激光拉曼光谱分析
- 格式:pdf
- 大小:327.92 KB
- 文档页数:7
激光拉曼光谱分析法首先,让我们来了解激光拉曼光谱分析的原理。
拉曼光谱是指物质分子与光子相互作用后发生的能量改变所产生的光的散射现象。
当激光照射到样品表面时,部分被散射,其中一部分发生拉曼散射,即光子在与物质分子相互作用后发生频率改变的过程。
拉曼散射光中含有与样品中分子振动、转动和其他模式有关的信息,通过分析拉曼散射光的频率和强度,可以确定样品的化学成分、结构和状态。
为了实现激光拉曼光谱的测量,需要一套专门的仪器设备。
最基本的设备包括激光器、样品架、光谱仪等。
激光器用于产生高能量、单色的激光束,通常使用激光二极管或激光器作为光源。
样品架用于将待测样品放置在激光束中,确保样品与激光充分接触。
光谱仪用于收集并分析拉曼散射光的频率和强度,通常使用光栅或干涉仪作为光谱分析装置。
激光拉曼光谱的测量过程主要包括样品的准备、实验参数的设置、光谱测量和数据分析等步骤。
首先,需要将待测样品制备成适当的形式,如固体样品可以通过压片或微晶片技术制备,液体样品可以直接放置在样品架上。
然后,根据样品的性质和分析要求,设置合适的激光器功率、波长和探测器增益等参数。
接下来,将样品架放置在激光束中,通过调整样品位置和激光聚焦来最大化拉曼散射光的强度。
然后,使用光谱仪收集拉曼散射光的光谱数据,并通过傅里叶变换等数学方法将时间域数据转换为频域数据。
最后,根据光谱图像和峰位、峰形等特征,可以确定样品的化学成分、结构和状态。
激光拉曼光谱分析法在不同领域具有广泛的应用。
在材料科学领域,可以利用激光拉曼光谱分析法研究材料的结构和相变过程,例如确定纳米材料的尺寸和形态、表征薄膜的物理性质等。
在生物医学领域,可以使用激光拉曼光谱分析法研究生物分子的结构和功能,如检测肿瘤标记物、鉴定细菌和病毒等。
在环境监测领域,可以利用激光拉曼光谱分析法迅速检测土壤、水体、空气中的污染物,例如检测水中重金属离子、鉴别有机污染物等。
综上所述,激光拉曼光谱分析法是一种高分辨率、非破坏性的分析技术,广泛应用于材料科学、生物医学、环境监测等领域。
激光拉曼光谱激光拉曼光谱技术是一种基于激光和拉曼散射原理的光谱分析技术,它通过测量拉曼光谱,研究物质的化学结构、成分信息、物性参数等,以及拉曼光谱和分子结构的关系,为物理、化学和材料科学领域提供了广泛的研究和应用机会。
激光拉曼光谱的研究方法包括电子及共振光谱技术,它可以用来探测物质的结构和性质,也可以识别和分析物质的成分。
激光拉曼光谱的技术依赖的理论基础可以分为普通的拉曼原理、共振拉曼原理和复合拉曼原理。
拉曼原理是由拉曼散射测量分析物质中元素振动或颗粒所产生的拉曼散射现象,这种现象所产生的拉曼光谱容易识别物质的成分和结构。
共振拉曼散射是由物质的外电子云或共价键的频率相关的电磁场的组合而观测到的,它可以获得元素在物质中的分子结构,从而获得物质的化学结构信息。
复合拉曼散射是指拉曼散射和共振拉曼散射结合在一起使用,可以获得更多的信息。
激光拉曼光谱技术是一种灵敏、高分辨率的分析技术,可以应用于多种物质,如生物、材料、环境等,它可以用来检测机理、探索结构、计算反应率,在广泛应用于物理化学研究和机械工程制造领域。
激光拉曼光谱技术的优点可归纳为:(1)精确可靠,它可以测量到物质结构的非常小的变化,而不会受到其他因素的影响;(2)灵敏度高,可以探测到痕量物质;(3)可以获得高分辨率的全光谱信息;(4)可以检测物质的多种特性;(5)对物质的测量不受环境的影响;(6)快速测量,可以快速分析多种物质。
激光拉曼光谱技术的应用十分广泛,它可以应用于工业领域的控制及检测,如分析精细化学品;也可以应用于表面分析,如金属和多层膜结构的探索;可以应用于生命科学领域,如生物分子和生物大分子的结构和物性参数的检测;还可以应用于环境领域,如分析气体、水体中的痕量化学物;还可以应用于材料工程领域,如分析材料的结构和组成,以及晶体内部的分析等。
总之,激光拉曼光谱技术在物理、化学、材料工程、环境等多个领域中都有着广泛的应用,它拥有良好的准确性、灵敏性以及全光谱信息分析能力,而且操作简单便捷,是一种重要的分析技术。
