平面向量数量积的求法
- 格式:doc
- 大小:230.50 KB
- 文档页数:2
平面向量的数量积和叉积的计算步骤平面向量是数学中重要的概念,它在物理、几何等领域中具有广泛的应用。
其中,数量积和叉积是平面向量运算中的两个重要概念,用于描述向量之间的关系和性质。
本文将介绍平面向量数量积和叉积的计算步骤。
一、平面向量的数量积的计算步骤数量积又称为点积或内积,表示两个向量的乘积的数量。
计算平面向量的数量积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。
平面向量通常用列向量表示,例如向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。
2. 将两个向量的对应坐标相乘。
将a₁与b₁相乘得到的结果记为x₁,将a₂与b₂相乘得到的结果记为x₂。
3. 对结果进行求和。
将x₁和x₂相加得到总和s,即s = x₁ + x₂。
4. 得到最终结果。
最终结果即为平面向量的数量积,记作a·b = s。
二、平面向量的叉积的计算步骤叉积又称为向量积或外积,表示两个向量之间的乘积的向量。
计算平面向量的叉积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。
与数量积相同,平面向量可以用列向量表示,向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。
2. 计算叉积的第一分量。
将a₁与b₂相乘得到的结果记为y₁。
3. 计算叉积的第二分量。
将a₂与b₁相乘得到的结果记为y₂。
4. 得到最终结果。
最终结果即为平面向量的叉积,记作a×b = (y₁, y₂)。
三、数量积和叉积的性质和应用1. 数量积的性质:- a·b = b·a,即数量积满足交换律。
- a·(b+c) = a·b + a·c,即数量积满足分配律。
- k(a·b) = (ka)·b = a·(kb),即数量积满足数乘的结合律。
2. 叉积的性质:- a×b = -b×a,即叉积满足反交换律。
- a×(b+c) = a×b + a×c,即叉积满足分配律。
平面向量的数量积问题侧重于考查平面向量的加法、减法、数乘运算法则,数量积公式和向量的模的公式.平面向量的数量积问题的常见命题形式是:根据已知图形、向量及其关系,求两个向量的数量积或其范围.本文主要谈一谈解答平面向量的数量积问题的三种方法.一、公式法已知两个非零向量a 和b ,它们的夹角为θ,则数量||||||a →||||||b →cos θ称为a 和b 的数量积,即a ⋅b =||||||a →||||||b →cos θ.运用公式法解答平面向量的数量积问题主要就是利用平面向量的数量积公式,求出||||||a →、||||||b →及两个向量a →和b →的夹角的余弦值,即可求得两个平面向量a 和b 的数量积.特别要注意的是,在求两个向量的夹角θ时,需要使a 和b共起点.例1.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),求 AD ⋅AE .解:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2= BD 2+ AB 2-2 BD ∙ AB ∙cos 60°=æèöø132+12-2×13×1×12=79,即AD .同理可得AE ,在△ADE 中,由余弦定理可得cos ∠DAE = AD 2+ AE 2- DE 22 AD ⋅ AE 7979æö132=1314,所以 AD ⋅ AE =|| AD |AE cos ∠DAE =×1314=1318.对于本题,需要先用余弦定理求出两个向量的夹角的余弦值,再利用向量数量积的公式求解.当题目中两个向量的夹角或向量的模未知时,可以先利用解三角形知识求出它们的夹角或者向量的模,再将其代入数量积公式,运用公式法求解.二、基底法运用基底法求解平面向量的数量积问题,首先要确定一组基底,将题目中涉及的向量分别用这组基底表示出来,将问题转化为基底间的运算问题,通过向量运算求得问题的答案.此方法通常适用于向量的模或夹角不明确,无法用公式直接求出的题目.例2.如图1所示,已知正方形ABCD 的边长为1,E 是AB 边上的动点,则 DE ⋅ CB 的值为_____; DE ⋅ DC的最大值为_______.