2009-2010学年湖北省武汉市新洲区七年级(上)期末数学试卷
- 格式:doc
- 大小:89.59 KB
- 文档页数:4
N M FEDCBA2009学年七年级数学上学期期末试卷(武汉市)一、选择题1.右图为张先生家的一张存折的一部分, 从图中可知,截止2009年1月3日, 此张存折还结余( )A.2300元B.500元C.4100元D.1800元 2.0.5-的相反数是( )A.0.5B.-0.5C.-2D.2 3.下列说法正确的是( )A.23vt -的系数是-2 B.233ab 的次数是6次 C.5x y +是多项式 D.21x x +-的常数项为14.四川汶川发生里氏8.0级地震后,半月内,社会各界纷纷向灾区捐款约43 681 000 000元人民币。
这笔款额用科学计数法表示(保留两个有效数字)正确的是( )A.104.310⨯ B. 94.410⨯ C. 104.410⨯ D.110.4410⨯ 5.已知关于x 的方程432x m -=的解是x=m ,则m 的值是( )A.2B.-2C.2或7D.-2或7 6.下列变形中,不正确的是( )A.()a b c d a b c d ++-=++-B.()a b c d a b c d --+=-+-C.()a b c d a b c d ---=---D.()a b c d a b c d +---=+++ 7.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=12∠MFE.则∠MFB=( )A.30°B.36°C.45°D.72°8.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③9.已知 2(1)25a +=,且0a <,3214a b +++=,且0ab >,则a b +=( )A.-19B.-9C.13D.310.下列说法:①若a 为有理数,则a -表示负有理数;②()22a a =-;③若a b >,则22a b >;④若0a b +=,则330a b +=.其中正确的个数有( )A.1个B.2个C.3个D.4个 11.某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他( )A.不赚不赔B.赔12元C.赔18元D.赚18元 12.如图,∠AOB 为角,下列说法:①∠AOP=∠BOP ;②∠AOP=12∠AOB ; ③∠AOB=∠AOP+∠BOP ;④∠AOP=∠BOP=12∠AOB.其中能说明射线OP 一定是∠AOB 的平分线的有( )A.①②B.①③④C.①④D.只有④ 二、填空题13.写出322x y -的一个同类项_______________________.14.已知∠AOC=60°,∠AOB ︰∠AOC=2︰3,则∠BOC 的度数是______________.15.今年七月,为迎接奥运圣火在武汉传递,某校在汉口江滩广场举行了“我爱奥运,祝福圣火”的万人签名活动。
武汉市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2062.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .43.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -6.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .8.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .39.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102510.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________. 15.已知方程22x a ax +=+的解为3x =,则a 的值为__________.16.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 17.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.当x= 时,多项式3(2-x )和2(3+x )的值相等. 20.4是_____的算术平方根.21.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 23.用“>”或“<”填空:13_____35;223-_____﹣3.24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.三、压轴题25.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
七年级上册武汉数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x ﹣y 的值为( )A .-2B .6C .23-D .22.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n3.-5的相反数是( ) A .15B .±5C .5D .-154.把一个数a 增加2,然后再扩大2倍,其结果应是( ) A .22a +⨯B .()22a +C .24a a ++D .()222a a +++5.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b6.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .357.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种8.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4 B .-2C .2D .49.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .10.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6D .2(2x +1)﹣10x +1=111.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .112.下列四个图中的1∠也可以用AOB ∠,O ∠表示的是( )A .B .C .D .13.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+= C .x x 5204+= D .x x5204204+=+- 14.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是315.下列说法中正确的有( ) ①经过两点有且只有一条直线; ②连接两点的线段叫两点的距离; ③两点之间的所有连线中,垂线段最短;④过直线外一点有且只有一条直线与已知直线平行. A .0个B .1个C .2个D .3个二、填空题16.一个角的的余角为30°15′,则这个角的补角的度数为________. 17.若单项式322m x y-与3-x y 的差仍是单项式,则m 的值为__________.18.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.19.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 20. 若32x +与21x --互为相反数,则x =__.21.在同一平面内,150,110AOB BOC ∠=︒∠=︒,则AOC ∠的度数为_____________. 22.﹣|﹣2|=____.23.