、韦达定理是解圆锥曲线问 题的通性通法,缺点是计算量较大,费时费力,容易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于x 的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。
不管是哪种方法,最终都要列出关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.【典例指引】类型一 待定系数法求椭圆方程例1 【2014年全国课标Ⅱ,理20】设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .【解析】(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34∴2324b ac =,又222a b c =+,解之:12c e a ==或2-(舍)故直线MN 的斜率为34时,C 的离心率为12.(Ⅱ)(几何分析法)依据题意,原点O 为21F F 的中点,x MF ⊥2轴, ∴1MF 与y 轴的交点)2,0(P 是线段1MF 的中点,∴2||MF =4||22==OP ab ,即a b 82=,①∵15MN F N =,∴114MF F N =,过N 作x NH ⊥轴于H ,则1NHF ∆∽12F MF ∆, ∴41||||||||||||111212===MF NF F F HF MF NH ,∴1||41||2==MF NH ,设)1,(0-x N ,则c F F HF x c 241||41||2110⨯===--, ∴c x 230-==2223b a --, ∴11)23(22222=+--ba b a ,② ①②联立解得,72,7==b a.类型2 参数法求椭圆方程例2.【2015高考安徽,理20】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为10. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.【解析】(I )由题设条件知,点M 的坐标为21(,)33a b,又10OM k =,从而210b a =,进而得,2a c b ===,故c e a ==. (II )(参数法)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N 的坐标为1,)2b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有11744171xb b b +-++=⎨+⎪=⎪⎪⎪⎩解得3b =,所以a =E 的方程为221459x y +=. (几何分析法)设N 关于AB 的对称点为S ,∴BAC BAS ∠=∠,根据椭圆的对称性知,CAO BAO ∠=∠, ∴BOA SAB ∠=∠2,由题设条件和(I )知,b a 5=,∴66sin =∠BAO <21,∴630cos =∠BAO ,︒<∠<︒300BAO , ∴BAS ∠sin =)2sin(BAO ∠=35,︒<∠90ASB ,∴BAS ∠cos =32, ∴)sin(sin BAO SAB SAO ∠+∠=∠=1867, ∵N 为线段AC 的中点,∴b AC AS 6||21||==, ∴27186726sin ||=⨯=∠b SAO AS ,解得3=b , ∴452=a ,故椭圆E 的方程为221459x y +=.类型3 设而不求思想与韦达定理求抛物线方程例3【2013年高考数学湖南卷】过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A ,B ,2l E 与相交于点C ,D.以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在的直线记为l .(I )若120,0k k >>,证明;22FM FN P ⋅<;(II )若点M 到直线l 的距离的最小值为,求抛物线E 的方程. 【解析】(1)依题意,抛物线E 的交点为(0,)2p F ,直线1l 的方程为12py k x =+,由1222p y k x x py ⎧=+⎪⎨⎪=⎩得22120x pk x p --=,设A 、B 两点的坐标分别为1122(,),(,)x y x y ,则12,x x 是上述方程的两个实数根,从而1212121212()2x x pk y y k x x pk p +=⎧⎨+=+=+⎩,所以点M 的坐标为211(,)2p pk pk +,211(,)FM pk pk =,同理可得N 的坐标为222(,)2p pk pk +,222(,)FN pk pk =,于是2221212()FM FN p k k k k ⋅=+,由题设,1212122,0,0,k k k k k k +=>>≠,所以21212()012k k k k +<<=,故222(11)2FM FN p p ⋅<+=;(2)由抛物线的定义得12,,22p pFA y FB y =+=+所以212122,AB y y p pk p =++=+从而圆M 的半径211r pk p =+,圆M 的方程为22222111()()(),2p x pk y pk pk p -+--=+化简得22221132(21)04x y pk x p k y p +--+-=,同理可得圆N 的方程为22222232(21)04x y pk x p k y p +--+-=,于是圆M 与圆N 的公共弦所在直线l 的方程为222121()()0k k x k k y -+-=,又21120,2k k k k -≠+=,则直线l 的方程为20x y +=,因为0p >,所以点M 到直线l的距离21172()p k d ⎡⎤≥++⎢⎥==,故当114k =-时,d 取最.5=,所以8p =,故所求抛物线E 的方程为216x y = 类型4 待定系数法求抛物线方程例4 (2012全国课标理20).设抛物线C :22x py =(p >0)的焦点为F ,准线为l ,A 为C上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若090BFD ∠=,ABD ∆的面积为p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【解析】设准线l 于y 轴的焦点为E ,圆F 的半径为r , 则|FE|=p ,||||=||FA FB FD ==r ,E 是BD 的中点,(Ⅰ) ∵090BFD ∠=,∴||||=||FA FB FD =,|BD|=2p ,设A(0x ,0y ),根据抛物线定义得,|FA|=02py +, ∵ABD ∆的面积为,∴ABD S ∆=01||()22p BD y +=122p ⨯=p =2,∴F(0,1),FA|= ∴圆F 的方程为:22(1)8x y +-=;(Ⅱ) 【解析1】∵A ,B ,F 三点在同一条直线m 上, ∴AB 是圆F 的直径,090ADB ∠=, 由抛物线定义知1||||||2AD FA AB ==,∴030ABD ∠=,∴m的斜率为3或-3, ∴直线m的方程为:2p y x =+,∴原点到直线m 的距离1dp , 设直线n的方程为:3y x b =±+,代入22x py =得,2203x x pb ±-=, ∵n 与C 只有一个公共点, ∴∆=24803p pb +=,∴6pb =-, ∴直线n的方程为:6p y x =-,∴原点到直线n 的距离2dp , ∴坐标原点到m ,n 距离的比值为3.【解析2】由对称性设2000(,)(0)2x A x x p >,则(0,)2p F 点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=得:3,)2p A,直线3:022p p p m y x -=+⇔+=2222x x x py y y x p p p '=⇔=⇒==⇒=⇒切点,)36p P直线:06p n y x x p -=-⇔-=坐标原点到,m n 距离的比值为:326=。