拉曼光谱分析的原理及应用1. 引言拉曼光谱分析是一种非常重要的光谱分析技术,可以用于物质的成分分析和结构表征。
本文将介绍拉曼光谱分析的基本原理,并探讨其在各个领域的应用。
2. 拉曼光谱分析的原理拉曼光谱分析基于拉曼散射效应,其原理可以简单概括为:物质受到激光照射后,光子与分子进行相互作用,一部分光子会被散射并改变频率,这个频率差称为拉曼散射频移。
通过测量拉曼散射光的频移,可以获取物质的结构信息和振动模式。
3. 拉曼光谱分析的步骤拉曼光谱分析包括以下几个步骤: - 选择适当的激光源和光谱仪,确保实验条件和仪器精度; - 将样品与激光束进行交互作用,通常采用激光聚焦技术,使激光与样品相互作用,产生拉曼散射光; - 使用光谱仪收集拉曼散射光,并对其进行光谱分析,包括频移的测量和峰谱分析; - 对光谱数据进行处理和解析,以获取样品的结构信息和振动模式。
4. 拉曼光谱分析的应用领域拉曼光谱分析在各个领域都有广泛的应用。
以下列举了几个典型的应用领域:4.1 材料科学•材料成分分析:通过拉曼光谱分析,可以对材料的成分进行快速、非破坏性的检测,如金属合金、聚合物材料等。
•相变研究:通过观察拉曼光谱中的频移和峰形变化,可以研究材料在不同温度和压力下的相变过程。
4.2 生物医学•药物分析:拉曼光谱可以用于药物的质量控制和表征,如药物的纯度、结晶形态等。
•细胞研究:通过拉曼光谱技术,可以对细胞内的分子成分和代谢物进行分析,以研究细胞的结构和功能。
4.3 环境监测•气体检测:拉曼光谱分析可以用于快速检测大气中的气体成分,如空气中的二氧化碳、甲烷等。
•水质检测:通过拉曼光谱分析,可以对水质进行快速、非破坏性的检测,如水中的重金属离子、有机物等。
4.4 犯罪科学•鉴定和分析:拉曼光谱分析可以被用于犯罪现场的样品分析和鉴定,如毒品、爆炸物等。
5. 拉曼光谱分析的优势和挑战拉曼光谱分析具有以下优势: - 非破坏性:样品不需要受到破坏或改变,可以进行多次分析。
激光拉曼光谱实验报告激光拉曼光谱实验报告引言:激光拉曼光谱是一种非常重要的光谱分析技术,它可以通过激光与样品相互作用而产生的拉曼散射光,来获取样品的结构信息和分子振动信息。
本实验旨在探究激光拉曼光谱的原理与应用,并通过实验验证其在化学分析中的可行性和准确性。
实验原理:激光拉曼光谱是基于拉曼散射效应的,当激光与样品相互作用时,光子与样品中的分子发生相互作用,部分光子的能量被转移给分子,导致分子的振动和转动状态发生变化。
当光子重新散射出来时,其能量与入射光子相比发生了变化,这种能量差就是拉曼散射光的频率差,也称为拉曼位移。
通过测量拉曼散射光的频率差,可以获得样品的结构信息和分子振动信息。
实验步骤:1. 准备样品:选择一种具有明确结构和振动特征的样品,如苯乙烯。
将样品制备成适当浓度的溶液。
2. 调整仪器:打开激光拉曼光谱仪,调整激光器的功率和波长,确保光束的稳定性和一致性。
3. 校准仪器:使用标准样品进行校准,以确保光谱仪的准确性和可靠性。
4. 测量样品:将样品溶液放置在光谱仪的样品室中,调整光谱仪的参数,如激光功率、积分时间等,开始测量样品的拉曼光谱。
5. 数据分析:将测得的拉曼光谱数据进行处理和分析,通过比对标准谱图和已知结构的样品,确定拉曼峰的对应关系和分子结构。
实验结果与讨论:通过实验测量得到的苯乙烯的拉曼光谱如下图所示。
在光谱中可以观察到多个峰,每个峰对应着分子的不同振动模式。
通过与已知标准谱图的对比,可以确定这些峰的对应关系,从而推断出样品中分子的结构和组成。
在苯乙烯的拉曼光谱中,我们可以观察到几个显著的峰,如1450 cm^-1处的峰对应着苯环的C=C键伸缩振动,800 cm^-1处的峰对应着苯环的C-H键伸缩振动。
这些峰的位置和强度可以提供关于分子结构和键的信息,如键长、键强度等。
激光拉曼光谱在化学分析中有着广泛的应用。
通过测量样品的拉曼光谱,可以快速、无损地获取样品的结构信息和化学成分。
激光拉曼光谱原理
激光拉曼光谱是一种用于分析物质成分和结构的非损伤性技术。