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.设这个班共有x 名学生,则可列方程为___.24.如果一个角的余角等于它本身,那么这个角的补角等于__________度.25.单项式345ax y-的次数是__________.三、解答题26.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE . (1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?27.(探索新知)如图1,点C 将线段AB 分成AC 和BC 两部分,若BC =πAC ,则称点C 是线段AB 的圆周率点,线段AC 、BC 称作互为圆周率伴侣线段. (1)若AC =3,则AB = ;(2)若点D 也是图1中线段AB 的圆周率点(不同于C 点),则AC DB ;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 均为线段OC 的圆周率点,求线段MN 的长度.(4)图2中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数. 28.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.29.计算: (1)()157-724912⎛⎫+⨯-⎪⎝⎭(2)1377 -1-244812⎛⎫⎛⎫÷+⎪ ⎪⎝⎭⎝⎭30.计算:(1)(-23)-(+13)-|-34|-(-14)(2)-12-(1-0.5)×13×[3-(-3)2]31.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm(1)求AC的长(2)若点E在直线AD上,且EA=2cm,求BE的长32.如图所示方格纸中,点,,O A B三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA交于格点O,点C是直线OB上的格点,按要求画图并回答问题.(1)过点C画直线OB的垂线,交直线OA于点D;过点C画直线OA的垂线,垂足为E;在图中找一格点F,画直线DF,使得//DF OB(2)线段CE的长度是点C到直线的距离,线段CD的长度是点到直线OB的距离. 33.解方程:(1)2(2)6x-=(2)11123 x x +--=四、压轴题34.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少?③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 37.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.38.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.39.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?40.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.41.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果. 42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x 、y 、z 的值,然后代入代数式计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “x”与“y”是相对面, “5”与“-5”是相对面, “-4”与“3x -2”是相对面,∵相对面上所标的两个数互为相反数, ∴3x-2+(-4)=0, x+y=0, 解得x=2,y=-2. ∴2x ﹣y =6. 故选B. 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.C解析:C 【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.3.C解析:C 【解析】解:﹣5的相反数是5.故选C .4.B解析:B 【解析】 【分析】一个数a 增加2为a +2,再扩大2倍为2(a +2),即可得出结果. 【详解】解:一个数a 增加2为:a +2,再扩大2倍, 则为:2(a +2), 故选:B . 【点睛】本题考查了列代数式,正确理解题意是解题的关键.5.A解析:A 【解析】试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a ∣<∣b ∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值6.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用. 7.C解析:C【解析】【分析】利用立方体展开图的性质即可得出作图求解.【详解】如图,再添加1个小正方形拼接后就能使得整个图形能折叠成正方体纸盒故有4种,故选C.【点睛】此题主要考查了几何展开图的应用以及基本作图,解题的关键是熟知正方体的展开图特点.8.A解析:A【解析】【分析】根据相反数的性质并整理可得a 4b -=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a 和14b -互为相反数,∴a +14b -=0整理,得a 4b -=-1()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.9.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .10.C解析:C【解析】【分析】方程的分母最小公倍数是6,方程两边都乘以6即可.【详解】方程两边都乘以6得:2(2x +1)﹣(10x +1)=6.【点睛】 去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号. 11.A 解析:A 【解析】 【分析】 设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343. 所以23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.12.B解析:B【解析】【分析】根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A 1∠可以用AOB ∠表示,但O ∠没有办法表示任何角,故该选项不符合题意;B 1∠可以用AOB ∠表示,O ∠也可以表示∠1,故该选项符合题意;C 1∠不可以AOB ∠表示,故该选项不符合题意;D 1∠可以用AOB ∠表示,但O ∠没有办法表示任何角,故该选项不符合题意. 故选:B【点睛】考查了角的概念,关键是掌握角的表示方法.13.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.14.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确; B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.15.C解析:C【解析】【分析】根据直线公理、平行线公理、以及垂线公理分析判断即可得出答案.【详解】解:①经过两点有且只有一条直线,即两点确定一条直线,说法正确;②连接两点的线段的长度叫两点的距离;说法错误;③两点之间的所有连线中,线段最短,说法错误;④过直线外一点有且只有一条直线与已知直线平行,说法正确.综上所述正确的是①④.故选:C .【点睛】本题考查了直线的性质,线段的性质,垂线的性质,平行线性质,是基础知识,需牢固掌握.二、填空题16.