2019年高考苏教版(理科)数学练习题之转化与化归思想典例1 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 分析 本题的解析式中有两个变量x ,m .以m 作为主元,把x 看成系数问题会轻易解决. 解析 对任意的|m |≤2,有f (x )=mx 2-2x +1-m <0恒成立,等价于当|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]), ∴⎩⎪⎨⎪⎧ g (-2)<0,g (2)<0, 即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0. 解得7-12<x <3+12. 从而实数x 的取值范围是⎝⎛⎭⎪⎫7-12,3+12. 答案 ⎝ ⎛⎭⎪⎫7-12,3+12 点评 本题如果以x 为主元,会给解题带来很大的难度,而如果以m 为主元,就为解题找到新的突破口.根据已知条件,建立以参数为主元的不等式是一个转化的数学思想,通过转化就可利用一次函数g (m )的单调性通过数形结合解决问题,体现了函数与不等式之间的转化关系.典例2 已知a 1,a 2,a 3成等差数列(a 1≠0),a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数也成等差数列,问a 1,a 3,a 5之间有什么关系?分析 题目中有5个元素:a 1,a 2,a 3,a 4,a 5,而解题目标是探讨a 1,a 3,a 5之间有什么关系,因此,a 2,a 4对求解目标是多余的,需要从多元向少元化归,即在解题时,设法把a 2,a 4消去.解 由题设,⎩⎨⎧a 2=a 1+a 32,a23=a 2a 4,2a 4=1a 3+1a 5,为消去a 2,a 4,可从方程组中解出a 2=a 1+a 32和a 4=2a 3a 5a 3+a 5, 代入a 23=a 2a 4得a 23=a 1+a 32·2a 3a 5a 3+a 5, 因为a 3≠0,则a 3=(a 1+a 3)a 5a 3+a 5,整理得a 23=a 1a 5. 因此,a 1,a 3,a 5成等比数列.点评 一个题目含有较多的元素,它们之间有一定的联系,我们在解题时,总是希望通过一定的变形、转化来减少题目中的元素,从而变成一个较容易的题目,这是一种从多元向少元的化归,实现这一化归的主要方法是消元法.例如,解二元一次方程组时,遇到两个未知数,我们用消元法变成一个一元一次方程就是一种典型的从多元向少元的化归.典例3 设对所有实数x ,不等式x 2log 24(a +1)a +2x log 22a a +1+log 2(a +1)24a 2>0恒成立,求a 的取值范围.分析 这是一个含有参数的不等式的恒成立的问题,但是,这个题目的表面比较复杂,我们可以通过log 22a a +1=t 换元,化为简单的参数的一元二次不等式. 解 设log 22a a +1=t ,则log 24(a +1)a =log 28(a +1)2a =3-t ,log 2(a +1)24a 2=-2t . 于是,已知的不等式化为(3-t )x 2+2tx -2t >0.该不等式对所有实数x 恒成立的充要条件是⎩⎪⎨⎪⎧3-t >0,Δ=4t 2+8t (3-t )<0,解得t <0. 即log 22a a +1<0,进一步解得0<a <1. 点评 换元是一种常见的转化方法,往往能把很杂、很陌生的问题,化归为我们熟悉的简单的问题.这种转化方法在研究函数、不等式、三角函数时应用很广. 从上面的例题可以看出转化与化归思想解题思路如下:1.化归的目标要达到:使陌生问题熟悉化,复杂问题简单化,抽象问题直观化,化归过程严谨合理.2.转化的途径很多,比如从超越式到代数式、从无理式到有理式、从分式到整式等等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化.跟踪演练1.若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12都成立,则实数a 的最小值为________. 答案 -52解析 ∵x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12都成立, ∴a ≥-⎝⎛⎭⎫x +1x ,而y =-x -1x 在⎝⎛⎦⎤0,12上单调递增,y max =-52,故a min =-52. 2.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案 -1n解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n=-1, 故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n , 所以S n =-1n. 3.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED →=6DF →,求k 的值;(2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k 2.①由ED →=6DF →知,x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k 2. 由D 在AB 上知,x 0+2kx 0=2,得x 0=21+2k ,所以21+2k =1071+4k 2, 化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+1=5,所以四边形AEBF 的面积为S =12·AB ·(h 1+h 2) =12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k 1+4k 2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号. 所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.4.如图,A ,B 是函数y =e 2x 的图象上两点,分别过A ,B 作x 轴的平行线与函数y =e x 的图象交于C ,D 两点.(1)求点A 与原点O 连成直线的斜率的取值范围;(2)若直线AB 过原点O ,求证直线CD 也过原点O ;(3)当直线BC 与y 轴平行时,设B 点的横坐标为x ,四边形ABDC 的面积为f (x ),若方程2f (x )-3e x =0在区间[t ,t +1]上有实数解,求整数t 的值.(1)解 设过原点O 且和函数y =e 2x 的图象相切的切线的切点为P (x 0,y 0),则y 0=02ex ,又y ′=2e 2x ,切线OP 的斜率k OP =y 0x 0=022e x ,由020e x x =022e x ,得x 0=12,k OP =022e x =2e. 结合图象知,点A 与原点O 连成直线斜率的取值范围是(-∞,0)∪[2e ,+∞).(2)证明 由已知可设A ,B ,C ,D 各点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 1),D (x 4,y 2),则y 1=12ex ,y 2=22e x ,且y 1=3e x ,y 2=4e x , ∴12e x =3e x ,22e x =4e x ,∴2x 1=x 3,2x 2=x 4,∵直线AB 过原点O ,∴y 2x 2=y 1x 1,∴y 22x 2=y 12x 1, 于是y 2x 4=y 1x 3,即k OD =k OC ,∴直线CD 也过原点O . (3)解 当直线BC 与y 轴平行时,x 2=x 3=2x 1=x ,x 4=2x 2=4x 1=2x ,∴f (x )=12[(x 3-x 1)+(x 4-x 2)](y 2-y 1) =3x 4(e 2x -e x )=3x 4(e x -1)e x , 于是方程2f (x )-3e x =0可化为32x (e x -1)e x -3e x =0, 由于e x >0,且x =0不是该方程的解,∴原方程等价于e x -2x-1=0. 令g (x )=e x -2x -1,则g ′(x )=e x +2x 2>0对一切x ∈(-∞,0)∪(0,+∞)恒成立, ∴g (x )在(-∞,0)和(0,+∞)上都是增函数,又∵g (1)=e -3<0,g (2)=e 2-2>0,g (-3)=e -3-13<0,g (-2)=e -2>0, ∴方程2f (x )-3e x =0有且只有两个实根,并且分别在区间[1,2]和[-3,-2]上, ∴整数t 的值为1和-3.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……专题突破练3 分类讨论思想、转化与化归思想一、选择题1.设函数f(x)=若f(a)>1,则实数a的取值范围是()A.(0,2)B.(0,+∞)C.(2,+∞)D.(-∞,0)∪(2,+∞)2.函数y=5的最大值为()A.9B.12C.D.33.(2018福建厦门外国语学校一模,理8)已知sin=-,则sin=()A.B.-C.D.-4.若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是()A.B.C.D.5.设函数f(x)=sin.若存在f(x)的极值点x0满足+[f(x0)]2<m2,则m的取值范围是()A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(4,+∞)6.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q7.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.B.(-∞,3)C.D.[3,+∞)8.(2018甘肃会宁一中3月检测,理7)已知正项数列{a n}满足-2-a n+1a n=0,设b n=log2,则数列{b n}的前n项和为()A.nB.C.D.9.