它利用激光光源照射样品,当光与样品相互作用时,其中一部分光被散射,并通过集成光谱仪进行分析。
激光拉曼光谱基于拉曼散射效应,拉曼散射是指光在与物质相互作用时改变频率和能量的现象。
当激光与样品相互作用时,有一部分光被散射,并且散射光的频率可能会发生变化。
这些频率的变化量与样品的分子振动和旋转相关。
拉曼散射光中的频率变化通常非常小,因此需要使用高分辨的光谱仪来检测。
光谱仪通常由一个光栅或干涉仪组成,可以将不同频率的光分离开来,并测量其强度。
这样就可以得到一个频率与强度的光谱图。
激光拉曼光谱可以用于分析各种类型的样品,包括固体、液体和气体。
对于固体样品,激光光源可以通过显微镜聚焦到样品表面上的微小区域,以获得高空间分辨率的光谱信息。
对于液体和气体样品,可以通过光纤将光源引导到样品中,以获取其拉曼光谱。
通过对激光拉曼光谱的分析,可以确定样品中的分子组成和结构信息。
每种分子都有独特的拉曼光谱特征,因此可以通过比对实验结果与已知标准光谱库来确定样品的成分。
此外,还可以通过观察峰值的位置、强度和形状来推断样品的分子结构和化学键信息。
激光拉曼光谱具有高灵敏度、非破坏性、快速分析等优点,因此广泛应用于材料科学、化学、生物医学等领域的研究和实际应用中。
材料微观结构分析法一、激光拉曼光谱分析法1.拉曼光谱的基本原理当用单色光照射透明样品是,大部分光透过而小部分会被样品在各个方向上散射。
这些光的散射又分为瑞利散射和拉曼散射两种。
1.1瑞利散射和拉曼散射若光子和样品分子发生弹性碰撞,即光子和分子之间没有能量交换,即光子的能量保持不变,散射光能量和入射光能量相同,但方向可以改变。
这种光的弹性碰撞,叫做瑞利散射。
当光子和样品分子发生非弹性碰撞时,散射光能量和入射光能量大小不同,光的频率和方向都有所改变,这种光的散射成为拉曼散射。
其散射光的强度约占总散射光强度的10-6~10-10。
拉曼散射的产生原因是光子与分子之间发生了能量交换,改变了光子的能量。
1.2拉曼散射的产生拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。
样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。
样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。
当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。
这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes 线。
若光子与处于振动激发态(V 1)的分子相互作用,是分子激发到更高的不稳定能态后又回到振动激态(V 0),散射光的能量大于激发光,在瑞利散射线高频率侧会出现一拉曼散射线,这条线称为Anti-stokes 线。
1.3拉曼位移Stokes 与Anti-stokes 散射光的频率与激发光之间频率的差值ΔV 称为拉曼位移。
一般斯托克斯散射光比反斯托克斯散射光强度大得多,故在拉曼光谱分析中通常测定斯托克斯散射光线。
拉曼位移取决于分子振动能级的变化,不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,与之对应的拉曼位移是特征的。
这是拉曼光谱进行分子结构定性分析的理论依据。
拉曼散射机制图示虚态激发态基态V 0+ΔVAnti-stokes 线 V 0 瑞利散射 V 0+ΔV Stokes 线2 基本仪器及功能拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。
第五篇 光谱分析第四章 拉曼光谱分析——激光显微共焦拉曼光谱仪拉曼散射是印度科学家Raman 在1928年发现的,拉曼光谱因之得名。
光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射称为瑞利散射,由英国物理学家瑞利于1899年进行了研究。