解:因为 DE = AE -AD ,所以 DE ⋅ CB =( AE - AD )⋅ CB = AE ⋅ CB - AD ⋅CB =1;DE ⋅ DC =( AE - AD )⋅ DC = AE ⋅ DC - AD ⋅ DC =|| AE ⋅|| DC ≤|| DC 2,所以() DE ⋅ DC max =|| DC max=1.解答本题,需以 AD 、AE 为基底,运用基底法求解.运用基底法求解向量的数量积问题,关键是根据已知条件选取恰当的基底,将所求向量用基底来表示,从而将问题简化.三、坐标法坐标法是指通过建立平面直角坐标系,用坐标的形式来表示各个向量,通过坐标运算求得问题的答案.运用坐标法解答平面向量的数量积问题,关键是根据题意或已知图形建立合适的平面直角坐标系.通常可以矩形的两条相邻的边为坐标轴;以直角三角形的两条直角边为坐标轴;正三角形的中线和底边为坐标轴来建立平面直角坐标系.例3.如图2,在直角△ABC 中,∠A =90°,D 为斜边BC 的中点,AB =2,AC =4,求 AD ⋅AB .解:建立如图2所示的平面直角坐标系,由题意可得 AD =(2,1), AB =(0,2),所以 AD ⋅AB =(2,1)⋅(0,2)=2.该三角形为直角三角形,于是以该直角三角形的两条直角边为坐标轴建立平面直角坐标系,便可通过向量坐标运算求解.总之,在求解平面向量的数量积问题时,同学们要根据题意和图形,灵活选用合适的方法进行求解,这样才能简化运算过程,达到快速解题的目的.(作者单位:江苏省如东县马塘中学)图1图2考点透视36。
平面向量的数量积与向量投影平面向量的数量积和向量投影是线性代数中重要的概念和计算方法。
它们在解决几何和物理问题时起着关键作用。
本文将详细介绍平面向量的数量积和向量投影,探讨它们的定义、性质和计算方法。
1. 平面向量的数量积平面向量的数量积也称为点积或内积,用来计算两个向量之间的夹角和它们之间的关系。
给定两个平面向量a→=(a1,a2)和a→=(a1,a2),它们的数量积定义为a→⋅a→=a1a1+a2a2。
数量积有以下几个重要的性质:性质1:a→⋅a→=a→⋅a→,即数量积的顺序可以交换。
性质2:a→⋅(a→+a→)=a→⋅a→+a→⋅a→,即数量积对加法的分配律。
性质3:a→⋅a→=‖a→‖^2,即一个向量与自身的数量积等于它自身的模的平方。
性质4:如果两个向量的数量积为0,即a→⋅a→=0,则它们垂直。
基于数量积定义和性质,可以进行向量的投影计算。
2. 向量的投影向量的投影是指一个向量在另一个向量上的投影长度。
通过向量投影可以计算两个向量之间的夹角。
给定两个平面向量a→和a→,它们夹角的余弦可以通过它们的数量积计算如下:cos a = a→⋅a→ / (‖a→‖ * ‖a→‖)其中cos a表示a→和a→夹角的余弦值,‖a→‖和‖a→‖分别表示向量a→和a→的模。
从上述公式中可以看出,如果两个向量的数量积等于它们的模的乘积,则它们的夹角为0度,即两个向量共线。
反之,如果数量积小于0,则夹角为180度,即两个向量反向。
在计算中,可以通过向量的投影来求解两个向量之间的夹角。
向量投影的计算公式如下:a→=(a→⋅a→ / ‖a→‖^2) * a→其中,a→表示向量a→在向量a→上的投影向量。
通过向量投影的计算,我们可以得到两个向量之间的夹角,并且可以判断它们的方向和关系。
3. 数量积与向量投影的应用数量积和向量投影在几何和物理问题中有广泛的应用。
在几何中,利用数量积可以求解两个向量之间的夹角,判断向量的垂直、平行关系,以及计算向量的投影长度。
平面向量数量积公式介绍平面向量是二维空间中具有大小和方向的量。
数量积(又称点积或内积)是平面向量运算的一种形式,用于确定两个向量的相关性以及它们之间的夹角。
数量积公式平面向量数量积公式表示为:A ·B = |A| * |B| * cos(θ)其中,A和B是平面向量,|A|和|B|分别代表向量A和B的模(长度),θ则表示向量A和B之间的夹角。
公式解释平面向量数量积公式的等式左边A · B表示向量A和B之间的数量积。
数量积可以通过两个向量的模和它们之间的夹角来计算。
公式右边的|A|和|B|分别代表向量A和B的模(长度)。
向量的模可以通过求平方根来得到,即|A| = √(A1^2 + A2^2)和|B| = √(B1^2 + B2^2),其中A1和A2分别为向量A在x轴和y轴上的分量,B1和B2类似地代表向量B在x轴和y轴上的分量。
公式右边的cos(θ)表示向量A和B之间的夹角的余弦值。