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.17.【解析】【分析】根据题意可知单项式与是同类项,从而可求出m 的值.【详解】解:∵若单项式与的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】解析:3【解析】【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y-与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3. 18.两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.解析:两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.19.–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2解析:–5【解析】【分析】将x=1代入ax2+2bx+1=0得出a+2b=-1,代入原式=2(a+2b)-3计算可得.【详解】解:根据题意,得:a+2b+1=0,则a+2b=–1,所以原式=2(a+2b)–3=2×(–1)–3=–5,故答案为–5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.-1【解析】【分析】由于与互为相反数,由此可以列出方程解决问题.【详解】解:∵与互为相反数,∴+()=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法解析:-1【解析】【分析】由于32x +与21x --互为相反数,由此可以列出方程解决问题.【详解】解:∵32x +与21x --互为相反数,∴32x ++(21x --)=0,解得:x=-1.故答案为:-1.【点睛】此题主要考查了一元一次方程的解法,解题时首先正确理解同一,然后利用题目的数量关系列出方程解决问题.21.40º或100º【解析】【分析】根据OC 所在的位置分类讨论:①当OC 在∠AOB 内部时,画出对应的图形,结合已知条件即可求出∠AOC;②当OC 不在∠AOB 内部时,画出对应的图形,结合已知条件即可解析:40º或100º【解析】【分析】根据OC 所在的位置分类讨论:①当OC 在∠AOB 内部时,画出对应的图形,结合已知条件即可求出∠AOC ;②当OC 不在∠AOB 内部时,画出对应的图形,结合已知条件即可求出∠AOC .【详解】解:①当OC 在∠AOB 内部时,如下图所示∵150,110AOB BOC ∠=︒∠=︒∴∠AOC=∠AOB -∠BOC=40°②当OC 不在∠AOB 内部时,如下图所示∵150,110AOB BOC ∠=︒∠=︒∴∠AOC=360°-∠AOB -∠BOC=100°综上所述:∠AOC=40°或100°故答案为:40°或100°.【点睛】此题考查的是角的和与差,掌握各角之间的关系和分类讨论的数学思想是解决此题的关键.22.﹣2.【解析】【分析】计算绝对值要根据绝对值的定义求解,然后根据相反数的性质得出结果.【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定解析:﹣2.【解析】【分析】 计算绝对值要根据绝对值的定义求解2-,然后根据相反数的性质得出结果.【详解】﹣|﹣2|表示﹣2的绝对值的相反数,|﹣2|=2,所以﹣|﹣2|=﹣2.【点睛】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.23.=﹣2.【解析】【分析】设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程求解.【详解】设这个班学生共有人,根据题意得:.故答案是:.【 解析:8x =6x ﹣2. 【解析】【分析】设这个班学生共有x 人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程求解.【详解】设这个班学生共有x 人, 根据题意得:286x x =-. 故答案是:286x x =-. 【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组. 24.135【解析】【分析】根据互余两角和为,由题意可得出这个角的度数,再根据两个互补的角和为求解即可.【详解】解:设这个角为,由题意可得,,解得,,∵,∴这个角的补角等于135度.故答案解析:135【解析】【分析】根据互余两角和为90︒,由题意可得出这个角的度数,再根据两个互补的角和为180︒求解即可.【详解】解:设这个角为α,由题意可得,α90α=︒-,解得,α45=︒,∵18045135︒-︒=︒,∴这个角的补角等于135度.故答案为:135.【点睛】本题考查的知识点是余角和补角的概念定义,掌握余角和补角的概念定义是解此题的关键.25.5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.解析:5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式345ax y-的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.三、解答题26.(1)90°;(2)∠BOD;(3)不发生改变,理由详见解析.【解析】【分析】(1)由∠AOC=50°,得到∠AOD=∠COD=25°,∠BOC=130°,求得∠COE=∠BOE=115°.即可求出∠DOE;(2)由(1)得∠AOD=∠COD=25°,则∠BOD=155°,即可得到答案;(3)设∠AOC=2x,则∠AOD =∠COD = x,得到∠COE=90°+x,即可得到∠DOE=90°.【详解】解:(1)∵∠AOC=50°,∴∠BOC=180°50-︒=130°,∵OD是∠AOC的角平分线,∴∠AOD=∠COD=25°,∴∠COE=∠BOE=3601301152︒-︒=︒,∴∠DOE=115°2590-︒=︒;故答案为:90.(2)由(1)知∠AOD=∠COD=25°,∴∠BOD=155°,∴图中与∠COD互补的角为∠BOD;故答案为:∠BOD.(3)不发生改变,设∠AOC=2x .∵OD是∠AOC的平分线,∴∠AOD =∠COD=x,∴∠BOC=180° ̶2x,∵∠COE=∠BOE,∴∠COE=360(1802)2x--=90°+x,∴∠DOE=90°+x ̶x=90°.【点睛】本题考查了角的计算,以及等角的补角相等,解题的关键是理解角平分线的定义,正确进行角度的运算.27.(1)3π+3;(2)=;(3)π-1,(4)1、π、π+1π+2、π2+2π+1.【解析】【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.【详解】(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C 点表示的数是π+1,M 、N 均为线段OC 的圆周率点,不妨设M 点离O 点近,且OM=x ,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1;(4)设点D 表示的数为x ,如图3,若CD=πOD ,则π+1-x=πx ,解得x=1;如图4,若OD=πCD ,则x=π(π+1-x ),解得x=π;如图5,若OC=πCD ,则π+1=π(x-π-1),解得x=π+1π+2;如图6,若CD=πOC ,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D 点所表示的数是1、π、π+1π+2、π2+2π+1. 【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.3DE =.