但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经色散分光过滤后的太阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。
拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。
因为这一重大发现,拉曼于1930年获诺贝尔物理学奖。
拉曼光谱得到的是物质分子的振动光谱,是物质的指纹性信息,即每一种物都有自己特征拉曼谱图,因此拉曼光谱是认证物质和分析成分的有力工具。
而且拉曼峰的频率(或波数)对物质结构的微小变化非常敏感,所以也常通过对拉曼峰的微小变化的观察,来研究在一些条件下,比如温度、压力、掺杂等,所引起的物质结构变化,以及间接推出材料不同部分微观上的环境因素的信息,如应力分布等。
拉曼光谱技术的优点:光谱的信息量大,谱图易辨认,特征峰明显;对样品无接触,无损伤;样品无需进一步处理;快速分析,鉴别各种材料的特性与结构;由于激光拉曼光谱仪还带有显微共焦功能,故又称激光显微共焦拉曼光谱仪,可做微区微量以及分层材料的分析(1微米左右光斑);高空间分辨率对地质的包裹体尤其有用;能适合黑色和含水样品;高、低温及高压条件下测量;光谱成像快速、简便,分辨率高;仪器稳固,体积适中,维护成本低,使用简单。
激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。
如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。
一、基本原理当波数为 (频率为 )的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。
激光拉曼光谱的原理及应用1. 激光拉曼光谱简介激光拉曼光谱是一种非损伤性、非接触性的光谱分析技术,通过测量样品散射光与激光光源相比较发生的Raman散射,得到样品的结构和成分信息。
激光拉曼光谱具有高灵敏度、快速测量、高准确性等优点,在材料科学、生物化学、环境监测等领域有广泛应用。
2. 激光拉曼光谱原理激光拉曼光谱的原理基于拉曼散射现象,当激光与物质相互作用时,部分光子发生能量的转移,散射光中频移与分子振动或晶格振动的能量差相对应,这种频移即为拉曼散射。
拉曼光谱是通过记录样品散射光的频移和强度,来研究物质结构和成分的一种手段。
3. 激光拉曼光谱的基本步骤激光拉曼光谱的测量过程可以分为以下几个步骤:• 3.1 激光照射:选择合适的激光源,将激光光束聚集到样品上。
• 3.2 散射光收集:收集由样品散射的光,包括弹性散射光和Raman 散射光。
• 3.3 光谱检测:使用光谱仪检测、记录散射光的频移和强度。
• 3.4 数据分析:对测量到的光谱进行数据处理和分析,提取所需的结构和成分信息。
4. 激光拉曼光谱的应用领域4.1 材料科学•纳米材料研究:激光拉曼光谱可以用于表征纳米材料的结构、形貌等,帮助研究者了解纳米材料的性质和行为。
•材料质量控制:通过对材料进行激光拉曼光谱分析,可以判断材料的纯度、杂质含量等,提高材料的质量控制水平。
•化学反应研究:激光拉曼光谱可以实时监测化学反应过程中的物质转化和结构变化,为反应机理的研究提供详细信息。
4.2 生物化学•药物研发:激光拉曼光谱可以用于药物分子结构的表征和药物与靶标的相互作用研究,加速药物研发过程。
•生物分析:激光拉曼光谱可以用于分析生物样品中的蛋白质、核酸等生物大分子,实现快速、无损伤的分析。
•病理诊断:激光拉曼光谱可以鉴定组织和细胞中的分子组成,提供快速的病理诊断手段。
4.3 环境监测•污染物检测:激光拉曼光谱可以快速检测环境中的化学污染物,如有机物、重金属等,有助于环境监测和治理。
第三节激光拉曼光谱法在分子的振动中,有些振动由于偶极矩的变化表现了红外活性,能吸收红外光,从而出现了红外吸收谱带(见第二章第二节),但有些振动却表现了拉曼活性,产生了拉曼光谱谱带.这两种方法都能提供分子振动的信息,起到相互补充的作用,采用这两种方法,可获得振动光谱的全貌.拉曼光谱是一种散射光谱.在20世纪30年代,拉曼散射光谱曾是研究分子结构的主要手段.后来随着实验内容的深人,由于拉曼效应太弱,所以随着红外光谱的迅速发展,拉曼光谱的地位随之下降。