夹角的余弦可以通过向量的数量积和向量模之间的关系来计算,即cos(θ) = (A · B) / (|A| * |B|)。
综上所述,平面向量数量积公式说明了如何通过向量的模和夹角来计算两个向量之间的数量积。
数量积应用平面向量数量积在多个数学和物理应用中都有重要作用,例如:1.计算向量的模:通过平面向量数量积公式,可以计算向量的模。
向量的模用于衡量向量的长度和大小。
2.计算向量之间的夹角:通过平面向量数量积公式,可以计算两个向量之间的夹角。
夹角的大小和方向可以帮助我们理解向量之间的关系。
3.判断向量的正交性:如果两个向量的数量积为零,即A · B = 0,则称这两个向量为正交向量。
正交向量的特点是它们之间的夹角为90度。
4.判断向量的平行性:如果两个向量的夹角为0度或180度,即θ =0或θ = π,则称这两个向量为平行向量。
平行向量的特点是它们之间的数量积等于两个向量的模的乘积。
5.导出向量的投影:通过平面向量数量积公式,可以导出向量在另一个向量上的投影。
平面向量的数量积与投影平面向量的数量积和投影是向量运算中的重要概念,在数学和物理学中具有广泛的应用。
本文将介绍平面向量的数量积和投影的概念、计算方法以及其在几何和物理中的应用。
一、平面向量的数量积平面向量的数量积(也称为内积、点乘)是指将两个向量的对应分量相乘后求和所得到的数值。
若有向量a=(a₁,a₂)和b=(b₁,b₂),则它们的数量积用符号表示为a·b,计算公式为:a·b=a₁b₁+a₂b₂。
数量积具有以下性质:1. 交换律:a·b=b·a2. 分配律:a·(b+c)=a·b+a·c3. 数乘结合律:(k·a)·b=k·(a·b)数量积的几何意义在于它可以用来计算两个向量之间的夹角。
设夹角为θ,则cosθ=(a·b)/(||a||*||b||),其中||a||和||b||分别为向量a和b的模。
根据这个公式,我们可以判断向量之间的夹角大小以及它们之间的相对方向。
二、平面向量的投影平面向量的投影是指一个向量在另一个向量上的影子长度,它是向量运算中的一种重要应用。
设有向量a和b,投影表示为proj_b a,计算公式为:proj_b a=(a·b)/||b|| * (b/||b||),其中(||b||)为向量b的模。
投影有以下性质:1. 投影为零向量当且仅当向量a与向量b垂直,即a⊥b。
2. 投影的方向与向量b相同或相反,具体取决于向量a与向量b的夹角。
当0°≤θ≤90°时,投影方向与b相同;当90°<θ≤180°时,投影方向与b相反。
投影的几何意义在于它可以帮助我们分析向量之间的关系,特别是在解决几何问题时,投影的计算能够简化向量的运算过程。
三、平面向量的数量积与投影的应用1. 几何应用:平面向量的数量积和投影在几何学中有广泛的应用。
平面向量的数量积和叉积的计算注意事项平面向量是高中数学中重要的概念之一,其数量积和叉积是计算两个向量之间关系的有效工具。
在进行数量积和叉积的计算时,需要注意以下几个关键点。
一、数量积的计算注意事项数量积又称为点积或内积,表示两个向量间的乘积。
在计算数量积时,有以下几个注意事项:1. 数量积的计算公式:对于两个向量A和B,其数量积的计算公式为A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
2. 注意模长的计算:在计算数量积时,需要先计算出向量的模长。
向量A的模长计算公式为|A| = √(A₁² + A₂²),其中A₁和A₂分别表示向量A在x轴和y轴上的分量。
3. 注意夹角的取值范围:夹角θ的取值范围为0°≤θ≤180°。
当θ为锐角时,cosθ大于0;当θ为钝角时,cosθ小于0;当θ为直角时,cosθ等于0。
4. 注意正负号:数量积的结果既可以是正数,也可以是负数。
正数表示两个向量同向,负数表示两个向量反向。
二、叉积的计算注意事项叉积又称为向量积或外积,表示两个向量间的叉乘结果。
在计算叉积时,有以下几个注意事项:1. 叉积的计算公式:对于两个向量A和B,其叉积的计算公式为A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n表示垂直于平面的单位向量。
2. 注意模长的计算:与数量积不同,叉积计算中不需要计算向量的模长。
3. 注意夹角的取值范围:夹角θ的取值范围为0°≤θ≤180°。
当θ为锐角时,sinθ大于0;当θ为钝角时,sinθ小于0;当θ为直角时,sinθ等于0。