【解析】【分析】根据线段中点求出CE 长,再求出DC 长,即可得出答案;【详解】 E 为BC 的中点,且1BE =,1CE BE ==∴,23AD AC =∵,且6AC =, 123CD AC ==∴,213DE DC CE ∴=+=+=.【点睛】本题考查了线段的中点,能根据图形求出各个线段之间的关系是解题的关键.29.(1)-20;(2)−135【解析】【分析】(1)原式先运用乘法分配律去括号,再计算乘除运算,最后算加减运算即可得到结果; (2)原式先计算括号内的运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】 (1)()157-724912⎛⎫+⨯- ⎪⎝⎭=()()()15772-72724912⨯-⨯-+⨯- =-18+40-42=-20; (2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭ =1422114--24242424⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭=135-2424⎛⎫÷ ⎪⎝⎭ =−135【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.30.(1)-32;(2)0. 【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【详解】解:(1)(-23)-(+13)-|-34|-(-14) =(-23)+(-13)-34+14=-32; (2)-12-(1-0.5)×13×[3-(-3)2] =-1-()113923⨯⨯- =-1-16×(-6) =-1+1=0.【点睛】 考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.31.(1)6;(2)9cm 或5cm.【解析】【分析】(1)先根据点B 为CD 的中点,BD=1cm 求出线段CD 的长,再根据AC=AD-CD 即可得出结论;(2)由于不知道E 点的位置,故应分E 在点A 的左边与E 在点A 的右边两种情况进行解答.【详解】(1)∵点B 为CD 的中点,BD=1cm ,∴CD=2BD=2cm ,∵AC=AD-BD ,AD=8cm ,∴AC=8-2=6cm ;(2)∵点B 为CD 的中点,BD=1cm ,∴BC=BD=1cm ,①如图1,点E 在线段BA 的延长线上时,BE=AE+AC+CB=2+6+1=9cm ;②如图2,点E 在线段BA 上时,BE=AB-AE=AC+CB-AE=6+1-2=5cm ,综上,BE 的长为9cm 或5cm.【点睛】本题主要考察两点间的距离,解题关键是分情况确定点E 的位置.32.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE 的长度是点C 到直线OA 的距离,线段CD 的长度是点D 到直线OB 的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.33.(1)5x =;(2)1x =【解析】【分析】(1)先去括号,然后移项合并,即可得到答案;(2)先去分母,然后去括号,移项合并,即可得到答案.【详解】解:(1)2(2)6x -=,∴246x -=, ∴210x =,∴5x =;(2)11123x x +--=, ∴3(1)62(1)x x +-=-,∴33622x x +-=-,∴55=x ,∴1x =.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法进行解题.。
武汉市人教版七年级上册数学期末试卷及答案百度文库一、选择题 1.4 =( )A .1B .2C .3D .42.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 4.-2的倒数是( )A .-2B .12- C .12 D .25.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-26.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 7.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上8.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .110.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102512.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-13.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 14.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定15.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18.化简:2xy xy +=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 20.若方程11222m x x --=++有增根,则m 的值为____.21.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.若α与β互为补角,且α=50°,则β的度数是_____. 24.计算7a 2b ﹣5ba 2=_____.25.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.26.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.27.当12点20分时,钟表上时针和分针所成的角度是___________.28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.30.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒. 32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 34.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.35.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.36.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.37.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?38.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.4.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.6.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.8.A解析:A 【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A9.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.10.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.11.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1,第10个数是(﹣2)10+1=1024+1=1025故选:D .