自1960年激光问世,并将这种新型光源引入拉曼光谱后,拉曼光谱出现了新的局面,已广泛应用于有机、无机、高分子、生物、环保等各个领域,成为重要的分析工具。
而且由于它的一些特点,如水和玻璃散射光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用具有突出的特长.近几年又发展了傅里叶变换拉曼光谱仪,使它在高分子结构研究中的作用与日俱增。
3.1基本概念3.1.1拉曼散射及拉曼位移拉曼光谱为散射光谱。
当一束频率为V0的人射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射;反之,若发生弹性碰撞,即两者之间没有能量交换,这种光散射称为瑞利散射。
在拉曼散射中,若光子把一部分能量给样品分子,得到的散射光能量减少,在垂直方向测量到的散射光中,可以检测频率为(V0—△E/h)的线,称为斯托克斯(stokes)线,如图3-1所示,如果它是红外活性的话,△E/h的测量值与激发该振动的红外频率一致。
相反,若光子从样品分子中获得能量,在大于入射光频率处接收到散射光线,则称为反斯托克斯线。
处于基态的分子与光子发生非弹性碰撞,获得能量到激发态可得到斯托克斯线,反之,如果分子处于激发态,与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯托斯线。
斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。
第5章_拉曼光谱分析法拉曼光谱分析法是一种基于光散射现象的分析方法,利用样品与激光束相互作用产生的散射光谱进行定性和定量分析。
它具有非接触、无损、无需特殊处理样品等优点,可以广泛应用于材料科学、化学、生物学等领域。
拉曼光谱是一种特殊的光散射现象,它是指当光线通过样品时,与样品中的分子或晶体发生相互作用,产生了与入射光不同频率的光线。
这种频率差异所产生的光谱称为拉曼光谱。
拉曼光谱的频率差值与样品的化学成分和结构有关,因此可以通过分析拉曼光谱来确定样品的组成和结构信息。
拉曼光谱分析法的原理是基于拉曼散射的特点。
当激光束照射到样品上时,部分光会被样品吸收,其余部分则会发生拉曼散射。
拉曼散射有两个主要成分:斯托克斯散射和反斯托克斯散射。
斯托克斯散射是指散射光的频率低于入射光的情况,而反斯托克斯散射是指散射光的频率高于入射光的情况。
拉曼光谱分析主要包括拉曼散射光谱的测量和数据的处理与解析两个步骤。
在测量过程中,首先要选择合适的激光源和光谱仪器,激光的选择应该能够激发样品的拉曼散射,并且要避免与样品产生共振散射的情况。
光谱仪器则需要具备高分辨率和高灵敏度,以获取清晰的拉曼散射光谱。
数据的处理与解析是拉曼光谱分析的关键步骤。
首先需要对所得的拉曼光谱进行预处理,包括去除背景噪声、波峰的校正和峰的归一化等。
然后可以通过对光谱进行拟合和峰的分析来获得样品的组成和结构信息。
常用的数据处理方法包括主成分分析、偏最小二乘法和支持向量机等。
拉曼光谱分析法在材料科学领域有着广泛的应用。
例如,可以利用拉曼光谱分析法对纳米材料的大小、形状和晶格结构进行表征;可以通过拉曼光谱分析法对药物的纯度和杂质进行检测;可以利用拉曼光谱分析法对生物标志物进行快速识别和检测等。
此外,拉曼光谱也可以应用于环境监测、食品安全和法医学等领域。
综上所述,拉曼光谱分析法是一种非常有价值的分析手段,它通过测量样品的拉曼散射光谱来获得样品的组成和结构信息。
它具有非接触、无损、无需特殊处理样品等优点,可以应用于多个领域。
第十一章 激光拉曼光谱分析
(Laser Raman Spectroscopy ,LRS )
§11-1 拉曼光谱原理
一、拉曼光谱
当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。
拉曼光谱和红外光谱一样同属于分子振动光谱,可以反映分子的特征结构。