4. 注意右手法则:叉积的结果具有方向性。
根据右手法则,将右手的食指指向向量A,中指指向向量B,那么拇指的方向就是叉积结果的方向。
总结:在计算平面向量的数量积和叉积时,我们需要注意以下几个要点:1. 数量积的计算公式为A·B = |A||B|cosθ,注意模长的计算和夹角的取值范围。
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
求平面向量数量积的5种方法平面向量的数量积(也称为内积、点积或标量积)是两个向量的乘积,结果是一个标量(即一个数),代表了两个向量之间的相似度。
平面向量数量积可以通过多种方法进行计算。
本文将介绍五种常用方法,包括点乘法、分量法、向量夹角法、模长法和运算法。
一、点乘法点乘法是最常用的计算平面向量数量积的方法。
给定两个向量A=(a1,a2)和B=(b1,b2),则它们的数量积记作A·B,计算公式如下:A·B=a1*b1+a2*b2二、分量法分量法是另一种常用的计算平面向量数量积的方法。
当向量A=(a1,a2)和B=(b1,b2)的夹角为θ时,它们的数量积可以用以下公式表示:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
三、向量夹角法向量夹角法是通过向量夹角公式直接计算平面向量数量积的方法。
若向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
四、模长法模长法是一种通过计算向量的模长与夹角的余弦值来求解平面向量数量积的方法。
若向量A的模长为,A,向量B的模长为,B,向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
五、运算法运算法是一种通过平面向量的加、减、乘、除等运算求解数量积的方法。
根据数量积的性质,有以下运算法则:-若A·B=0,则向量A与向量B相互垂直。
-若A·B>0,则向量A与向量B夹角小于90度,即为锐角。
-若A·B<0,则向量A与向量B夹角大于90度,即为钝角。
数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
平面向量的数量积和向量积在数学中,向量是一种具有大小和方向的量。
平面向量是指在平面内表示的向量。
平面向量具有一些重要的运算,其中包括数量积和向量积。
一、数量积数量积又称为点积或内积,表示为A·B,其中A和B为平面向量。
数量积的定义如下:A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角。
数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:A·(B+C) = A·B + A·C3. 结合律:k(A·B) = (kA)·B = A·(kB),其中k为常数4. 垂直性质:向量A和向量B垂直,当且仅当A·B = 05. 平行性质:向量A和向量B平行,当且仅当A·B = |A||B|数量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A·B = Ax·Bx + Ay·By。
二、向量积向量积又称为外积或叉积,表示为A×B,其中A和B为平面向量。
向量积的定义如下:A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角,n为垂直于平面的单位向量。
向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:A×(B+C) = A×B + A×C3. 结合律:k(A×B) = (kA)×B = A×(kB),其中k为常数4. 零向量性质:向量A和向量B平行,当且仅当A×B = 05. 平面性质:向量A和向量B所确定的平面与向量A×B垂直向量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A×B = (0, 0, Ax·By - Ay·Bx)。
平面向量数量积的求法
法一:定义法,需要知道模长与夹角。
法二:基底法,转化为模长与夹角已知的向量来运算。
法三:坐标法,需要建系,求出坐标。
法四:投影法,利用数量积的几何意义。
1、若向量,a b
=2=,,a b 的夹角为45°,则a a a b ⋅+⋅ =______.