已知函数f(x)是定义在R上的偶函数,f(x)=f(12-x),当x∈[0,6]时,f(x)=log6(x+1),若f(a)=1(a∈[0,2 020]),则a的最大值是()A.2 018B.2 010C.2 020D.2 01110.(2018山东济南二模,理11)已知点P,A,B,C均在表面积为81π的球面上,其中PA⊥平面ABC,∠BAC=30°,AC=AB,则三棱锥P-ABC的体积的最大值为()A.B.C.D.81二、填空题11.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=.12.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是.13.函数y=的最小值为.14.若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值为.15.(2018河北衡水中学考前仿真,文16)已知函数f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R,若关于x的不等式f(x)≥g(x)解的最小值为2,则a的取值范围是.参考答案专题突破练3分类讨论思想、转化与化归思想1.B解析若2a-3>1,解得a>2,与a<0矛盾,若>1,解得a>0,故a的取值范围是(0,+∞).2.D解析设a=(5,1),b=(),∵a·b≤|a|·|b|,∴y=5=3当且仅当5,即x=时等号成立.3.C解析+α=2,∴cos=2cos2-1=2sin2-1=2-1=,故选C.4.D解析因为m是2和8的等比中项,所以m2=2×8=16,所以m=±4.当m=4时,圆锥曲线+x2=1是椭圆,其离心率e=;当m=-4时,圆锥曲线x2-=1是双曲线,其离心率e=综上知,选项D正确.5.C解析∵x0是f(x)的极值点,∴f(x0)=±∵函数f(x)的周期T==|2m|,,()min=,存在极值点x0满足+[f(x0)]2<m2+3<m2⇔()min+3<m2+3<m2,∴m2>4,即m>2或m<-2,故选C.6.C解析当0<a<1时,可知y=a x和y=log a x在其定义域上均为减函数,∵a3+1<a2+1,∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,故a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.7.C解析f'(x)=3x2-2tx+3,由于f(x)在区间[1,4]上单调递减,则有f'(x)≤0在[1,4]上恒成立,即3x2-2tx+3≤0,即t在[1,4]上恒成立,因为y=在[1,4]上单调递增,所以t,故选C.8.C解析由-2-a n+1a n=0,可得(a n+1+a n)(a n+1-2a n)=0.又a n>0,=2.∴a n+1=a1·2n.∴b n=log2=log22n=n.∴数列{b n}的前n项和为,故选C.9.D解析由函数f(x)是定义在R上的偶函数,f(x)=f(12-x),可得f(x)=f(-x)=f(12+x),即f(x)=f(12+x),故函数的周期为12.令log6(a+1)=1,解得a=5,∴在[0,12]上f(5)=f(12-5)=f(7),∴f(a)=1的根为5,7.∵2 020=12×168+4,∴7+12n≤2 020时,n的最大值为167,∴a的最大值为a=167×12+7=2 011.故选D.10.A解析设外接球的半径R,易得4πR2=81π,解得R2=在△ABC中,设AB=t.又∠BAC=30°,AC=AB=t,∴BC==t,即△ABC为等腰三角形.设△ABC的外接圆半径为r,则2r==2t,即r=t.又PA⊥平面ABC,设PA=m,则R2=+r2=+t2=三棱锥P-ABC的体积V=mtt×sin 30°=令y=m(81-m2),y'=81-3m2=0,则m=3∴三棱锥P-ABC的体积的最大值为,故选A.11.- 解析当a>1时,函数f(x)=a x+b在[-1,0]上为增函数,由题意得无解.当0<a<1时,函数f(x)=a x+b在[-1,0]上为减函数,由题意得解得所以a+b=-12.(-∞,-5]解析因为当x≥0时,f(x)=x2,所以此时函数f(x)在[0,+∞)上单调递增.又因为f(x)是定义在R上的奇函数,且f(0)=0,所以f(x)在R上单调递增.若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则x+a≥3x+1恒成立,即a≥2x+1恒成立,因为x∈[a,a+2],所以(2x+1)max=2(a+2)+1=2a+5,即a≥2a+5,解得a≤-5.即实数a的取值范围是(-∞,-5].13解析原函数等价于y=,即求x轴上一点到A(1,1),B(3,2)两点距离之和的最小值.将点A(1,1)关于x轴对称,得A'(1,-1),连接A'B交x轴于点P,则线段A'B的值就是所求的最小值,即|A'B|=14.16解析 (法一)∵函数f(x)的图象关于直线x=-2对称,∴f(-1)=f(-3)=f(1)=f(-5),即解得∴f(x)=-x4-8x3-14x2+8x+15.由f'(x)=-4x3-24x2-28x+8=0,得x1=-2-,x2=-2,x3=-2+易知,f(x)在(-∞,-2-)内为增函数,在(-2-,-2)内为减函数,在(-2,-2+)内为增函数,在(-2+,+∞)内为减函数.∴f(-2-)=[1-(-2-)2][(-2-)2+8(-2-)+15]=(-8-4)(8-4)=80-64=16.f(-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f(-2+)=[1-(-2+)2][(-2+)2+8(-2+)+15]=(-8+4)·(8+4)=80-64=16.故f(x)的最大值为16.(法二)据已知可设f(x)=-(x+2)4+m(x+2)2+n,据f(1)=f(-1)=0,解出m=10,n=-9,则f(x)=-(x+2)4+10(x+2)2-9=-[(x+2)2-5]2+16,故最大值为16.15.(-∞,-2]解析f(x)≥g(x)⇔2x-1+a≥b(2-x+a).显然b<0时,2x-1+a≥b(2-x+a)⇔2x-1+a-b(2-x+a)≥0,当x→-∞时,2x-1+a-b(2-x+a)→+∞,故x<2时,不等式f(x)≥g(x)也成立,这与关于x的不等式f(x)≥g(x)解的最小值为2矛盾.当b≥0时,2x-1+a≥b(2-x+a)⇔2x-1+a-b(2-x+a)≥0,∵y=2x-1+a-b(2-x+a)是关于x的增函数,且不等式f(x)≥g(x)解的最小值为2,∴22-1+a=b(2-2+a),∴b=0,解得a≤-2或a>-。
第四讲 转化与化归思想要点一 特殊与一般的转化[解析] (1)f (x )=-x 显然符合题中条件,易得f (x )=-x 在区间[a ,b ]上有最大值f (a ),故选B.(2)令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C2=1,由tan A =43,得tan A 2=12.所以tan A 2·tan C 2=12·1=12,故选C.[答案] (1)B (2)C化一般为特殊的应用要点把一般问题特殊化,解答选择题、填空题常能起到事半功倍的效果,既准确又迅速.常用的特例有特殊值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等,要注意恰当利用所学知识、恰当选择特殊量.[对点训练]1.已知点P 是△ABC 所在平面内的一点,边AB 的中点为D ,若PD →=1-λ2PA →+12CB →,其中λ∈R ,则点P 一定在( )A .AB 边所在的直线上 B .BC 边所在的直线上 C .AC 边所在的直线上D .△ABC 的内部[解析] 取λ=1,则2PD →=CB →,因为边AB 的中点为D ,所以PA →+PB →=2PD →,所以PA →+PB →=PB →-PC →,所以PA →=CP →,所以A ,C ,P 三点共线,因此点P 一定在AC 边所在的直线上,故选C.[答案] C2.(2018·银川质检)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等差数列,则cos A +cos C 1+cos A cos C=________.[解析] 令a =b =c ,则△ABC 为等边三角形, 且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C =12+121+12×12=45.[答案] 45要点二 函数、方程、不等式间的转化[解析] (1)由题易得f ′(x )=3x 2-12x +4,因为a 3,a 2017是函数f (x )=x 3-6x 2+4x -1的两个不同的极值点,所以a 3,a 2017是方程3x 2-12x +4=0的两个不等实数根,所以a 3+a 2017=4.