但是拉曼散射效应是个非常弱的过程,一般其光强仅约为入射光强的10-10 。
1、瑞利散射
当光子与物质的分子发生弹性碰撞时,没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。
入射光与散射光的频率相同,如图中2、3两种情况。
2、斯托克斯(Stokes)散射
当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子
υ=0
图11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图
υ=1
从基态跃迁到某一虚拟态,返回到某一激发态,入射光频率大于散射光频率,如图中第1种情况,最后这种散射称斯托克斯(Stokes)线。
3、反斯托克斯(Anti-Stokes)散射
当原处于激发态的分子跃迁到某一虚拟态,返回到基态,入射光频率小于散射光频率,如图中第4种情况。
这种散射称反斯托克斯(Stokes)线。
由于常温下处于基态的分子占绝大多数,斯托克斯线比反斯托克斯线强得多。
4、拉曼位移
入射光频率与拉曼散射光频率之差称拉曼位移。
它与物质的振动和转动能级有关,不同的物质有不同的拉曼位移。
对于同一种物质,若用不同频率的入射光照射,所产生的拉曼散射光的频率也不相同,但拉曼位移却是一个确定值。
因此,拉曼位移与入射光频率无关,仅与分子振动能级有关。
—拉曼光谱物质分子结构分析和定性鉴定的依据。
5、拉曼光谱:
横坐标:拉曼位移;
纵坐标:强度
二、去偏振度
激光是偏振光。
起偏振器测得的垂直于入射光方向散射光强和平行于入射光方向散射光强的比值称去偏振度,用ρ表示。
ρ取值:0~3/4;
ρ→0,对称性高,ρ→3/4,不对称结构
三、共振拉曼效应
当选取的入射激光波长非常接近或处于待测分子生色团吸收频率时,产生电子耦合,拉曼跃迁的几率大大增加,使得分子的某些振动模式的拉曼散射截面增强高达106 倍,这种现象称为共振拉曼效应(Resonance Raman ,RR) 。
利用共振拉曼光谱的某些拉曼谱带的选择性增强,可以得到生色团振动光谱信息。
但是只有少数分子具有与处于可见光区的激发光相匹配的电子吸收能级。
(只有与生色团有关的振动形式才具有共振拉曼光谱)
§11-2 拉曼光谱与红外光谱的关系
一、原理差异
红外光谱—源于偶极矩变化 拉曼光谱—源于极化率变化
拉曼光谱用于研究非极性基团和对称性振动的方法。
(1)互斥规则
对称中心分子CO 2,CS 2等,选律不相容。
凡具有中心对称的分子,其分子振动为拉曼活性,则红外光谱是非活性的。
反之也然 (2)互允规则
无对称中心分子(例如SO 2等),既是红外活性振动,又是拉曼活性振动。
(3)互禁规则
不发生极化率和偶极矩的改变,拉曼、红外均为非活性 对称分子:
对称振动→拉曼活性。
不对称振动→红外活性
例如同核双原子分子N 2,Cl 2,H 2等无红外活性却有拉曼活性。
是由于这些分子平衡态或伸缩振动引起核间距变化但无偶极矩改变,对振动频率(红外光)不产生吸收。
但两原子间键的极化度在伸缩振动时会产生周期性变化:
核间距最远时极化度最大,最近时极化度最小。
由此产生拉曼位移。
二、特征光谱的差异
S C S S C S
ν1 拉曼活性
红外活性
红外活性
红外光谱:
对极性基团和非对称性振动敏感,适合于分子端基的测定
拉曼光谱:
适合于分子骨架的测定。
两者关系:
都是活性的,基团频率等效、通用。
但红外光谱参考资料和标准图谱全,占明显优势。
拉曼光谱长处:
去偏度→对称性;共振拉曼→具有生色团大分子;水溶液测定→生化、无机拉曼光谱不足:
试样的颜色,荧光干扰,激光对样品的损伤等
三、方法差异
§11-3激光拉曼光谱仪
早期的拉曼光谱使用汞弧灯作为激发光源,由于拉曼光谱信号很弱,试样量大,曝光时间长杂质引起的荧光会淹没拉曼光谱。
1960年,激光出现后为拉曼光谱提供了理想的光源。
激光的优势:
亮度极强,单色性极好,极好的准直性,几乎完全是线偏振光,简化了去偏
振度的测量。
一、色散型激光拉曼光谱仪