【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.12.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.13.B解析:B【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .14.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6.故选:C .【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【分析】把x =3代入方程得到关于m 的方程,求得m 的值即可.【详解】解:把x =3代入方程得1+1+mx(31)4-=23, 解得:m =﹣83. 故答案为:﹣83. 【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.18..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.19.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键21.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.24.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 25.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 26.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.27.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.28.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.29.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 30.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.三、压轴题31.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,。
七年级上学期期末调研考试数 学 试 题答卷时间:120分钟满分:120分 2010.1一、选择题(每小题3分,共36分)1、-8的相反数是( )A .-8B .8C .81-D .81 2、数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,-8,+18,则这4名同学实际成绩最高的是( )A .90分B .80分C .72分D .98分3、2008年全国人民共向四川地震灾区捐款约43681000000元,这笔款额用科学记数法表示(保留三个有效数字)正确的是( )A .0.437×1011B .4.4×1010C .4.37×1010D.43.7×1094、下列式子中是单项式的是( )A .2x 2-3x-1B .32y x 37-C .zxy2 D .)y x (212-5、若-5a n b n-1与21m b a 31+是同类项,则(-n )m的值为( )A .9B .8C .-9D .-86、若x=-2是方程3x-4m=2的解,则m 的值为( )A .1B .-1C .2D .-27、下列变形中,正确的是( )A .若a=b ,则b1a 1= B .若ax=ay ,则x=y C .若ab 2=b 3,则a=bD .若cbc a =,则a=b8、假期张老师带学生乘车外出参加创新素质实践活动,甲车主说“每人8折”,乙车主说:“学生9折,老师免费”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师带的学生数为( )A .8名B .9名C .10名D .17名9、图1是正方体的展开图,将它折叠成正方体后“创”字的对面是( )A .文B .明C .城D .市10、钟表上2点30分时,时针与分针所夹的角的度数是( )A .90°B .105°C .110°D .120°11、如图2,点A 、O 、B 在一条直线上,∠1是锐角,则∠1的余角是( )A .1221∠-∠B .123221∠-∠C .)12(21∠-∠D .)21(31∠+∠12、下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是( )A .①②B .①③C .①②③D .②③④二、填空题(每小题3分,共12分) 13、计算:176°51′÷3= .14、有理数a 、b 、c 在数轴上的位置如图3所示,且a 与b 互为相反数,则c b c a +--= .市 城 明 文建 创 图1图2ABOC1 2ao cb 图315、若(m+3)x︱m ︱-2+2=1是关于x 的一元一次方程,则m 的值为 .16、对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自然数82的分裂数中最大的数是 .三、解答题(共7小题,共50分) 17、(本题7分)计算:)2()211(4.03)3(2-÷⎥⎦⎤⎢⎣⎡-⨯+---18、(本题7分)化简求值:3a 2b-〔2ab 2-2(ab-23a 2b )+ab 〕+3ab 2其中a=3,b=31-.2213321 5374215 3 ……19、(本题7分)解方程:136x 547x =---20、(本题7分)已知线段AB 上有两点M 、N ,点M 将AB 分成2︰3两部分,点N 将AB 分成4︰1两部分,若MN=3cm ,求AM ,NB 的长.21、(本题7分)如图4,已知点A 、O 、B 在一条直线上,∠COD=90°,OE 平分∠AOC ,OF 平分∠BOD ,求∠EOF 的度数.ADC BO EF图422、(本题7分)尊师重教.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?23、(本题8分)2009年12月26日武广高铁正式开通运营,预计高速列车在武汉、广州间单程运行时间为3小时.12月10日试车时,试验列车由武汉到广州的行驶时间比预计多用了18分钟,由广州返回武汉的时间与预计时间相同,如果这次试车时,由广州返回武汉比去广州时平均每小时多行驶35千米,那么这次试车的平均速度是多少千米/时?四、探究题(本题10分)24、生活中处处有数学,表一是2010年元月的日历表,用一个正方形框出3×3=9个数(如图).(1)在表中框出九个数之和最大的正方形;(2)若一个正方形内九个数字之和是108,你能求出这个正方形吗?指出它中间的数字;(3)将自然数1至2010按表二的方式排列,框出九个数其和能为2010吗?若能,求出该方框中的最小数;若不能,请说明理由.日一二三四五六1 23 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 3031表一1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 21……………………………………2010表二五、综合题(本题12分)25、已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且0)1b (4a 2=-++,A 、B 之间的距离记作AB ,定义︰AB =b a -. (1)求线段AB 的长AB ;(2)设点P 在数轴上对应的数为x ,当PB PA -=2时,求x 的值;(3)若点P 在A 的左侧,M 、N 分别是PA 、PB 的中点,当P 在A 的左侧移动时,下列两个结论:①PN PM +的值不变;②PM PN -的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.