又数列{a n }为等差数列,所以a 3+a 2017=2a 1010,即a 1010=2,从而log 14 a 1010=log 14 2=-12,故选B.(2)设|MA |=a >0,因为|OM |=22,|OA |=2,由余弦定理知cos∠OMA =|OM |2+|MA |2-|OA |22|OM |·|MA |=(22)2+a 2-222×22a =142×⎝ ⎛⎭⎪⎫4a +a ≥142×24a ×a =22,当且仅当a =2时等号成立,所以∠OMA ≤π4,即∠OMA 的最大值为π4,故选C.[答案] (1)B (2)C函数、方程与不等式间的转化策略函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简.本例(1)将函数的极值点转化为导函数的零点,再转化为方程的两个实根.(2)将∠OMA 的最值转化为其三角函数值的最值,这样才能更好地进行运算.一般可将函数的零点与方程的根相互转化,将不等式关系转化为最值(值域)问题,从而求出参变量的范围.[对点训练]3.(2018·银川二模)若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围为( )A .(-∞,-5)∪(10,+∞)B .[-5,10)C .(-5,10)D .[-5,10][解析] 因为点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,所以(5+m )(-10+m )<0,解得-5<m <10,故选C.[答案] C4.(2018·贵阳摸底)已知直线l 过点A (2,3)且与x 轴、y 轴的正半轴分别交于M 、N 两点,则当|AM |·|AN |最小时,直线l 的方程为________.[解析] 设∠AMO 为θ,则θ∈⎝⎛⎭⎪⎫0,π2,∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12.当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0.[答案] x +y -5=0要点三 正与反的转化[解析] (1)g ′(x )=3x 2+(m +4)x -2. 若g (x )在区间(t,3)上总为单调函数,则 ①g ′(x )≥0在(t,3)上恒成立; ②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t,3)上恒成立,所以m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以,函数g (x )在区间(t,3)上不为单调函数的m 的取值范围为-373<m <-5,故选A. (2)若4x 2-ax +1=0在(0,1)内没有实数根,则在x ∈(0,1)内,a ≠4x +1x ,而当x ∈(0,1)时,4x +1x ∈[4,+∞),要使a ≠4x +1x,必有a <4,故满足题设的实数a 的取值范围是(4,+∞).[答案] (1)A (2)(4,+∞)正与反的转化要点正与反的转化,体现“正难则反”的原则,先从反面求解,再取反面答案的补集即可.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单.因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.[对点训练]5.若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是( )A .[2,6]B .[-6,-2]C .(2,6)D .(-6,-2)[解析] 因为命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,所以命题“∀x ∈R ,使得x 2+mx +2m -3≥0”为真命题,所以Δ≤0,即m 2-4(2m -3)≤0,所以2≤m ≤6,故选A.[答案] A6.(2018·日照一中模拟)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] ∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p ⇒/綈q 等价于p ⇒q ,且q ⇒/p .记p :A ={x ||4x -3|≤1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1,q :B ={x |x 2-(2a +1)x +a (a +1)≤0}={x |a ≤x ≤a +1},则A B .从而⎩⎪⎨⎪⎧a +1≥1,a ≤12,且两个等号不同时成立,解得0≤a ≤12.故所求实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.[答案] ⎣⎢⎡⎦⎥⎤0,12要点四 主与次的转化[解析] (1)因为x ∈[-2,2],当x =0时,原式为02-a ·0+1≥0恒成立,此时a ∈R ;当x ∈(0,2]时,原不等式可化为a ≤x 2+1x ,而x 2+1x ≥2xx=2,当且仅当x =1时等号成立,所以a 的取值范围是(-∞,2];当x ∈[-2,0)时,可得a ≥x 2+1x ,令f (x )=x 2+1x =x +1x,由函数的单调性可知,f (x )max =f (-1)=-2, 所以a ∈[-2,+∞).综上可知,a 的取值范围是[-2,2].(2)因为a ∈[-2,2],则可把原式看作关于a 的函数, 即g (a )=-xa +x 2+1≥0,由题意可知,⎩⎪⎨⎪⎧g (-2)=x 2+2x +1≥0,g (2)=x 2-2x +1≥0,解之得x ∈R ,所以x 的取值范围是(-∞,+∞). [答案] (1)[-2,2] (2)(-∞,+∞)主与次的转化要点在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看作是“主元”,而把其他变元看作是常量,从而达到减少变元简化运算的目的.通常给出哪个“元”的取值范围就将哪个“元”视为“主元”.[对点训练]7.(2018·陕西汉中模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值范围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2][解析] mx 2+2mx -4<2x 2+4x ,即(m -2)x 2+2(m -2)x -4<0,对任意x 均成立,当m =2时,适合题意;当m <2时,由Δ<0,即4(m -2)2+16(m -2)<0得m >-2.所以-2<m <2.综上所述-2<m ≤2,故选A.[答案] A8.(2018·衡水中学检测)对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________.[解析] 设f (p )=(x -1)p +x 2-4x +3,f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f (0)>0,f (4)>0,即⎩⎪⎨⎪⎧(x -3)(x -1)>0,x 2-1>0,解得x >3或x <-1.[答案] (-∞,-1)∪(3,+∞)转化与化归思想的四项原则1.熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.2.简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据. 3.和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.4.正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.专题跟踪训练(四)一、选择题1.(2018·甘肃兰州一诊)已知等差数列{a n }的前n 项和为S n ,若a 3+a 5+a 7=24,则S 9等于( )A .36B .72C .144D .288[解析] 解法一:因为{a n }是等差数列,又a 3+a 5+a 7=3a 5=24, 所以a 5=8.S 9=(a 1+a 9)×92=9a 5=72,故选B.解法二:不妨设等差数列{a n }的公差为0, 则由a 3+a 5+a 7=24,得a 1=a n =8,则S 9=9a 1=9×8=72,故选B. [答案] B2.过双曲线x 2a 2-y 2b2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR →·PQ →的值为( )A .a 2B .b 2C .2abD .a 2+b 2[解析] 当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a ,故选A. [答案] A3.