高中数学必修1 集合的基本运算(二) 补集
- 格式:ppt
- 大小:260.50 KB
- 文档页数:9
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课堂10分钟达标1.已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},则U A= ( )A.{6,8}B. {5,7}C.{1,3,5,7}D.{2,4,6,8}【解析】选D.由于U={1,2,3,4,5,6,7,8},A={1,3,5,7},所以U A={2,4,6,8}.2.全集U={0,1,3,5,6,8},集合A={1,5,8},B={2},则集合(U A)∪B= ( )A.{0,2,3,6}B.{0,3,6}C.{2,1,5,8}D.∅【解析】选A.U A={0,3,6},所以(U A)∪B={0,2,3,6}.3.设全集U={x|x≥0},集合P={1},则U P等于( )A.{x|0≤x<1或x>1}B.{x|x<1}C.{x|x<1或x>1}D.{x|x>1}【解析】选A.由于U={x|x≥0},P={1},所以U P={x|x≥0且x≠1}={x|0≤x<1或x>1}.4.已知U={x|x>0},A={x|2≤x<6},则U A= .【解析】如图,分别在数轴上表示两集合,则由补集的定义可知,U A={x|0<x<2,或x≥6}. 答案:{x|0<x<2,或x≥6}5.已知全集U=R,集合A={x|-1<x<4},B={x|0<x<5},则A∩(U B)= . 【解析】由于U B={x|x≤0或x≥5},故A∩(U B)={x|-1<x<4}∩{x|x≤0或x≥5}={x|-1<x≤0}.答案:{x|-1<x≤0}6.已知全集U={2,3,a2-2a-3},A={2,|a-7|},U A={5},求a的值.【解析】方法一:由|a-7|=3,得a=4或a=10,当a=4时,a2-2a-3=5,当a=10时,a2-2a-3=77∉U,所以a=4.方法二:由A∪(U A)=U知所以a=4.7.【力量挑战题】已知全集为R,集合M={x|-2<x<2},P={x|x≥a},并且M⊆(R P),则a的取值范围是.【解析】M={x|-2<x<2},R P={x|x<a}.由于M⊆(R P),所以由数轴知a≥2.答案:a≥2关闭Word文档返回原板块。
集合的基本运算【学习目标】1.理解并集、交集的含义,会求两个简单集合的并集与交集。
2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力。
3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
【学习重难点】1.学习重点:并集、交集、补集的含义,利用维恩图与数轴进行交并补的运算。
2.学习难点:弄清并集、交集、补集的概念,符号之间的区别与联系。
【学习过程】1.一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作A B ⋃(读作“A 并B ”),即{|}A B x x A x B ⋃∈∈=,或。
2.由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与B 的交集,记作A B ⋂,读作A 交B ,即{|}A B x x A x B ⋂∈∈=,且。
3.A B ⋂= _____A _____,A A ⋃= _____A _____,A ⋂∅=_____∅_____,A A ⋃∅=.4.若A B ⊆,则A B ⋂=_____A _____,A B ⋃=_____B _____。
5.A B A ⋂⊆,A B B ⋂⊆,A A B ⊆⋃,A B A B ⋂⊆⋃.一、求两个集合的交集与并集例1 求下列两个集合的并集和交集。
(1)12{}345A =,,,,,10123{}B -=,,,,; (2){|}5|2{}A x x B x x <->-=,=。
解:(1)如图所示,1012345{}A B ⋃-=,,,,,,,123{}A B ⋂=,,。
(2)结合数轴(如图所示)得:{52|}A B R A B x x ⋃⋂-<<-=,=。
点评:求两个集合的交集依据它们的定义,借用Venn 图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集。
变式迁移1(1)设集合{|}{|}122A x x B x x A B >--<<⋃=,=,等于( )A .{|}2x x ->B .{|}1x x ->C .2{|}1x x --<<D .2{|}1x x -<<(2)若将(1)中A 改为{|}A x x a =>,求A B ⋃.(1)答案 A解析 画出数轴,故{|2}A B x x ⋃-=>。