七年级上学期期末调研考试参考答案一、1、B2、D3、C4、B5、A6、D7、D8、A9、B10、B11、C12、A二、13、58°57′14、015、316、15三、17、539- 18、原式=ab 2+ab值为32-19、x=179-20、AM=3cm ,NB=1.5cm21、∠EOF=135°22、(1)距出发地西边4千米 (2)耗油10.8升,花费66.96元 23、设平均速度为x 千米/时,则(3+6018)x=3(x+35)∴x=350(千米/时)四、24、(1)中间数字为22,(2)设中间数字为a ,则9a=108,∴a=12(3)由9a=2010得a=22393,∵a 为自然数,∴这样的九个数不存在 五、25、(1)5AB = (2)当P 在点A 左侧时,25AB )PA PB (PB PA ≠-=-=--=-, 当P 在点B 右侧时,25AB PB PA ≠==-, ∴上述两种情况的点P 不存在.当P 在A 、B 之间时,4x )4(x PA +=--=,x 11x PB -=-= ∵2PB PA =-, ∴x+4-(1-x )=2 ∴x=21-即x 的值为21-.(3)②PM PN -的值不变,值为25. ∵25AB 21)PA PB (21PA 21PB 21PM PN ==-=-=-∴25PM PN =-.。
2009-2010学年度第一学期七年级 语文综合练习(四) 完卷时间:120分钟;满分100分,另附加题10分 Ⅰ选择题(14分,其中附加题4分) 1、下列加点字的注音全对..的一项是( )。
(2分) A. 爵.士(ji áo ) 收敛.(li ǎn ) 伫.立(zhù) 挣扎.(zhá) B. 静谧.(mì) 峰峦.(nuán ) 孤.舟(g ū) 万载.(zài ) C. 憔.悴(qiáo ) 嫩.芽(nèn ) 大蟹.(xi ě) 堕.落(duò) D. 滑稽.(j ī) 附和.(hè) 苦熬.(áo ) 踉.跄(liàng ) 2、下列词语没有错别....字的一项是( )。
(2分) A. 栖息 禀告 咀咒 训械 B. 风韵 目炫 婉转 拢乱 C. 地窖 信服 迂回 嘹亮 D. 纳罕 铁清 撤消 绵延 3、依次填入下面句中横线处的短语,最恰当...的一项是( )。
(2分) 在人生旅途中,能拥有那来自四面八方的种种提醒,该是多么令人欢欣鼓舞啊。
提醒可以是婉转的和风细雨,也可以是_____;可以是寥寥的片言只语,也可以是_____;可以是直对相知的友人,也可以朝向_____;可以是面对激烈的争辩,也可以只是____。
备选答案:①素不相识的陌生人 ②走了火的雷霆霹雳③悄无声息的暗示眼神 ④不停的絮絮叨叨A. ① ② ③ ④B. ② ④ ① ③C. ② ① ④ ③D. ② ③ ④ ①4、下列句子所使用的修辞手法与其他三句不同.......的是( )。
(2分) A. 每次上体育课,看见万芳裤子上那条长长的伤疤,我就觉得对不住她。
B. 而我的心也仿佛同时变成了铅块,很重很重地堕下去了。
C. 还有寂寞的瓦片风筝, 没有风轮, 又放得很低,伶仃地显出憔悴可怜的模样。
D. 空中,半空中,天上,自上而下全是那么清亮,那么蓝汪汪的, 整个的是块空灵的蓝水晶。
武汉市人教版七年级上册数学期末试卷及答案百度文库 一、选择题 1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒3.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°4.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120205.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣36.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .7.下列各数中,有理数是( )A .2B .πC .3.14D .37 8.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠29.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )A .0B .1C .12D .310.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 12.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.18.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.4是_____的算术平方根.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.计算:3+2×(﹣4)=_____.24.用度、分、秒表示24.29°=_____.三、解答题25.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二 三 四 五 六 下车(人)3 6 10 7 19 上车(人) 12 10 9 4 0(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?26.计算:﹣6÷2+11()34-×12+(﹣3)2. 27.先化简, 再求值.已知222213,222A x xy yB x y =-+=- ()1求2A B -()2当3,1x y时,求2A B -的值28.计算 (1)()22315a a a a +⋅-⋅.(2)()2232246()x y x y xy -÷.29.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?30.计算:(1)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭ (2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 四、压轴题 31.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______. ()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.32.已知线段30AB cm=(1)如图1,点P沿线段AB自点A向点B以2/cm s的速度运动,同时点Q沿线段点B 向点A以3/cm s的速度运动,几秒钟后,P Q、两点相遇?(2)如图1,几秒后,点P Q、两点相距10cm?(3)如图2,4AO cm=,2PO cm=,当点P在AB的上方,且060=∠POB时,点P 绕着点O以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P Q、两点能相遇,求点Q的运动速度.33.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.2.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.3.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.4.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.5.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.6.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.7.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150 .