2、设两向量1e 、2e 满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2t 1e +72e 与向量1e +t 2e 的夹角为钝角,求实数t 的取值范围.
3、如图, 已知正六边形123456PP P P P P ,
下列向量的数量积中最大的是( ) A 、1213PP PP ⋅ B 、1214PP PP ⋅ C 、1215PP PP ⋅ D 、1216PP PP ⋅
4、 已知△ABC 中,===,,,若⋅=⋅=⋅,求证:△ABC 为正三角形.
5、已知平面上三点A 、B 、C 满足3,4,5AB BC CA === 则AB BC BC CA CA AB ⋅+⋅+⋅ 的值为
6、如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中心,问PQ 与BC
的夹角θ取何值时BP ·CQ 的值最大?,并求出这个最大值.
7、 如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是 边BC 上一点,2DC BD =,则AD
BC = ·_______
. A B
C
8、已知O 为Rt △ABC 的内切圆的圆心,AB=5,BC=4,CA=3下列结论正确的是( )
A. OA OB OB OC OC OA ⋅<⋅<⋅
B. OA OB OB OC OC OA ⋅>⋅>⋅
C. OA OB OB OC OC OA ⋅=⋅=⋅
D. OA OB OB OC OC OA ⋅<⋅=⋅
9、已知菱形ABCD 的边长为a ,60ABC ∠=
,则BD CD ⋅= ( ) A 、232a -
B 、234
a - C 、 234a D 、 232a 10、在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于___________ 11、若△ABC 的三个内角A ,B ,C 成等差数列,且(AB +AC )·BC =0,则△ABC 的形
状为________________
12、给出以下四个命题:①对任意两个向量a ,b 都有|a·b |=|a ||b |;
②若a ,b 是两个不共线的向量,且AB =λ1a +b ,AC =a +λ2b (λ1,λ2∈R),则A 、B 、C
共线⇔λ1λ2=-1;
③若向量a =(cos α,sin α),b =(cos β,sin β),则a +b 与a -b 的夹角为90°.
④若向量a 、b 满足|a |=3,|b |=4,|a +b |=13,则a ,b 的夹角为60°. ⑤a b ⋅= 0,则a 与b 中至少有一个为0 ;
⑥对任意向量,,a b c 都有()()a b c a b c ⋅⋅=⋅⋅ ;
⑦a 与b 是两个单位向量,则22a b = .以上命题中正确命题的序号是__________
13、在ABC ∆中,O 为中线AM 上一个动点,若2AM =,则()OA OB OC ⋅+ 的最小值是____
14、已知1,,AB AC AB AC t t ⊥== ,若P 点是ABC ∆所在平面内一点,且4AB AC AP AB AC
=+ ,则PB PC ⋅ 的最大值等于( ) A 、13 B 、15 C 、19 D 、21
15、如图,在△OAB 中,已知P 为线段AB 上的一点,且|AP |=2|PB |.
(1)试用OA ,OB 表示OP ; (2)若| OA |=3,| OB |=2,且∠AOB =60°,求OP ·AB 的值.。