(2018·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9[解析] 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF 1|-|PF 2|=2×3=6.要使|PM |-|PN |最大,需PM ,PN 分别过F 1、F 2点即可. ∴(|PM |-|PN |)max =(|PF 1|+2)-(|PF 2|-1) =|PF 1|-|PF 2|+3=9,故选D. [答案] D4.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的材料利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.24(2-1)3πD.8(2-1)3π[解析]由三视图知该几何体是一个底面半径为r =1,母线长为l =3的圆锥,则圆锥的高为h =l 2-r 2=32-12=2 2.由题意知加工成的体积最大的正方体ABCD -A 1B 1C 1D 1的一个底面A 1B 1C 1D 1在圆锥的底面上,过平面AA 1C 1C 的轴截面如图所示,设正方体的棱长为x ,则有22x r =h -x h ,即x 2=22-x 22,解得x =223,则原工件的材料利用率为V 正方体V 圆锥=x 313πr 2h =89π,故选A. [答案] A5.(2018·广东广州一模)四个人围坐在一张圆桌旁,每个人面前都放着一枚完全相同的硬币,所有人同时抛掷自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.14B.716C.12D.916[解析] 由题知先计算有相邻的两个人站起来的概率,四个人抛,共有24=16种不同的情况,其中有两个人同为正面且相邻需要站起来的有4种情况,三个人需要站起来有4种情况,四个人都站起来有1种情况,所以有相邻的两个人站起来的概率P =4+4+116=916(转化为对立事件求解),故没有相邻的两人站起来的概率P =1-916=716,故选B.[答案] B6.(2018·湖南长沙模拟)若对任意的x ∈[0,1],总存在唯一的y ∈[-1,1],使得x +y 2e y -a =0成立,则实数a 的取值范围是( )A .[1,e] B.⎝⎛⎦⎥⎤1+1e ,eC .(1,e] D.⎣⎢⎡⎦⎥⎤1+1e ,e [解析] 方程x +y 2e y -a =0,即y 2e y =a -x ,构造函数f (x )=x 2e x (转化为函数)则f ′(x )=(x 2+2x )e x ,当-1≤x <0时,f ′(x )<0,f (x )在[-1,0)上单调递减; 当0<x ≤1时,f ′(x )>0,f (x )在(0,1]上单调递增.且f (-1)=1e,f (0)=0,f (1)=e , 因为存在唯一的y ,所以f (x )∈⎝ ⎛⎦⎥⎤1e ,e . g (x )=a -x 在[0,1]上的值域为[a -1,a ],若对任意的x ∈[0,1],总存在唯一的y ∈[-1,1],使得x +y 2e y-a =0成立,等价于[a -1,a ]⊆⎝ ⎛⎦⎥⎤1e ,e , 故a -1>1e 且a ≤e,即1+1e<a ≤e,故选B. [答案] B二、填空题7.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________.[解析] 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0f (1)≤0⇒⎩⎪⎨⎪⎧ p ≤-12或p ≥1p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为⎝⎛⎭⎪⎫-3,32. [答案] ⎝⎛⎭⎪⎫-3,32 8.设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,则x 的取值范围是________.[解析] 设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1,当t ∈[-2,2]时,f (t )>0恒成立,则由⎩⎪⎨⎪⎧ f (-2)>0f (2)>0,即⎩⎪⎨⎪⎧ (log 2x )2-4log 2x +3>0(log 2x )2-1>0,解得log 2x <-1或log 2x >3,即0<x <12或x >8, 故x 的取值范围是⎝⎛⎭⎪⎫0,12∪(8,+∞). [答案] ⎝⎛⎭⎪⎫0,12∪(8,+∞) 9.如图,已知三棱锥P -ABC ,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.[解析] 因为三棱锥三组对边两两相等,则可将三棱锥放在一个特定的长方体中(如图所示).把三棱锥P -ABC 补成一个长方体AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线.不妨令PE =x ,EB =y ,EA =z ,由已知有⎩⎪⎨⎪⎧ x 2+y 2=100x 2+z 2=136y 2+z 2=164,解得x =6,y =8,z =10,从而知三棱锥P -ABC 的体积为V 三棱锥P -ABC =V 长方体AEBG -FPDC -V 三棱锥P -AEB -V 三棱锥C -ABG -V 三棱锥B -PDC -V 三棱锥A -FPC=V 长方体AEBG -FPDC -4V 三棱锥P -AEB=6×8×10-4×16×6×8×10=160.[答案] 160三、解答题10.(2018·广西南宁监测)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧ f (x ),x >0-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b 2a=-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧ (x +1)2,x >0-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ x 2+y 2=4y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t+k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.综上,存在点N (4,0)使x 轴平分∠ANB .12.已知函数f (x )=ln x -(x +1).(1)求函数f (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). [解] (1)∵f (x )=ln x -(x +1),∴f ′(x )=1x-1(x >0). 令f ′(x )>0,解得0<x <1;令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1),当且仅当t =0时等号成立.取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , 叠加得1+12+13+ (1)>ln ⎝ ⎛⎭⎪⎫2.32.43.....n +1n =ln(n +1). 即1+12+13+ (1)>ln(n +1).。
问题30转化与化归思想解决立体几何中的探索性问题一、考情分析立体几何中的探究性问题既能够考查学生的空间想象力,又可以考查学生的意志力和探究意识,逐步成为近几年高考命题的热点和今后命题的趋势之一,探究性问题主要有两类:一是推理型,即探究空间中的平行与垂直关系,可以利用空间线面关系的判定与性质定理进行推理探究;二是计算型,即对几何体中的空间角与距离、几何体的体积等计算型问题的有关探究,此类问题多通过求角、求距离、体积等的基本方法把这些探究性问题转化为关于某个参数的方程,根据方程解的存在性来解决.二、经验分享1.对命题条件的探索常采用以下三种方法:(1)先猜后证,即先观察与尝试给出条件再给出证明.(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)把几何问题转化为代数问题,探索出命题成立的条件.2.对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在.这是一种最常用也是最基本的方法对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.3.解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论;第二步:证明探求结论的正确性;第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.三、题型分析(一) 空间线面关系的探索性问题1.空间平行关系的探索性问题【例1】如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.(1)求证:AD ⊥平面BC C 1 B 1;(2)设在棱11B C 上是否存在点E ,使得A 1E ∥平面ADC 1?