【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A 表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.16.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.17.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.18.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.19.>【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、解答题25.(1)本趟公交车在起点站上车的人数是10人;(2)此趟公交车从起点到终点的总收入是90元.【解析】【分析】(1)根据下车的总人数减去上车的总人数得到起点站上车的人数即可;(2)从起点开始,把所有上车的人数相加,计算出和以后再乘以2即可求解.【详解】(1)(3+6+10+7+19)-(12+10+9+4+0)=45﹣35=10(人)答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.【点睛】本题考查了有理数加减运算的应用,读懂题意,正确列出算式是解决问题的关键. 26.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:﹣6÷2+11()34-×12+(﹣3)2 =﹣3+11121234⨯-⨯+(﹣3)2 =﹣3+4﹣3+9=7.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 27.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.28.(1)32a a -;(2)46x -【解析】【分析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x yx y =-÷46x =-. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.29.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C 表示的数为3t ,当203<t≤503时,点C 表示的数为20﹣3(t ﹣203)=40﹣3t ;当0≤t≤5时,点D 表示的数为﹣2t ,当5<t≤20时,点D 表示的数为﹣10+2(t ﹣5)=2t ﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD =5可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a ﹣20)2+|b+10|=0,∴a ﹣20=0,b+10=0,∴a =20,b =﹣10.(2)∵设P 表示的数为x ,点A 表示的数为20,M 是AP 的中点.∴点M 表示的数为202x +. 又∵点B 表示的数为﹣10,∴BM =202x +﹣(﹣10)=20+2x . (3)当0≤t≤203时,点C 表示的数为3t ; 当203<t≤503时,点C 表示的数为:20﹣3(t ﹣203)=40﹣3t ; 当0≤t≤5时,点D 表示的数为﹣2t ;当5<t≤20时,点D 表示的数为:﹣10+2(t ﹣5)=2t ﹣20.当0≤t≤5时,CD =3t ﹣(﹣2t )=5,解得:t =1;当5<t≤203时,CD =3t ﹣(2t ﹣20)=5, 解得:t =﹣15(舍去); 当203<t≤503时,CD =|40﹣3t ﹣(2t ﹣20)|=5, 即60﹣5t =5或60﹣5t =﹣5,解得:t =11或t =13.答:1秒、11秒或13秒后,C 、D 两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a ,b 的值;(2)根据各点之间的关系,用含x 的代数式表示出BM 的长;(3)找准等量关系,正确列出一元一次方程.30.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=12-(2)解:原式=()111192523--⨯⨯- =()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.四、压轴题31.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 32.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.33.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°. 【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P 在直线AB 的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP 的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON ﹣∠PAO ﹣∠PBO ;②如图2,点P 在直线AB 的左侧,∠APB=∠MON+∠PAO+∠PBO ,证明:延长AP 交ON 于点D ,∵∠ADB 是△AOD 的外角,∴∠ADB=∠PAO+∠AOD ,∵∠AP B 是△PDB 的外角,∴∠APB=∠PDB+∠PBO ,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。
2013-2014学年湖北省武汉市新洲区七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)4.(3分)关于单项式,下列说法中正确的是()它系数是5.(3分)(2007•宿迁)观察下面的一列单项式:﹣x、2x、﹣4x、8x、﹣16x、…根据其中的规律,得出的第107.(3分)解方程时,去分母、去括号后,正确结果是().C D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(1)1.4的相反数_________;(2)2的倒数是_________;(3)﹣|﹣3|=_________.12.(3分)对于任意非零实数a,b,定义运算“⊕”,使得a⊕b=ab﹣a2,则(﹣2)⊕5=_________.13.(3分)(2011•郑州模拟)如果a﹣3b=6,那么代数式5﹣a+3b的值是_________.14.(3分)当k是_________时,方程2(2x﹣3)=1﹣2x和8﹣k=2(x+1)的解相同.15.(3分)已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程,那么a=_________.16.(3分)如图,是一个正方形纸盒的展开图,在其中的四个正方形内标有数字1、2、3和﹣3.可在其余正方形内分别填上一个数,使得折成正方体后,相对面上的两数互为相反数,则A处应填_________.(2)﹣42×(﹣)+30÷(﹣6).18.(6分)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.19.(6分)x+=1﹣20.(6分)如图,是由一些大小相同的小正方体组合成的简单几何体.(1)右图中有_________块小正方体;(2)该几何体的主视图如下图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(7分)“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(3)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?22.