色散型激光拉曼光谱仪主要由以下几个部分组成:
激光光源→样品室→色散系统(双单色仪)→检测器→数据处理系统。
1、激光光源:
由于拉曼散射很弱,因此要求光源强度大,一般用激光光源。
色散型拉曼有可见及红外激光光源,如具有308nm,351nm发射线的紫外激光器;Ar+激光器一般在488.0nm, 514.5nm等可见区发光;而Nd:YaG激光器则在1064nm近红外区使用。
2、试样室
有液体池、气体池和毛细管。
对固体样品、薄膜可以置于特制的样品架上。
3、单色器:
色散型拉曼光谱仪有多个单色器。
主要是有效的消除杂散光。
由于测定的拉曼位移较小,因此仪器需要较高的单色性。
在傅立叶变换拉曼光谱仪中,以迈克尔逊干涉仪代替色散元件,光源利用率高,可采用红外激光,用以避免分析物或杂质的荧光干扰。
4、检测器:
多采用光电倍增管,光子计数器;
二、傅立叶变换-近红外拉曼光谱仪
傅立叶变换拉曼光谱仪主要有以下几个部分组成:
激光光源→样品室→相干滤波器→干涉仪→检测器→计算机处理数据(进行傅立叶变换)。
1、光源:
Nd-YAG 钇铝石榴石激光器(1.064 m);
检测器:高灵敏度的铟镓砷探头;
特点:
(1)避免了荧光干扰;
(2)精度高;
(3)消除了瑞利谱线;
(4)测量速度快。
2、迈克尔逊干涉仪
三、激光显微拉曼光谱仪
§11-4 激光拉曼光谱的应用
拉曼光谱的应用范围十分广泛。
对于研究有机物的结构,拉曼光谱的应用远不如红外,但拉曼光谱适合于水溶液中有机物的测定,它适合于测定有机分子的骨架。
一、由拉曼光谱提供有机化合物结构信息:
1、分子中含有-S-S-,-C=C-,-C=S-,-C-N-,-N=N-,C≡C产生强拉曼谱带,特征明显,适合于拉曼光谱研究,随单键→双键→三键谱带强度增加。
2、红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一般较弱或强度可变,而在拉曼光谱中则是强谱带。
3、环状化合物的对称呼吸振动常常是最强的拉曼谱带。
4、在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。
红外光谱与此相反。
5、C-C伸缩振动在拉曼光谱中是强谱带。
6、醇和烷烃的拉曼光谱是相似的
二、拉曼光谱技术的优越性
提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。
此外
1、由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。
2、拉曼一次可以同时覆盖40-4000波数的区间,可对有机物及无机物进行分析。
而中红外光谱覆盖400-4000波数,若覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。
3、拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。
在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数
量相关。
4、因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。
这是拉曼光谱相对常规红外光谱一个很大的优势。
而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。
5、共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。
6、表面增强拉曼SERS(Surface-Enhanced Raman Scattering)是用通常的拉曼光谱法测定吸附在胶质金属颗粒如银、金或铜表面的样品,或吸附在这些金属片的粗糙表面上的样品。
被吸附的样品其拉曼光谱的强度可提高103-106倍。
如果将表面增强拉曼与共振拉曼结合,光谱强度的净增加几乎是两种方法增强的和。
检测限可低至10-9-10-12摩尔/升。
表面增强拉曼主要用于吸附物种的状态解析等。