请给出证明.【分析】(1)利用正棱柱的性质——侧棱与底面垂直,得到1CC ⊥面ABC ,从而1CC AD ⊥,然后结合已知即可得证;(2)根据正三棱柱的性质即可判断点的存在性,当E 为棱11B C 的中点时,有1//A E AD ,从而可证A 1E ∥平面ADC 1.【解析】(1)在正三棱柱中,C C 1⊥平面ABC ,AD ⊂平面ABC ,∴ AD ⊥C C 1.又AD ⊥C 1D ,C C 1交C 1D 于C 1,且C C 1和C 1D 都在面BC C 1 B 1内, ∴ AD ⊥面BC C 1 B 1.(2)存在点E ,当点E 为棱11B C 的中点时,A 1E ∥平面ADC 1. 由(1),得AD ⊥BC .在正三角形ABC 中,D 是BC 的中点. 当E 为B 1C 1的中点时,A 1E ∥平面ADC 1.事实上,正三棱柱ABC -A 1B 1C 1中,四边形BC C 1 B 1是矩形,且D 、E 分别是BC 、B 1C 1的中点,所以B 1B ∥DE ,B 1B= DE .又B 1B ∥AA 1,且B 1B =AA 1, ∴DE ∥AA 1,且DE =AA 1.所以四边形ADE A 1为平行四边形, 所以E A 1∥AD .而E A 1 面AD C 1内,故A 1E ∥平面AD C 1.【点评】线面平行与垂直是高考考查空间线面关系证明的两个重点,此类探究性问题的求解,一定要灵活利用空间几何体的结构特征,注意其中的平行与垂直关系,如该题中正棱柱中侧棱与底面垂直关系的应用;E 为棱11B C 的中点时,有1//A E AD 等的灵活应用,帮助我们能够准确地判断探究性问题的结论,丙直接迅速地把握证明的思路.【小试牛刀】【湖南省怀化市2019届高三3月第一次模拟】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.(1)求证:;(2)若平面,求二面角的大小;(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由. 【解析】(1)连交于,由题意.在正方形中,, 所以平面,得(2)由题设知,连,设交于于,由题意知平面.以为坐标原点,,,分别为轴、轴、轴正方向,建立坐标系如图.设底面边长为,则高.则,,又平面,则平面的一个法向量, 平面的一个法向量,则,又二面角为锐角,则二面角为; (3)在棱上存在一点使平面.由(2)知是平面的一个法向量,且,设,则又平面,所以,则.即当时,而不在平面内,故平面.2.空间垂直关系的探索性问题 【例2】棱长为2的正方体中,E 为棱11C D 的中点,F 为棱BC 的中点.(1)求证:1AE DA ⊥;(2)求在线段1AA 上是否存在点G ,使AE ⊥面DFG.?试证明你的结论.【分析】(1)先根据正方体的性质得到11DA AD ⊥,1DA AB ⊥,进而证明1DA ⊥面11ABC D ,故可得到结论;(2)首先根据正方体的结构特征确定点G 的存在性和具体位置,然后进行证明. 【解析】(1)连接1AD ,1BC , 由正方体的性质可知11DA AD ⊥,1DA AB ⊥, 所以1DA ⊥面11ABC D , 所以1DA AE ⊥.(2) 存在点G ,当点G 为1A 点,AE ⊥面DFG.证明如下:由(1) 知1DA AE ⊥,取CD 的中点H ,连AH, EH . 由DF ⊥AH , DF ⊥EH ,AH EH = H ,得DF ⊥平面AHE , 所以DF ⊥AE. 又因为,所以AE ⊥面DFA 1,即AE ⊥面DFG.【点评】以特殊几何体为背景的空中线面关系的探究性问题,很容易忽视几何体中的一些特殊的平行、垂直关系,导致探究性问题的结论、证明的思路受阻.如该题中(1)问需要利用棱与一组平行平面垂直的性质得到线面垂直关系,作为证明的起点;(2)问如果忽视(1)中结论的应用,则就无法判断结果,无法进行证明. 【小试牛刀】【江西省吉安市2019届期末】如图,四面体中,平面,,,.证明平面;在线段上是否存在点,使得,若存在,求的值,若不存在,请说明理由.【解析】由题设知,,,,平面ABC ,,,平面PAB .点D 为PC 的中点,且,使得.理由如下:在平面ABC 内,过点B 作,垂足为E ,在平面PAC 内,过点E 作,交PC 于点D ,连结BD ,由平面ABC ,知,,平面DBE,平面DBE,,在中,,点E为AC的中点,则点D为PC的中点,在中,,,,.(二) 空间角的探索性问题【例3】如图,在四棱锥中平面,且,.⊥;(1)求证:AB PC(2)在线段PD上,是否存在一点M,使得二面角的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【分析】(1)证明线线垂直,一般利用线面垂直性质定理,即从线面垂直出发给予证明,而线面垂直的证明,⊥,又由条件需要利用线面垂直判定定理:先根据平几知识寻找线线垂直,如由等腰三角形性质得AB AC⊥(2)PA⊥平面ABCD,得线线垂直:PA AB⊥,这样就转化为线面垂直AB⊥平面PAC,即得AB PC研究二面角大小,一般利用空间向量比较直接:先根据题意建立恰当的直角坐标系,设立各点坐标,利用方程组求各面法向量,根据向量数量积求两法向量夹角,最后根据二面角与法向量夹角关系列方程组,解出M 点坐标,确定M点位置,再利用线面角与向量夹角互余关系求BM与平面MAC所成角的正弦值【解析】(1)证明:如图,由已知得四边形ABCD 是直角梯形, 由已知,可得ABC ∆是等腰直角三角形,即AB AC ⊥,又PA ⊥平面ABCD ,则PA AB ⊥,所以AB ⊥平面PAC ,所以AB PC ⊥..............4分 (2)存在. 法一:(猜证法)观察图形特点,点M 可能是线段PD 的中点, 下面证明当M 是线段PD 的中点时,二面角的大小为45°.过点M 作MN AD ⊥于N ,则//MN PA ,则MN ⊥平面ABCD . 过点M 作MG AC ⊥于G ,连接NG , 则MGN ∠是二面角的平面角,因为M 是线段PD 的中点,则,在四边形ABCD 求得1NG =,则.在三棱锥M ABC -中,可得,设点B 到平面MAC 的距离是h ,,则,解得h =在Rt BMN ∆中,可得BM =,设BM 与平面MAC 所成的角为θ,则.法二:(作图法)过点M 作MN AD ⊥于N ,则//MN PA ,则MN ⊥平面ABCD , 过点M 作MG AC ⊥于G ,连接NG ,则MGN ∠是二面角的平面角.若,则NG MN =,又,易求得1MN =,即M 是线段PD 的中点. (以下同解法一) 法三:(向量计算法)建立如图所示空间直角坐标系,则.设,则M 的坐标为.设(),,n x y z =是平面AMC 的一个法向量,则n AC n AM ⎧=⎨=⎩,得,则可取.又()0,0,1m =是平面ACD 的一个法向量,所以,此时平面AMC 的一个法向量可取,BM 与平面AMC 所成的角为θ,则.【点评】空间角的探究性问题要注意两个方面:一是空间角的正确表示,即利用直线的方向向量和平面的法向量表示空间角时要注意两者的准确转化;二是注意我们再利用方程判断存在性时,要特别注意题中的条件限制,如点在线段上等. 【小试牛刀】如图,在直三棱柱中,,2ABC π∠=,D 是BC 的中点.(1)求证:1//A B 平面1ADC ; (2)求二面角的余弦值;(3)试问线段11A B 上是否存在点E ,使AE 与1DC 成3π 角?若存在,确定E 点位置,若不存在,说明理由.【解析】(1)证明:连结1A C ,交1AC 于点O ,连结OD .由是直三棱柱,得 四边形11ACC A 为矩形,O 为1A C 的中点. 又D 为BC 中点,所以OD 为1A BC ∆中位线, 所以1//A B OD ,因为 OD ⊆平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . (2)解:由是直三棱柱,且2ABC π∠=,故两两垂直.如图建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)C ,(0,2,0)A ,1(2,0,1)C ,(1,0,0)D . 所以,.设平面1ADC 的法向量为(,,)n x y z =,则有10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩, 所以, 取1y =,得.易知平面ADC 的法向量为(0,0,1)v =.由二面角是锐角,得.所以二面角的余弦值为23. (3)解:假设存在满足条件的点E .因为E 在线段11A B 上,1(0,2,1)A ,1(0,0,1)B ,故可设(0,,1)E λ,其中[0,2]λ∈. 所以,.因为AE 与1DC 成3π角,所以即,解得1λ=,所以当点E 为线段11A B 中点时,AE 与1DC 成3π角. 【例4】如图,直四棱柱中,侧棱12AA =,底面ABCD 是菱形,2AB =,,P 为侧棱1BB 上的动点.(1)求证:1D P AC ⊥;(2)在棱1BB 上是否存在点P ,使得二面角的大小为120?试证明你的结论.