(7分)如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,OE是∠AOC的平分线,OF是∠BOD的平分线.(1)如果∠AOE=20°,∠BOF=25°,那么∠COD是多少度?(2)如果∠COD=40°,那么能否求出∠EOF的大小?若能,则求出∠EOF的度数;若不能,请说明理由.23.(8分)一群驴友排成一列在野外旅游,队长在队伍中,数了一下他前后的人数,发现前面的人数是后面的两倍,他往前超了6位驴友,发现前面的人数和后面的人数一样.(1)这群驴友一共有多少人?(2)这群驴友要过一座320米长的独木桥,为安全起见,相邻两个驴友间保持固定的距离,行走速度为5米/分,从第一位驴友刚上桥到全体通过独木桥用力100分钟时间,请问相邻两个驴友间的距离是多少米?24.(10分)如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.25.(12分)如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图l,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以l度/秒的速度绕点0顺时针旋转,当他们旋转多少秒时,使得∠POQ=10°?(3)如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且=,试求x.2013-2014学年湖北省武汉市新洲区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1C 2D 3A 4A 5B 6D 7C 8A 9B 10A二、填空题(共6小题,每小题3分,满分18分)11.﹣1.4;(2);(3)﹣3.12.﹣14.13.﹣1.14..15.﹣2.16.﹣2.(﹣)﹣y==6DOF=COE= COE=米,根据题意得出:两点之间运动时:AP+BP==AB=NP=﹣BP=(AB=7COD=∠×。
2009-2010学年湖北省武汉市七年级(上)期末数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)(2013•仙桃)﹣8的相反数是()
A.8 B.﹣8 C.D.﹣
2.(3分)(2011秋•新洲区期末)数学考试成绩以80分为标准,王老师将某4名同学的成绩简记为+10,0,﹣8,+18,则这4名同学实际成绩最高的是()
A.90分B.80分C.72分D.98分
3.(3分)(2008•仙桃)2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是()
A.0.437×1011B.4.4×1010C.4.37×1010 D.43.7×109
4.(3分)(2011秋•新洲区期末)下列式子中是单项式的是()
A.2x2﹣3x﹣1 B.﹣C.D.(x2﹣y)
5.(3分)(2011秋•新洲区期末)若﹣5a n b n﹣1与是同类项,则(﹣n)m的值为()A.9 B.8 C.﹣9 D.﹣8
6.(3分)(2013秋•湖南期末)若x=﹣2是方程3x﹣4m=2的解,则m的值为()A.1 B.﹣1 C.2 D.﹣2
7.(3分)(2011秋•新洲区期末)下列变形中,正确的是()
A.若a=b,则=B.若ax=ay,则x=y
C.若ab2=b3,则a=b D.若=,则a=b
8.(3分)(2011秋•新洲区期末)假期张老师带学生乘车外出参加创新素质实践活动,甲车主说“每人8折”,乙车主说:“学生9折,老师免费”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师带的学生数为()
A.8名B.9名C.10名D.17名
9.(3分)(2013秋•江川县期末)如图是正方体的展开图,将它折叠成正方体后“创”字的对面是()
A.文B.明C.城D.市
10.(3分)(2011秋•新洲区期末)钟表上2点30分时,时针与分针所夹的角的度数是()A.90°B.105°C.110°D.120°
11.(3分)(2012秋•江岸区期末)如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()
A.∠2﹣∠1 B.∠2﹣∠1 C.(∠2﹣∠1)D.(∠1+∠2)
12.(3分)(2011秋•新洲区期末)下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()
A.①②B.①③C.①②③ D.②③④
二、填空题(共4小题,每小题3分,满分12分)
13.(3分)(2011秋•新洲区期末)计算:176°51′÷3=.
14.(3分)(2011秋•新洲区期末)有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.
15.(3分)(2011秋•新洲区期末)若(m+3)x|m|﹣2+2=1是关于x的一元一次方程,则m 的值为.
16.(3分)(2011秋•新洲区期末)对于大于或等于2的自然数n的平方进行如下“分裂”,分裂成n个连续奇数的和,则自然数82的分数中最大的数是.
三、解答题(共9小题,满分72分)
17.(7分)(2011秋•新洲区期末)计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).18.(7分)(2011秋•新洲区期末)化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.
19.(7分)(2011秋•新洲区期末)解方程:﹣=1.
20.(7分)(2011秋•新洲区期末)已知线段AB上有两点M、N,点M将AB分成2:3
两部分,点N将AB分成4:1两部分,若MN=3cm,求AM,NB的长.
21.(7分)(2011秋•新洲区期末)如图,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.
22.(7分)(2014秋•扶余县期末)教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,﹣4,﹣8,+10,+3,﹣6,+7,﹣11.
(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?
(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?
23.(8分)(2011秋•新洲区期末)2009年12月26日武广高铁正式开通运营,预计高速列车在武汉、广州间单程运行时间为3小时.12月10日试车时,试验列车由武汉到广州的行驶时间比预计多用了18分钟,由广州返回武汉的时间与预计时间相同,如果这次试车时,由广州返回武汉比去广州时平均每小时多行驶35千米,那么这次试车的平均速度是多少千米/时?
24.(10分)(2011秋•新洲区期末)生活中处处有数学,表一是2010年元月的日历表,用一个正方形框出3×3=9个数(如图).
(1)在表中框出九个数之和最大的正方形;
(2)若一个正方形内九个数字之和是108,你能求出这个正方形吗?指出它中间的数字;(3)将自然数1至2010按表二的方式排列,框出九个数其和能为2010吗?若能,求出该方框中的最小数;若不能,请说明理由.
25.(12分)(2011秋•新洲区期末)已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.
(1)求线段AB的长|AB|;
(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;
(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:
①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.。