【分析】(1)利用直四棱柱的结构特征,证明AC ⊥平面BB 1D 1D 即可得证结论.(2)可以利用空间线面关系做出二面角的平面角,根据二面角的大小列出方程,依据方程解的情况进行判断. 【解析】(1)连接BD ,则AC ⊥BD ,∵D 1D ⊥底面ABCD ,∴AC ⊥D 1D ∴AC ⊥平面BB 1D 1D ,∵D 1P ⊂平面BB 1D 1D ,∴D 1P ⊥AC . (2)存在这样的点P ,下证明之. 连接D 1O ,OP ,∵D 1A =D 1C ,∴D 1O ⊥AC ,同理PO ⊥AC , ∴∠D 1OP 是二面角D 1—AC —P 的平面角. ∴∠D 1OP =120°. 设, ∵60°,则,∴. 在111Rt D B P ∆中,.在1D OP ∆中,由余弦定理得,即.----10分整理得,解得13x =或5x =(舍). ∴棱1BB 上是否存在点P ,使得二面角的大小为120,此时13BP =. 【点评】空间线面关系、空间角的探究问往往与空间线面关系的证明、空间角与距离的求解相结合综合命题,解决此类探究性问题可从两个角度解决,一是直接利用传统的几何方法进行逻辑推理,必须熟练掌握特殊几何体的结构特征,注意平行与垂直关系的利用;二是直接利用向量法,此种方法简单直接,但也存在这很多易错易混的问题,特别是直线的方向向量与平面的法向量之间的运算与空间线面关系、空间角之间的正确转化是一个易错点.要熟记结论,灵活运用几何体的结构特征进行判断,准确进行两类关系之间的转化. 【小试牛刀】 在四棱锥中P ABCD -,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且,分别为PC BD 、的中点.(1)求证://EF 平面PAD ;(2)在线段AB 上是否存在点G ,使得二面角C PD G --的余弦值为3,若存在,请求出点G 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,G 为AB 的中点.【解析】(1)证明:连接AC ,由正方形性质可知,AC 与BD 相交于点F , 所以,在PAC ∆中,//EF PA . 又PA ⊂平面,PAD EF ⊄平面PAD . 所以//EF 平面PAD .(2)取AD 的中点O ,连接,OP OF , 因为PA PD =,所以PO AD ⊥,又因为侧面PAD ⊥底面ABCD ,交线为AD ,所以PO ⊥平面ABCD ,以O 为原点,分别以射线,OA OF 和OP 为x 轴,y 轴和z 轴建立空间直角坐标系,O xyz -,不妨设2AD =.则有,假设在AB 上存在点,则.因为侧面PAD ⊥底面ABCD ,交线为AD ,且底面是正方形, 所以CD ⊥平面PAD ,则CD PA ⊥, 由得PD PA ⊥,所以PA ⊥PDC ,即平面PDC 的一个法向量为.设平面PDG 的法向理为(),,n x y z =,由00P Dn D Gn ⎧=⎨=⎩即020x z x a --=⎧⎨+=⎩,亦即2z xx y a =-⎧⎪⎨=-⎪⎩,可取.所以.解得1,1a a ==-(舍去).所以线段AB 上存在点G ,且G 为AB 的中点,使得二面角C PD G --的余弦值为3. (三)空间距离的探索性问题 【例5】如图,已知AB ⊥平面是等腰直角三角形,其中2EBC π∠=,且.(1)在线段BE 上是否存在一点F ,使//CF 平面ADE ?(2)求线段AB 上是否存在点M ,使得点B 到面CEM 的距离等于1?如果存在,试判断点M 的个数;如果不存在,请说明理由.【分析】(1)问可利用线面平行的性质定理,利用过直线CF 的平面与平面ADE 交点的位置便可确定点F 的位置;(2)问设MB 的长度,利用等积变换求出B 到面CEM 的距离,构造关于MB长度的方程,根据方程解的情况进行判断.【解析】(1)当F 为BE 的中点时,//CF 平面ADE . 证明:取BE 的中点F 、AE 的中点G ,连结//CD GF ∴CFGD ∴是平行四边形,//CD GD ∴//CF ∴平面ADE(2)不存在.设MB x =,在Rt BEC ∆中,,又因为MB ⊥面BEC , 所以.则在Rt MBE ∆中,同理,.在Rt MEC ∆中,, 取EC 的中点H ,因为ME MC =,所以MH EC ⊥, 而. 故.因为点B 到面CEM 的距离等于1, 所以.而,所以,解得x =所以在线段AB 上只存在一点M,当且仅当BM =B 到面CEM 的距离等于1.【点评】探究线面平行问题时,应注意几何体的结构特征,也可根据是否能构造中位线或比例线段从而找出线线平行关系进行判断.该题易出现的问题是忽视点P 在线段AB 上的限制条件,误以为方程的解就是结果而忽视对λ的取值范围的技巧.【小试牛刀】如图,在四棱锥P-ABCD 中,平面PAD ⊥底面 ABCD ,侧棱PA=PDABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD=2AB=2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)线段AD 上是否存在点Q ,使得它到平面PCD AQQD值;若不存在,请说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ)13. 【解析】(Ⅰ)证明:在PAD ∆中PA PD =,O 为AD 中点,所以PO AD ⊥. 又侧面PAD ⊥底面ABCD ,平面PAD 平面,PO ⊂平面PAD ,所以PO ⊥平面ABCD . (Ⅱ)连接AC 、BO假设存在点Q ,使得它到平面PCD 的距离为.设QD x =,则12DQC S x ∆=因为//BC AD ,O 为AD 的中点,2AD BC = 所以//BC OD ,且BC OD = 所以CD OB = 因为AB AD ⊥,且 所以在Rt POC ∆中,PC =所以所以由,即解得32x =所以存在点Q 满足题意,此时13AQ QD =. 解决此类探究性问题的基本思路就是设出参数,根据空间线面关系的判定和性质定理进行推理,或根据角、距离、体积等的求解方法用参数表示出相关的数据,建立关于参数的方程,根据方程解的存在性以及解的个数问题来处理.解题过程需要注意以下三个问题:1.熟练把握空间线面关系的性质定理,在探究空间线面关系的有关问题时,可以把探究的结论作为已知条件,利用性质定理逐步进行推导;2.熟练掌握求解空间角、空间距离以及几何体体积等的基本方法,通过设置合适的参数,建立关于某个参数的方程,转化为方程的解的问题进行探究;3.合理设参,准确计算.探究性问题中的点往往在线段上或某个平面图形内,我们可以利用线段长度的比值设置参数,但也要注意参数的取值范围的限制. 四、迁移运用1.【2018届高考数学高考复习指导大二轮专题复习】如图,在△ABC 中,AB ⊥AC ,若AD ⊥BC ,则AB 2=BD ·BC ;类似地有命题:在三棱锥A -BCD 中,AD ⊥平面ABC ,若A 点在平面BCD 内的射影为M ,则有=S △BCM ·S △BCD .上述命题是 ( )A. 真命题B. 增加条件“AB⊥AC”才是真命题C. 增加条件“M为△BCD的垂心”才是真命题D. 增加条件“三棱锥A-BCD是正三棱锥”才是真命题【答案】A【解析】因为AD⊥平面ABC,AE⊂平面ABC,BC⊂平面ABC,所以AD⊥AE,AD⊥BC.在△ADE中,AE2=ME·DE,又A点在平面BCD内的射影为M,所以AM⊥平面BCD,AM⊥BC,所以BC⊥平面ADE,所以BC⊥DE,BC⊥AE.又,所以.选A.2.【福建省厦门市2018届高三下学期第一次质量检查(3月)】矩形中,,为中点,将沿所在直线翻折,在翻折过程中,给出下列结论:①存在某个位置,;②存在某个位置,;③存在某个位置,;④存在某个位置,.其中正确的是()A. ①②B. ③④C. ①③D. ②④【答案】C【解析】根据题意画出如图所示的矩形:翻折后如图:.对于①,连接,交于点,易证,设,则,,所以,,则,即,,所以翻折后易得平面,即可证,故①正确;对于②,若存在某个位置,,则平面,从而平面平面,即在底面上的射影应位于线段上,这是不可能的,故②不正确;对于③,若存在某个位置,,则平面,平面⊥平面,则就是二面角的平面角,此角显然存在,即当在底面上的射影位于的中点时,直线与直线垂直,故③正确;对于④,若存在某个位置,,因为,所以平面,从而,这与已知矛盾,故④不正确. 故选C.3.【陕西省汉中市重点中学2019届高三下学期3月联考】如图,在正方体中,点是底面的中心,是线段的上一点.(1)若为的中点,求直线与平面所成角的正弦值;(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由.【解析】不妨设正方体的棱长为2,以,,分别为,,轴建立如图所示的空间直角坐标系,则,,,.(1)因为点是的中点, 所以点的坐标为. 所以,,. 设是平面的法向量,则,即.取,则,所以平面的一个法向量为.所以.所以直线与平面所成角的正弦值为.(2)假设存在点使得平面平面,设.显然,.设是平面的法向量,则,即,取,则,,所以平面的一个法向量为.因为,所以点的坐标为.所以,.设是平面的法向量,则,即.取,则,所以平面的一个法向量为.因为平面平面,所以,即,,解得.所以的值为2.即当时,平面平面.4.【山东省菏泽市2019届高三下学期第一次模拟】在四棱锥中,平面,四边形是直角梯形,,,,,,,设为棱上一点,.(1)求证:当时,;(2)试确定的值使得二面角为.【解析】(1)证明:因为,,过作于,则为中点,所以,又,所以.所以,因为平面,所以,,在中,由勾股定理,得当时,,则,因为,所以又,所以∽,所以,即,因为,又,,所以平面,所以又,所以平面,所以,命题得证.(2)以为原点,所在直线为轴建立空间直角坐标系(如图)由(1)得:,,则点,,,,,令,则,,,,,因为,所以,所以点,由题目条件易证平面,所以平面的法向量,设平面的法向量为,则,即,即令,得因为二面角为,所以,解得,,因为在棱上,则,所以为所求.5.【湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)】如图,在四棱锥中,,底面四边形为直角梯形,,,为线段上一点.(1)若,则在线段上是否存在点,使得平面?若存在,请确定点的位置;若不存在,请说明理由(2)己知,若异面直线与成角,二而角的余弦值为,求的长. 【解析】(1)延长,交于点,连接,则平面.若平面,由平面平面,平面,则.由,,则,故点是线段上靠近点的一个三等分点.(2)∵,,,平面,平面,则平面以点为坐标原点,以,所在的直线分别为轴、轴,过点与平面垂直的直线为轴,建立如图所示的直角坐标系,则,,,,则,,设平面和平面的法向量分别为,.由,得即,令,则,故.同理可求得.于是,则,解之得(负值舍去),故.∴.6【江西省重点中学盟校2019届高三第一次联考】.如图,在四棱锥中,底面是正方形,且,平面平面,,点为线段的中点,点是线段上的一个动点.(Ⅰ)求证:平面平面;(Ⅱ)设二面角的平面角为,试判断在线段上是否存在这样的点,使得,若存在,求出的值;若不存在,请说明理由.【解析】(Ⅰ)四边形是正方形,∴.∵平面平面平面平面,∴平面.∵平面,∴.∵,点为线段的中点,∴.又∵,∴平面.又∵平面,∴平面平面.(Ⅱ)由(Ⅰ)知平面,∵,∴平面.在平面内过作交于点,∴,故,,两两垂直,以为原点,以,,所在直线分别为轴,建立如图所示空间直角坐标系.因为,,∴.∵平面,则,,又为的中点,,假设在线段上存在这样的点,使得,设,,,设平面的法向量为,则∴,令,则,则平面,平面的一个法向量,,则∴.,解得,∴7.【山东省临沂市2019届高三2月教学质量检测】如图,在四棱锥中,平面, ,,,,是线段的中点.(1)证明:平面(2)当为何值时,四棱锥的体积最大?并求此最大值【解析】(1)取PD中点N,连接MN,CN,∵M是AP的中点,∴MN∥AD且MN,∵AD∥BC,AD=2BC,∴MN∥BC,MN=BC,∴四边形MNCB是平行四边形,∴MB∥CN,又BM平面PCD,CN⊂平面PCD,∴BM∥平面PCD;(2)设PA=x(0<x<4),∵PA⊥平面ABCD,∴PA⊥AB,∵,∴AB,又∵AB⊥AD,AD=2BC=4,∴V P﹣ABCD=16,当且仅当x,即x=4时取等号,故当PA=4时,四棱锥P﹣ABCD的体积最大,最大值为16.8.【广东省汕头市2019年普通高考第一次模拟】如图所示,四棱锥中,菱形所在的平面,是中点,是上的点.(1)求证:平面平面;(2)若是的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.【解析】(1)连接,因为底面为菱形,,所以是正三角形,是的中点,,又,平面,平面,又平面,又平面,所以平面平面.(2)以为坐标原点建立如图所示空间直角坐标系,不妨设,则,则,设,则,又,设是平面的一个法向量,则,取,得,设直线与平面所成角为,由,得:.化简得:,解得或,故存在点满足题意,此时为或.9.【上海市七宝中学2019届高三上学期期末】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.(1)求异面直线AD1与EC所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.【解析】(1)取CD中点F,连接AF,则AF∥EC,∴∠D1AF为异面直线AD1与EC所成角.在长方体ABCD-A1B1C1D1中,由AD=AA1=1,AB=2,得∴△AD1F为等边三角形,则.∴异面直线AD1与EC所成角的大小为;(2)连接DE,∵E为AB的中点,∴DE=EC=,又CD=2,∴DE2+CE2=DC2,得DE⊥CE.∵D 1D ⊥底面DEC ,则D 1D ⊥CE ,∴CE ⊥平面D 1DE ,得D 1E ⊥CE . ∴四面体D 1CDE 的四个面都是直角三角形, 故四面体D 1CDE 是鳖臑. 10.如图,在三棱锥中, 1AA ⊥底面ABC ,. M 、N 分别为BC 和11B C 的中点. P 为侧棱1BB 上的动点.(Ⅰ)求证: 1//A N 平面APM ; (Ⅱ)求证:平面APM ⊥平面11BB C C ;(Ⅲ)试判断直线1BC 与平面APM 是否能够垂直.若能垂直,求PB 的值;若不能垂直,请说明理由. 【解析】(Ⅰ)证明:∵是三棱柱,∴三个侧面都是平行四边形, 11//AA BB 且11AA BB =, 又∵M 、N 分别为BC 和11B C 的中点, ∴1//MN BB 且1MN BB =, ∴1//MN AA 且1MN AA =, ∴1AA NM 是平行四边形, ∴1//A N AM ,∵1A N ⊄平面APM , AM ⊂平面APM , ∴1//A N 平面APM .(Ⅱ)证明:∵1AA ⊥底面ABC , ∴1BB ⊥底面ABC ,∴1BB AM ⊥, 又∵AB AC =,,又∵M 是BC 中点, ∴AM BC ⊥, ∵, 1,BC BB ⊂平面11BB C C ,∴AM ⊥平面11BB C C , 则平面APM ⊥平面11BB C C ;(Ⅲ)直线1BC 与平面APM 能够垂直,且43PB =, 由(Ⅱ)知AM ⊥平面11BB C C , ∴1AM BC ⊥,若要使1BC ⊥平面APM ,仅需在平面APM 内再找一条和AM 相交的直线和1BC 即可. 此时我们取平面APM 内和AM 相交的直线PM , 若1PM BC ⊥,则BPM 与1CBC 相似,∴1PB BCBM CC =, ∴.11.如图1,在边长为12的正方形11''AA A A 中,,且3AB =,4BC =,1'AA 分别交1BB ,1CC 于点P ,Q ,将该正方形沿1BB 、1CC 折叠,使得1''A A 与1AA 重合,构成如图2所示的三棱柱.(1)求证:AB PQ ⊥;(2)在底边AC 上是否存在一点M ,满足//BM 平面APQ ,若存在试确定点M 的位置,若不存在请说明理由.【答案】(1)证明见解析;(2)点M 满足时,//BM 平面APQ .【解析】(1)证明:因为3AB =,4BC =, 所以5AC =,从而,即AB BC ⊥, 又因为1AB BB ⊥,而,所以AB ⊥平面1BC , 又PQ ⊂平面1BC , 所以AB PQ ⊥.(2)假设存在一点M 满足//BM 平面APQ ,过M 作//MN CQ 交AQ 于N ,连接PN ,由 因为//PB CQ ,所以//MN PB ,连接PN ,因为//BM 平面APQ ,所以//BM PN , 所以四边形PBMN 为平行四边形, 所以3MN =,,所以当点M 满足时,//BM 平面APQ .12.在四棱锥中P ABCD -,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且,分别为PC BD 、的中点.(1)求证://EF 平面PAD ;(2)在线段AB 上是否存在点G ,使得二面角C PD G --G 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,G 为AB 的中点.【解析】(1)证明:连接AC ,由正方形性质可知,AC 与BD 相交于点F , 所以,在PAC ∆中,//EF PA .又PA ⊂平面,PAD EF ⊄平面PAD . 所以//EF 平面PAD .(2)取AD 的中点O ,连接,OP OF , 因为PA PD =,所以PO AD ⊥,又因为侧面PAD ⊥底面ABCD ,交线为AD ,所以PO ⊥平面ABCD ,以O 为原点,分别以射线,OA OF 和OP 为x 轴,y 轴和z 轴建立空间直角坐标系,O xyz -,不妨设2AD =.则有,假设在AB 上存在点,则.因为侧面PAD ⊥底面ABCD ,交线为AD ,且底面是正方形, 所以CD ⊥平面PAD ,则CD PA ⊥, 由得PD PA ⊥,所以PA ⊥PDC ,即平面PDC 的一个法向量为.设平面PDG 的法向理为(),,n x y z =,由00P Dn D Gn ⎧=⎨=⎩即020x z x a --=⎧⎨+=⎩,亦即2z xx y a =-⎧⎪⎨=-⎪⎩,可取.所以.解得1,1a a ==-(舍去).所以线段AB 上存在点G ,且G 为AB 的中点,使得二面角C PD G --的余弦值为.。